当前位置:文档之家› 普通最小二乘法(OLS)

普通最小二乘法(OLS)

普通最小二乘法(OLS)
普通最小二乘法(OLS)

普通最小二乘法(OLS )

普通最小二乘法(Ordinary Least Square ,简称OLS ),是应用最多的参数估计方法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。

在已经获得样本观测值i i x y ,(i=1,2,…,n )的情况下(见图2.2.1中的散点),假如模型

(2.2.1)的参数估计量已经求得到,为^

0β和

^

1β,并且是最合理的参数估计量,那么直线

方程(见图2.2.1中的直线)

i i x y ^

1^

0^

ββ+= i=1,2,…,n (2.2.2)

应该能够最好地拟合样本数据。其中^

i y 为被解释变量的估计值,它是由参数估计量和解释变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。

),()(102

2

101

ββββQ u x y Q i i n

i i ==

--=

=

()()

)

,(min ????102

1

102

1

2

?,?1

100ββββββββQ x y

y

y

u Q

n

i

i

n

i i

i =--=-=

=

∑∑∑==

(2.2.3)

为什么用平方和?因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。

由于

2

1

^

1^

01

2

^

)

)(()

(∑∑+--=

n

i i n

i i

x y y y

Q ββ=

是^

0β、^

1β的二次函数并且非负,所以其极小值总是存在的。所以Q

对^

0β、^

1β的一阶偏导数为0时,Q 达到最小。即

1

1001

100?,?1

?,?0=??=??====ββββββββββQ Q (2.2.4)

容易推得特征方程:

()0

)??(0

?)??(101

110==--==-=--∑∑∑∑∑==i

i

i

i n

i i

i

i i

i

n

i i

e

x x y x

e

y y

x y

ββββ

解得:

∑+=+=2

^

1

^

^

1

^0i

i i i i

i x x x y x n y ββββ (2.2.5)

所以有:??

?

?

???

??

-=---=--=∑

∑∑∑∑∑∑=======x y x x y y x x

x x n y x y x n n

i i n

i i i

n

i i n i i n

i i n i i n i i i 101

2

1

21

12

1111??)

())(()()()(?βββ (2.2.6)

于是得到了符合最小二乘原则的参数估计量。

为减少计算工作量,许多教科书介绍了采用样本值的离差形式

参数估计量的计算公式。由于现在计量经济学计算机软件被普遍采用,计算工作量已经不是什么问题。但离差形式的计算公式在其他方面也有应用,故在此写出有关公式,不作详细说明。记

∑=

-

i

x n x 1

∑=

-

i

y n

y 1

y y y

x x x

i i i i -=-=

(2.2.6)的参数估计量可以写成

??

???

??

-===∑∑==x

y x y x n t i

n

t i i 101

2

11???βββ (2.2.7)

至此,完成了模型估计的第一项任务。下面进行模型估计的第二项任

务,即求随机误差项方差的估计量。记i i i i y y u

e ??-==为第i 个样本观测点的残差,即被解释变量的估计值与观测值之差。则随机误差项方差的估计量为

2

?2

2

-=

n e i

u σ (2.2.8)

在关于2

?u σ的无偏性的证明中,将给出(2.2.8)的推导过程,有兴趣的读者可以参考有关资料。

在结束普通最小二乘估计的时候,需要交代一个重要的概念,即“估计量”和“估计值”的区别。由(2.2.6)给出的参数估计结果是由一个具体样本资料计算出来的,它是一个“估计值”,或者“点估

计”,是参数估计量^

0β和^

1β的一个具体数值;但从另一个角度,仅仅

把(2.2.6)看成^0β和^1β的一个表达式,那么,则是i y的函数,而i y是随机变量,所以^0β和^1β也是随机变量,在这个角度上,称之为“估计量”。在本章后续内容中,有时把^0β和^1β作为随机变量,有时又把^

β和^1β作为确定的数值,道理就在于此。

最小二乘法及其应用..

