当前位置:文档之家› 用最小二乘法求一个形如

用最小二乘法求一个形如

用最小二乘法求一个形如
用最小二乘法求一个形如

1.

2

y a bx =+.

解:1010654542.80a b a ε?=+-=?,1065414748998738643.00a b b ε?=+-=?,解方程得 4.00955,0.0471846a b ==,均方误差13.0346ε=。

2.下述矩阵能否分解为LU (其中L 为单位下三角阵,U 为上三角阵)?若能分解,那么分解是否唯一?

.461561552621,133122111,764142321??????????=??????????=??????????=C B A

解: 按高斯消去法,A 无法进行第二次消去,换行后可以分解,B 第二次消去可乘任意系数,分解不唯一,C 可唯一分解。

3.设方程组

?????=+-=++--=++3103220241225321321321x x x x x x x x x

(a) 考察用雅可比迭代法,高斯-塞德尔迭代法解此方程组的收敛性;

(b) 用雅可比迭代法,高斯-塞德尔迭代法解此方程组,要求当4)()1(10||||-∞+<-k k x x 时迭代终止.

解: (a) Jacobi 迭代矩阵

????? ??--=+=-03.02.05.0025.02.04.00)(1U L D B 特征方程为

0055.021.0||3=-+=-λλλB I 特征根均小于1,Jacobi 迭代法收敛。

Gauss-Seidel 迭代矩阵

????? ??=-=-17.004.007.04.002.04.00)(1U L D G 特征方程为 0096.057.0||23=+-=-λλλλG I

特征根均小于1,Gauss-Seidel 迭代法收敛。

(b) Jacobi 迭代格式为

1)()1(f BX X k k +=+ 其中B 如上,T b D f )3.052.1(11-==-,

迭代18次得

()T X 9999999.19999739.29999964.3-=,

Gauss-Seidel 迭代格式为

2)()1(f GX X k k +=+ 其中G 如上,T b L D f )53.16.24.2()(12-=-=-,

迭代8次得

()T

X 000003.2999985.2000036

.4-=。

5. 设方程组 (a) ?????=++=++=++38.04.02

8.04.014.04.0321321321x x x x x x x x x (b) ?????=++=++=-+1221122321321321x x x x x x x x x 试考察解此方程组的雅可比迭代法及高斯-塞德尔迭代法的收敛性 解:. (a) 谱半径1093.1)(>=B ρ,Jacobi 迭代法不收敛; 矩阵A 对称正定,故Gauss-Seidel 迭代法收敛。 (b) 谱半径10)(<=B ρ,Jacobi 迭代法收敛;

谱半径12)(>=B ρ,Gauss-Seidel 迭代法不收敛

最小二乘法及其应用..

最小二乘法及其应用 1. 引言 最小二乘法在19世纪初发明后,很快得到欧洲一些国家的天文学家和测地学家的广泛关注。据不完全统计,自1805年至1864年的60年间,有关最小二乘法的研究论文达256篇,一些百科全书包括1837年出版的大不列颠百科全书第7版,亦收入有关方法的介绍。同时,误差的分布是“正态”的,也立刻得到天文学家的关注及大量经验的支持。如贝塞尔( F. W. Bessel, 1784—1846)对几百颗星球作了三组观测,并比较了按照正态规律在给定范围内的理论误差值和实际值,对比表明它们非常接近一致。拉普拉斯在1810年也给出了正态规律的一个新的理论推导并写入其《分析概论》中。正态分布作为一种统计模型,在19世纪极为流行,一些学者甚至把19世纪的数理统计学称为正态分布的统治时代。在其影响下,最小二乘法也脱出测量数据意义之外而发展成为一个包罗极大,应用及其广泛的统计模型。到20世纪正态小样本理论充分发展后,高斯研究成果的影响更加显著。最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。正如美国统计学家斯蒂格勒( S. M. Stigler)所说,“最小二乘法之于数理统计学犹如微积分之于数学”。最小二乘法是参数回归的最基本得方法所以研究最小二乘法原理及其应用对于统计的学习有很重要的意义。 2. 最小二乘法 所谓最小二乘法就是:选择参数10,b b ,使得全部观测的残差平方和最小. 用数学公式表示为: 21022)()(m in i i i i i x b b Y Y Y e --=-=∑∑∑∧ 为了说明这个方法,先解释一下最小二乘原理,以一元线性回归方程为例. i i i x B B Y μ++=10 (一元线性回归方程)