最小二乘法及其应用 1. 引言 最小二乘法在19世纪初发明后,很快得到欧洲一些国家的天文学家和测地学家的广泛关注。据不完全统计,自1805年至1864年的60年间,有关最小二乘法的研究论文达256篇,一些百科全书包括1837年出版的大不列颠百科全书第7版,亦收入有关方法的介绍。同时,误差的分布是“正态”的,也立刻得到天文学家的关注及大量经验的支持。如贝塞尔( F. W. Bessel, 1784—1846)对几百颗星球作了三组观测,并比较了按照正态规律在给定范围内的理论误差值和实际值,对比表明它们非常接近一致。拉普拉斯在1810年也给出了正态规律的一个新的理论推导并写入其《分析概论》中。正态分布作为一种统计模型,在19世纪极为流行,一些学者甚至把19世纪的数理统计学称为正态分布的统治时代。在其影响下,最小二乘法也脱出测量数据意义之外而发展成为一个包罗极大,应用及其广泛的统计模型。到20世纪正态小样本理论充分发展后,高斯研究成果的影响更加显著。最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。正如美国统计学家斯蒂格勒( S. M. Stigler)所说,“最小二乘法之于数理统计学犹如微积分之于数学”。最小二乘法是参数回归的最基本得方法所以研究最小二乘法原理及其应用对于统计的学习有很重要的意义。 2. 最小二乘法 所谓最小二乘法就是:选择参数10,b b ,使得全部观测的残差平方和最小. 用数学公式表示为: 21022)()(m in i i i i i x b b Y Y Y e --=-=∑∑∑∧ 为了说明这个方法,先解释一下最小二乘原理,以一元线性回归方程为例. i i i x B B Y μ++=10 (一元线性回归方程)

最小二乘法的编程实现

1、最小二乘法: 1)(用1 T A A 方法计算逆矩阵) #include #include #include #include #include #define N 200 #define n 9 void Getdata(double sun[N])//从txt文档中读取数据(小数){ char data; char sunpot[10]={0000000000};//为防止结果出现‘烫’字int i=0,j=0; double d; FILE *fp=fopen("新建文本文档.txt","r"); if(!fp) { printf("can't open file\n"); } while(!feof(fp)) { data=fgetc(fp); if(data!='\n') { sunpot[i]=data; i++; } else if(data=='\n') { sunpot[i]='\0';//给定结束符 d=atof(sunpot);//将字符串转换成浮点数 sun[j]=d; j++; i=0;//将i复位 } } } void Normal(double sun[N],double sun1[N])//将数据进行标准化{

double mean,temp=0,variance=0; int i; for(i=0;i

普通最小二乘法(OLS)

普通最小二乘法(OLS ) 普通最小二乘法(Ordinary Least Square ,简称OLS ),是应用最多的参数估计方法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。 在已经获得样本观测值i i x y ,(i=1,2,…,n )的情况下 (见图中的散点),假如模型()的参数估计量已经求得到, 为^0β和^ 1β,并且是最合理的参数估计量,那么直线方程(见 图中的直线) i i x y ^ 1^0^ββ+= i=1,2,…,n 应该能够最 好地拟合样本数据。其中^i y 为被解释变量的估计值,它是由参数估计量和解释变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。 ),()(1022101ββββQ u x y Q i i n i i ==--=∑∑= ()()),(min ????1021 10212?,?1100ββββββββQ x y y y u Q n i i n i i i =--=-==∑∑∑== 为什么用平方和因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。 由于 2 1 ^1^012 ^ ))(()(∑∑+--=n i i n i i x y y y Q ββ= 是^0β、^1β的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,当Q 对^0β、^ 1β的一阶偏导数为0时,Q 达到最小。即

0011001100?,?1 ?,?0 =??=??====ββββββββββQ Q 容易推得特征方程: ()0)??(0?)??(1011 10==--==-=--∑∑∑∑∑==i i i i n i i i i i i n i i e x x y x e y y x y ββββ 解得: ∑∑∑∑∑+=+=2^ 1^0^1^0i i i i i i x x x y x n y ββββ () 所以有:???? ?????-=---=--=∑∑∑∑∑∑∑=======x y x x y y x x x x n y x y x n n i i n i i i n i i n i i n i i n i i n i i i 10121 21121111??)())(()()()(?βββ () 于是得到了符合最小二乘原则的参数估计量。 为减少计算工作量,许多教科书介绍了采用样本值的离差形式的参数估计量的计算公式。由于现在计量经济学计算机软件被普遍采用,计算工作量已经不是什么问题。但离差形式的计算公式在其他方面也有应用,故在此写出有关公式,不作详细说明。记 ∑=-i x n x 1 ∑=-i y n y 1 y y y x x x i i i i -=-= ()的参数估计量可以写成

最小二乘法的原理及其应用

最小二乘法的原理及其应用 一、研究背景 在科学研究中,为了揭示某些相关量之间的关系,找出其规律,往往需要做数据拟合,其常用方法一般有传统的插值法、最佳一致逼近多项式、最佳平方逼近、最小二乘拟合、三角函数逼近、帕德(Pade)逼近等,以及现代的神经网络逼近、模糊逼近、支持向量机函数逼近、小波理论等。 其中,最小二乘法是一种最基本、最重要的计算技巧与方法。它在建模中有着广泛的应用,用这一理论解决讨论问题简明、清晰,特别在大量数据分析的研究中具有十分重要的作用和地位。随着最小二乘理论不断的完善,其基本理论与应用已经成为一个不容忽视的研究课题。本文着重讨论最小二乘法在化学生产以及系统识别中的应用。 二、最小二乘法的原理 人们对由某一变量t或多个变量t1…..tn 构成的相关变量y感兴趣。如弹簧的形变与所用的力相关,一个企业的盈利与其营业额,投资收益和原始资本有关。为了得到这些变量同y之间的关系,便用不相关变量去构建y,使用如下函数模型 , q个相关变量或p个附加的相关变量去拟和。 通常人们将一个可能的、对不相关变量t的构成都无困难的函数类型充作函数模型(如抛物线函数或指数函数)。参数x是为了使所选择的函数模型同观测值y相匹配。(如在测量弹簧形变时,必须将所用的力与弹簧的膨胀系数联系起来)。其目标是合适地选择参数,使函数模型最好的拟合观测值。一般情况下,观测值远多于所选择的参数。 其次的问题是怎样判断不同拟合的质量。高斯和勒让德的方法是,假设测量误差的平均值为0。令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差,围绕真值波动。除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。 确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。并建立如下规则:被选择的参数,应该使算出的函数曲线与观测值之差的平方和最小。用函数表示为:

最小二乘法--计算方法

生活中的计算方法应用实例——— 最小二乘法,用MATLAB实现1. 数值实例 下面给定的是某市最近1个月早晨7:00左右(新疆时间)的天气预报所得到的温度 天数 1 2 3 4 5 6 7 8 9 10 温度9 10 11 12 13 14 13 12 11 9 天数11 12 13 14 15 16 17 18 19 20 温度10 11 12 13 14 12 11 10 9 8 天数21 22 23 24 25 26 27 28 29 30 温度7 8 9 11 9 7 6 5 3 1 下面用MATLAB编程对上述数据进行最小二乘拟合,按照数据找出任意次曲线拟合方程和它的图像。 2、程序代码 x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7, 6,5,3,1]; a1=polyfit(x,y,3) %三次多项式拟合% a2= polyfit(x,y,9) %九次多项式拟合% a3= polyfit(x,y,15) %十五次多项式拟合% b1= polyval(a1,x) b2= polyval(a2,x) b3= polyval(a3,x) r1= sum((y-b1).^2) %三次多项式误差平方和% r2= sum((y-b2).^2) %九次次多项式误差平方和% r3= sum((y-b3).^2) %十五次多项式误差平方和% plot(x,y,'*') %用*画出x,y图像% hold on plot(x,b1, 'r') %用红色线画出x,b1图像% hold on plot(x,b2, 'g') %用绿色线画出x,b2图像% hold on plot(x,b3, 'b:o') %用蓝色o线画出x,b3图像% 3、数值结果 不同次数多项式拟合误差平方和为: r1=67.6659