系统辨识之经典辨识法

系统辨识作业一 学院信息科学与工程学院专业控制科学与工程 班级控制二班 姓名 学号

2018 年 11 月 系统辨识 所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时 的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。 辨识的内容主要包括四个方面: ①实验设计; ②模型结构辨识; ③模型参数辨识; ④模型检验。 辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型结构;采集 数据;然后进行模型参数和结构辨识;最终验证获得的最终模型。 根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参 数模型辨识方法,另一类是参数模型辨识方法。 其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是 非参数模型。在假定过程是线性的前提下,不必事先确定模型的具体结构,广泛 适用于一些复杂的过程。经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉 冲响应法。 1.阶跃响应法 阶跃响应法是一种常用非参数模型辨识方法。常用的方法有近似法、半对数法、切线法、两点法和面积法等。本次作业采用面积法求传递函数。 1.1面积法 ① 当系统的传递函数无零点时,即系统传递函数如下: G(S) = + ?11?1+?+ 1+1 (1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取 微分方程的系数来辨识系统的传递函数。在求得系统的放大倍数K后,要得到无 因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述: () ?1 () (1-2) 面积法原则上可以求出n为任意阶的个系数。以n为3为例。有: 3() 2() () {| →∞ =| →∞ =| →∞ = 0 (1-3) ()| →∞ = 1

最小二乘法在系统辨识中的应用

最小二乘法在系统辨识中的应用 王文进 控制科学与控制工程学院 控制理论与控制工程专业 2009010211 摘要:在实际的工程中,经常要对一个系统建立数学模型。很多时候,要面对一个未知的系统,对于这些未知系统,我们所知道的仅仅是它们的一些输入输出数据,我们要根据这些测量的输入输出数据,建立系统的数学模型。由此诞生了系统辨识这门科学,系统辨识就是研究怎样利用对未知系统的输入输出数据建立描述系统的数学模型的科学。系统辨识在工程中的应用非常广泛,系统辨识的方法有很多种,最小二乘法是一种应用及其广泛的系统辨识方法。本文主要讲述了最小二乘估计在系统辨识中的应用。 首先,为了便于介绍,用一个最基本的单输入单输出模型来引入系统辨识中的最小二乘估计。 例如:y = ax + (1) 其中:y、x 可测,为不可测的干扰项,a未知参数。通过N 次实验,得到测量数据y k和x k ,其中k=1、2、3、…,我们所需要做的就是通过这N次实验得到的数据,来确定未知参数a 。在忽略不可测干扰项的前提下,基本的思想就是要使观测点y k和由式(1)确定的估计点y的差的平方和达到最小。用公式表达出来就是要使J最小: 确定未知参数a的具体方法就是令: J a = 0 , 导出 a 通过上面最基本的单输入单输出模型,我们对系统辨识中的最小二乘法有了初步的了解,但在实际的工程中,系统一般为多输入系统,下面就用一个实际的例子来分析。在接下来的表述中,为了便于区分,向量均用带下划线的字母表示。 水泥在凝固过程中,由于发生了一系列的化学反应,会释放出一定的热量。若水泥成分及其组成比例不同,释放的热量也会不同。 水泥凝固放热量与水泥成分的关系模型如下: y = a0+ a1x1+…+ a n x n + 其中,y为水泥凝固时的放热量(卡/克);x1~x2为水泥的几种成分。

系统辨识最小二乘Matlab仿真

系统辨识和最小二乘参数估计Matlab仿真 一、系统辨识 在控制系统的分析中,首先要建立系统的数学模型,控制系统的数学模型是定量描述系统或过程内部物理量(或变量)之间关系的数学表达式。 一般来说,建立控制系统数学模型有两种基本方法: (1)机理建模(白箱模型):即根据系统内在运行机制、物料和能量守恒等物理学、化学规律建立系统的数学模型,一般步骤如下: Step1:根据系统工作原理及其在控制系统中的作用,确定输入和输出; Step2:根据物料和能量守恒等关系列写基本方程式; Step3:消去中间量; Step4:获得系统模型; (2)实验法建模(黑箱模型):即对于机理尚不清楚或机理过于复杂的系统,可以人为的对其施加某种测试信号,并记录其输出响应,或者记录正常运行时的输入输出数据,然后利用这些输入输出数据确定系统模型结构和参数。 多年来,系统辨识已经发展为一门独立学科分支,通过系统辨识建立一个对象的数学模型,通常包括两方面的工作:一是模型结构的确定(模型的类型、阶次),二是模型参数估计。 根据时间是否连续,参数模型又可以分为连续时间系统模型和离散时间系统参数模型,这两类模型均可采用输入输出模型和状态空间模型描述,离散系统采用差分方程描述,以单输入单输出(SISO)离散系统参数模型为例。 1.确定性模型 SISO系统确定性模型可表示为: u(k)和y(k)分别为输入和输出,d为纯延时。 2.随机性模型 如果受到随机扰动,则式子可写为: 为系统随机扰动,其结构如图:

系统辨识的一般步骤如图: 从图中可以看出,利用辨识的方法建立系统数学模型,从实验设计到模型获得,需要这些步骤。 二、最小二乘参数估计 1.批处理最小二乘 考虑以下CAR模型:

系统辨识最小二乘参数估计matlab

最小二乘参数估计 摘要: 最小二乘的一次性完成辨识算法(也称批处理算法),他的特点是直接利用已经获得的所有(一批)观测数据进行运算处理。这种算法在使用时,占用内存大,离线辨识,观测被辨识对象获得的新数据往往是逐次补充到观测数据集合中去的。在应用一次完成算法时,如果要求在每次新增观测数据后,接着就估计出系统模型的参数,则需要每次新增数据后要重新求解矩阵方程()Z l T l l T l ΦΦΦ-∧=1θ。 最小二乘辩识方法在系统辩识领域中先应用上已相当普及,方法上相当完善,可以有效的用于系统的状态估计,参数估计以及自适应控制及其他方面。 关键词: 最小二乘(Least-squares ),系统辨识(System Identification ) 目录: 1.目的 (1) 2.设备 (1) 3引言 (1) 3.1 课题背景 (1) 4数学模型的结构辨识 (2) 5 程序 (3) 5.1 M 序列子函数 ................................................................................. 错误!未定义书签。 5.2主程序............................................................................................... 错误!未定义书签。 6实验结果: ................................................................................................................................... 3 7参考文献: ................................................................................................. 错误!未定义书签。 1.目的 1.1掌握系统辨识的理论、方法及应用 1.2熟练Matlab 下最小二乘法编程 1.3掌握M 序列产生方法 2.设备 PC 机1台(含Matlab 软件) 3引言 3.1 课题背景 最小二乘理论是有高斯(K.F.Gauss )在1795年提出:“未知量的最大可能值是这样一个数值,它使各次实际观测值和计算值之间的差值的平方乘以度量其精度的数值以后的和最小。”这就是最小二乘法的最早思想。 最小二乘辨识方法提供一个估算方法,使之能得到一个在最小方差意义上与实验数据最

最小二乘法及其应用

最小二乘法及其应用 最小二乘法是一个比较古老的方法,早在十八世纪,就由高斯首先创立并成功地应用于天文观测和大地的测量工作中。此后,近三百年来,它已被广泛应用于科学实验与工程技术中。随着现代电子计算机的普及与发展,这个古老的方法更加显示出其强大的生命力。 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可以用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。 最小二乘法拟合曲线的基本原理是:成对等精度地测得一组数据x,只(i=l,2,…,n),试找出一条最佳的拟合曲线,使得这条拟合曲线上的各点的值与测量值的差的平方和在所有拟合曲线中最小。所谓“拟合”,即不要求所作的曲线完全通过所有的数据点,只要求所得的曲线能反映数据的基本趋势。曲线拟合的几何解释是:求一条曲线,使数据点均在离此曲线的上方或下方不远处。 用最小二乘法拟合的曲线较为精确,接近于实际曲线。因而,最小二乘法拟合曲线在实际生活和科学研究中有着重要的意义,并渗透到各个领域,在物理、气象、化学、医学等方面有着广泛的应用。例如,在物理方面,我们通常通过实验测得数据,然后根据这些实验数据拟合曲线,从而总结出某种现象的规律或者变化趋势,进而采取相应的措施避免或加强其变化程度。这对于指导我们了解物理现象,并深刻理解物理知识是非常有帮助的。又如,在气象方面,在温室效应的研究中,科学家们通过对1860年到1980年的11个地球平均温度增加值的分析,利用最小二乘法进行曲线拟合,通过精确计算,建立了地球平均温度增加值与时间之间的函数关系。从而得出在2080年左右,地球的平均温度会比1980年上升约6℃,从而会引起诸如冰川后退、海平面上升等一系列严重的环境问题。到时极地冰盖就会融化,从而引起大量的洪水泛滥和大片的陆地被淹没,这一认识对进行环境质量评价和提出保护地球的措施具有重要的理论意义。