偏最小二乘法基本知识

偏最小二乘法(PLS)简介-数理统计 偏最小二乘法partial least square method是一种新型的多元统计数据分析方法,它于1983年由伍德(S.Wold)和阿巴诺(C.Albano)等人首次提出。近几十年来,它在理论、方法和应用方面都得到了迅速的发展。 偏最小二乘法 长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。这是多元统计数据分析中的一个飞跃。 偏最小二乘法在统计应用中的重要性体现在以下几个方面: 偏最小二乘法是一种多因变量对多自变量的回归建模方法。偏最小二乘法可以较好的解决许多以往用普通多元回归无法解决的问题。 偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 主成分回归的主要目的是要提取隐藏在矩阵X中的相关信息,然后用于预测变量Y的值。这种做法可以保证让我们只使用那些独立变量,噪音将被消除,从而达到改善预测模型质量的目的。但是,主成分回归仍然有一定的缺陷,当一些有用变量的相关性很小时,我们在选取主成分时就很容易把它们漏掉,使得最终的预测模型可靠性下降,如果我们对每一个成分进行挑选,那样又太困难了。 偏最小二乘回归可以解决这个问题。它采用对变量X和Y都进行分解的方法,从变量X和Y 中同时提取成分(通常称为因子),再将因子按照它们之间的相关性从大到小排列。现在,我们要建立一个模型,我们只要决定选择几个因子参与建模就可以了

基本概念 偏最小二乘回归是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模型来描述独立变量Y与预测变量组X之间的关系: Y= b0 + b1X1 + b2X2 + ... + bpXp 在方程中,b0是截距,bi的值是数据点1到p的回归系数。 例如,我们可以认为人的体重是他的身高、性别的函数,并且从各自的样本点中估计出回归系数,之后,我们从测得的身高及性别中可以预测出某人的大致体重。对许多的数据分析方法来说,最大的问题莫过于准确的描述观测数据并且对新的观测数据作出合理的预测。 多元线性回归模型为了处理更复杂的数据分析问题,扩展了一些其他算法,象判别式分析,主成分回归,相关性分析等等,都是以多元线性回归模型为基础的多元统计方法。这些多元统计方法有两点重要特点,即对数据的约束性: 1.变量X和变量Y的因子都必须分别从X'X和Y'Y矩阵中提取,这些因子就无法同时表示变量X和Y的相关性。 2.预测方程的数量永远不能多于变量Y跟变量X的数量。 偏最小二乘回归从多元线性回归扩展而来时却不需要这些对数据的约束。在偏最小二乘回归中,预测方程将由从矩阵Y'XX'Y中提取出来的因子来描述;为了更具有代表性,提取出来的预测方程的数量可能大于变量X与Y的最大数。 简而言之,偏最小二乘回归可能是所有多元校正方法里对变量约束最少的方法,这种灵活性让它适用于传统的多元校正方法所不适用的许多场合,例如一些观测数据少于预测变量数时。并且,偏最小二乘回归可以作为一种探索性的分析工具,在使用传统的线性回归模型之前,先对所需的合适的变量数进行预测并去除噪音干扰。

普通最小二乘法

普通最小二乘法(OLS) 普通最小二乘法(Ordinary Least Square,简称OLS),是应用最多的参数估计方法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。 在已经获得样本观测值(i=1,2,…,n)的情况下(见图 2.2.1中的散点),假如模型(2.2.1)的参数估计量已经求得到,为和,并且是最合理 的参数估计量,那么直线方程(见图2.2.1中的直线) i=1,2,…,n (2.2.2) 应该能够最好地拟合样本数据。其中为被解释变量的估计值,它是由参数估计量和解释变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。 (2.2.3) 为什么用平方和?因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。 由于 是、的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,当Q对、的一阶偏导数为0时,Q达到最小。即

(2.2.4) 容易推得特征方程: 解得: (2.2.5) 所以有: (2.2.6) 于是得到了符合最小二乘原则的参数估计量。 为减少计算工作量,许多教科书介绍了采用样本值的离差形式的参数估计量的计算公式。由于现在计量经济学计算机软件被普遍采用,计算工作量已经不是什么问题。但离差形式的计算公式在其他方面也有应用,故在此写出有关公式,不作详细说明。记 (2.2.6)的参数估计量可以写成

(2.2.7) 至此,完成了模型估计的第一项任务。下面进行模型估计的第二项任务,即求随机 误差项方差的估计量。记为第i个样本观测点的残差,即被解释变量的估计值与观测值之差。则随机误差项方差的估计量为 (2.2.8) 在关于的无偏性的证明中,将给出(2.2.8)的推导过程,有兴趣的读者可以参考有关资料。 在结束普通最小二乘估计的时候,需要交代一个重要的概念,即“估计量”和“估计值”的区别。由(2.2.6)给出的参数估计结果是由一个具体样本资料计算 出来的,它是一个“估计值”,或者“点估计”,是参数估计量和的一个具体数值;但从另一个角度,仅仅把(2.2.6)看成和的一个表达式,那么,则是的函数,而是随机变量,所以和也是随机变量,在这个角度上,称之为“估计量”。在本章后续内容中,有时把和作为随机变量,有时又把和作为确定的数值,道理就在于此。

利用最小二乘法进行数据拟合

利用最小二乘法进行数据拟合: 例1. 在某个低温过程中,函数y 依赖于温度()C θo 的试验数据如下表: 已知经验公式的形式为2y a b θθ=+,根据最小二乘法原理编制MATLAB 程序求出,a b ,并做相应的理论分析。 解:在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精 度较高的观测量看作没有误差,并把这个观测量选作x ,而把所有的误差只认为是y 的误差。设x 和y 的函数关系由理论公式 y =f (x ;c 1,c 2,……c m ) (0-0-1) 给出,其中c 1,c 2,……c m 是m 个要通过实验确定的参数。对于每组观测数据(x i ,y i )i =1,2,……,N 。都对应于xy 平面上一个点。若不存在测量误差,则这些数据点都准确落在理论曲线上。只要选取m 组测量值代入式(0-0-1),便得到方程组 y i =f (x ;c 1,c 2,……c m ) (0-0-2) 式中i =1,2,……,m.求m 个方程的联立解即得m 个参数的数值。显然Nm 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得m 个参数值,只能用曲线拟合的方法来处理。设测量中不存在着系统误差,或者说已经修正,则y 的观测值y i 围绕着期望值 摆动,其分布为正态分布,则y i 的概率密度为 ()()[]??? ???????--=2 2 212,......,,;exp 21 i m i i i i c c c x f y y p σσπ, 式中i σ 是分布的标准误差。为简便起见,下面用C 代表(c 1,c 2,……c m )。考虑各次 测量是相互独立的,故观测值(y 1,y 2,……c N )的似然函数 ( ) ()[]??????????--= ∑=N i i i N N C x f y L 12 2 21;21ex p (21) σσσσπ. 取似然函数L 最大来估计参数C ,应使 ()[]min ;1 1 2 2 =-∑=N i i i i C x f y σ (0-0-3) 取最小值:对于y 的分布不限于正态分布来说,式(0-0-3)称为最小二乘法准则。若 为正态分布的情况,则最大似然法与最小二乘法是一致的。因权重因子2 /1i i σω=,故式

各类最小二乘法比较

最小二乘法(LS ) 最小二乘是一种最基本的辨识方法,最小二乘法可以用于线性系统,也可以用于非线性系统;可用于离线估计和在线估计。在随机情况下,利用最小二乘法时,并不要求观测数据提供其概率统计方法的信息,而其估计结果,却有相当好的统计特性。但它具有两方面的缺陷:一是当模型噪声是有色噪声时,最小二乘估计不是无偏、一致估计;二是随着数据的增长,将出现所谓的“数据饱和”现象。针对这两个问题,出现了相应的辨识算法,如遗忘因子法、限定记忆法、偏差补偿法、增广最小二乘、广义最小二乘、辅助变量法、二步法及多级最小二乘法等。 广义最小二乘法(GLS ) 广义最小二乘法的基本思想在于引入一个所谓成形滤波器(白化滤波器),把相关噪声转化成白噪声。 优:能够克服当存在有色噪声干扰时,基本最小二乘估计的有偏性,估计效果较好,在实际中得到较好的应用。 缺:1、计算量大,每个循环要调用两次最小二乘法及一次数据滤波, 2、求差分方程的参数估值,是一个非线性最优化问题,不一定总能保证算法对最优解的收敛性。广义最小二乘法本质上是一种逐次逼近法。对于循环程序的收敛性还没有给出证明。 3、GLS 算法的最小二乘指标函数J 中可能存在一个以上局部极小值,(特别在信噪比不大时,J 可能是多举的)。GLS 方法的估计结果往往取决于所选用参数的初始估值。参数估计初值应选得尽量接近优参数。在没有验前信息的情况下,最小二乘估值被认为是最好的初始条件。 4、广义最小二乘法的收敛速度不是很高。 递推最小二乘法(RLS ) 优点:1、无需存储全部数据,取得一组观测数据便可估计一次参数,而且都能在一个采样周期中完成,所需计算量小,占用的存储空间小。 2、具有一定的实时处理能力 )(k ξ)(k ε

用最小二乘法求一个形如

1. 2 y a bx =+. 解:1010654542.80a b a ε?=+-=?,1065414748998738643.00a b b ε?=+-=?,解方程得 4.00955,0.0471846a b ==,均方误差13.0346ε=。 2.下述矩阵能否分解为LU (其中L 为单位下三角阵,U 为上三角阵)?若能分解,那么分解是否唯一? .461561552621,133122111,764142321??????????=??????????=??????????=C B A 解: 按高斯消去法,A 无法进行第二次消去,换行后可以分解,B 第二次消去可乘任意系数,分解不唯一,C 可唯一分解。 3.设方程组 ?????=+-=++--=++3103220241225321321321x x x x x x x x x (a) 考察用雅可比迭代法,高斯-塞德尔迭代法解此方程组的收敛性; (b) 用雅可比迭代法,高斯-塞德尔迭代法解此方程组,要求当4)()1(10||||-∞+<-k k x x 时迭代终止. 解: (a) Jacobi 迭代矩阵 ????? ??--=+=-03.02.05.0025.02.04.00)(1U L D B 特征方程为 0055.021.0||3=-+=-λλλB I 特征根均小于1,Jacobi 迭代法收敛。 Gauss-Seidel 迭代矩阵 ????? ??=-=-17.004.007.04.002.04.00)(1U L D G 特征方程为 0096.057.0||23=+-=-λλλλG I 特征根均小于1,Gauss-Seidel 迭代法收敛。 (b) Jacobi 迭代格式为 1)()1(f BX X k k +=+ 其中B 如上,T b D f )3.052.1(11-==-, 迭代18次得

相关主题
文本预览
相关文档 最新文档