系统辨识

一、 最小二乘法(LS ) 辨识系统Z(K+2)=1.5*Z(K+1)-0.7*Z(k)+u(K+1)+0.5*u(k)+v(k) 辨识参数 L T L L T L LS y X X X 1)(-Λ =θ 其中 MAT 程序 >> x=[0 1 0 1 1 0 1 1 1]; >> n=403; >> M=[]; >> for i=1:n temp=xor(x(4),x(9)); M(i)=x(9); for j=9:-1:2 x(j)=x(j-1); end x(1)=temp; end >> v=randn(1,400); >> z=[]; >> z(1)=-1; >> z(2)=0; >> for i=3:402 z(i)=1.5*z(i-1)-0.7*z(i-2)+M(i-1)+0.5*M(i-2)+v(i-2); end >> H=zeros(400,4); >> for i=1:400 H(i,1)=-z(i+1); H(i,2)=-z(i); H(i,3)=M(i+1); H(i,4)=M(i); end >> Estimate=inv(H'*H)*H'*(z(3:402))' 辨识参数为: Estimate = -1.4916

1.0364 0.4268 >> 二、最小二乘递推法(RLS) 辨识Z(K+2)=1.5*Z(K+1)-0.7*Z(k)+u(K+1)+0.5*u(k)+v(k) 递推公式: 其中: MATLAB程序: >> x=[0 1 0 1 1 0 1 1 1]; n=403; M=[]; for i=1:n temp=xor(x(4),x(9)); M(i)=x(9); for j=9:-1:2 x(j)=x(j-1); end x(1)=temp; end v=randn(1,400); z=[]; z(1)=-1; z(2)=0; for i=3:402 z(i)=1.5*z(i-1)-0.7*z(i-2)+M(i-1)+0.5*M(i-2)+v(i-2); end P=100*eye(4); Pstore=zeros(4,401); >> Pstore(:,1)=[P(1,1),P(2,2),P(3,3),P(4,4)]; >> Theta=zeros(4,401); Theta(:,1)=[3;3;3;3]; >> K=[10;10;10;10];

最小二乘法的原理及其应用

最小二乘法的原理及其应用 一、研究背景 在科学研究中,为了揭示某些相关量之间的关系,找出其规律,往往需要做数据拟合,其常用方法一般有传统的插值法、最佳一致逼近多项式、最佳平方逼近、最小二乘拟合、三角函数逼近、帕德(Pade)逼近等,以及现代的神经网络逼近、模糊逼近、支持向量机函数逼近、小波理论等。 其中,最小二乘法是一种最基本、最重要的计算技巧与方法。它在建模中有着广泛的应用,用这一理论解决讨论问题简明、清晰,特别在大量数据分析的研究中具有十分重要的作用和地位。随着最小二乘理论不断的完善,其基本理论与应用已经成为一个不容忽视的研究课题。本文着重讨论最小二乘法在化学生产以及系统识别中的应用。 二、最小二乘法的原理 人们对由某一变量t或多个变量t1…..tn 构成的相关变量y感兴趣。如弹簧的形变与所用的力相关,一个企业的盈利与其营业额,投资收益和原始资本有关。为了得到这些变量同y之间的关系,便用不相关变量去构建y,使用如下函数模型 , q个相关变量或p个附加的相关变量去拟和。 通常人们将一个可能的、对不相关变量t的构成都无困难的函数类型充作函数模型(如抛物线函数或指数函数)。参数x是为了使所选择的函数模型同观测值y相匹配。(如在测量弹簧形变时,必须将所用的力与弹簧的膨胀系数联系起来)。其目标是合适地选择参数,使函数模型最好的拟合观测值。一般情况下,观测值远多于所选择的参数。 其次的问题是怎样判断不同拟合的质量。高斯和勒让德的方法是,假设测量误差的平均值为0。令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差,围绕真值波动。除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。 确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。并建立如下规则:被选择的参数,应该使算出的函数曲线与观测值之差的平方和最小。用函数表示为:

最小二乘法原理及应用【文献综述】

毕业论文文献综述 信息与计算科学 最小二乘法的原理及应用 一、国内外状况 国际统计学会第56届大会于2007年8月22-29日在美丽的大西洋海滨城市、葡萄牙首都里斯本如期召开。应大会组委会的邀请,以会长李德水为团长的中国统计学会代表团一行29人注册参加了这次大会。北京市统计学会、山东省统计学会,分别组团参加了这次大会。中国统计界(不含港澳台地区)共有58名代表参加了这次盛会。本届大会的特邀论文会议共涉及94个主题,每个主题一般至少有3-5位代表做学术演讲和讨论。通过对大会论文按研究内容进行归纳,特邀论文大致可以分为四类:即数理统计,经济、社会统计和官方统计,统计教育和统计应用。 数理统计方面。数理统计作为统计科学的一个重要部分,特别是随机过程和回归分析依然展现着古老理论的活力,一直受到统计界的重视并吸引着众多的研究者。本届大会也不例外。 二、进展情况 数理统计学19世纪的数理统计学史, 就是最小二乘法向各个应用领域拓展的历史席卷了统计大部分应用的几个分支——相关回归分析, 方差分析和线性模型理论等, 其灵魂都在于最小二乘法; 不少近代的统计学研究是在此法的基础上衍生出来, 作为其进一步发展或纠正其不足之处而采取的对策, 这包括回归分析中一系列修正最小二乘法而导致的估计方法。 数理统计学的发展大致可分 3 个时期。① 20 世纪以前。这个时期又可分成两段,大致上可以把高斯和勒让德关于最小二乘法用于观测数据的误差分析的工作作为分界线,前段属萌芽时期,基本上没有超出描述性统计量的范围。后一阶段可算作是数理统计学的幼年阶段。首先,强调了推断的地位,而摆脱了单纯描述的性质。由于高斯等的工作揭示了最小二乘法的重要性,学者们普遍认为,在实际问题中遇见的几乎所有的连续变量,都可以满意地用最小二乘法来刻画。这种观点使关于最小二乘法得到了深入的发展,②20世纪初到第二次世界大战结束。这是数理统计学蓬勃发展达到成熟的时期。许多重要的基本观点和方法,以及数理统计学的主要分支学科,都是在这个时期建立和发展起来的。这个时期的成就,包含了至今仍在广泛使用的大多数统计方法。在其发展中,以英国统计学家、生物学家费希尔为代表的英国学派起了主导作用。③战后时期。这一时期中,数理统计学在应用和理论两方面继续获得很大的进展。

系统辨识复习资料

1请叙述系统辨识的基本原理(方框图),步骤以及基本方法 定义:系统辨识就是从对系统进行观察和测量所获得的信息重提取系统数学模型的一种理论和方法。 辨识定义:辨识有三个要素——数据、模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型 辨识的三大要素:输入输出数据、模型类、等价准则 基本原理: 步骤:对一种给定的辨识方法,从实验设计到获得最终模型,一般要经历如下一些步骤:根据辨识的目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最后经过验证获得最终模型。 基本方法:根据数学模型的形式:非参数辨识——经典辨识,脉冲响应、阶跃响应、频率响应、相关分析、谱分析法。参数辨识——现代辨识方法(最小二乘法等) 2随机语言的描述 白噪声是最简单的随机过程,均值为零,谱密度为非零常数的平稳随机过程。 白噪声过程(一系列不相关的随机变量组成的理想化随机过程) 相关函数: 谱密度: 白噪声序列,白噪声序列是白噪声过程的离散形式。如果序列 满足: 相关函数: 则称为白噪声序列。 谱密度: M 序列是最长线性移位寄存器序列,是伪随机二位式序列的一种形式。 M 序列的循环周期 M 序列的可加性:所有M 序列都具有移位可加性 辨识输入信号要求具有白噪声的统计特性 M 序列具有近似的白噪声性质,即 M 序列“净扰动”小,幅度、周期、易控制,实现简单。 3两种噪声模型的形式是什么 第一种含噪声的被辨识系统数学模型0011()()()()n n i i i i y k a y k i b u k i v k ===-+-+∑∑,式中,噪声序列v(k)通常假定为均值为零独立同分布的平稳随机序列,且与输入的序列u(k)彼此统计独立. 上式写成:0 ()()()T y k k v k ψθ=+。其中,()()()()()()()=1212T k y k y k y k n u k u k u k n ψ------????L L ,,,,,,, ) ()(2τδστ=W R +∞ <<∞-=ωσω2)(W S )}({k W Λ,2,1,0,)(2±±==l l R l W δσ2)()(σωω== ∑ ∞-∞=-l l j W W e l R S ???≠=≈+=?0 , 00,Const )()(1)(0ττττT M dt t M t M T R bit )12(-=P P N

最小二乘法原理及其简单应用_邹乐强

科技信息 SCIENCE &TECHNOLOGY INFORMATION 2010年第23期y (%) 1.000.90.90.810.60.560.35x (%) 3.6 3.7 3.8 3.9 4.0 4.1 4.2 最小二乘法原理及其简单应用 邹乐强 (河南工程技术学校河南 焦作 454000) 【摘要】最小二乘法是从误差拟合角度对回归模型进行参数估计或系统辨识,并在参数估计、系统辨识以及预测、预报等众多领域中得到极为广泛的应用。然而,最小二乘法因其抽象、难懂常常被大家所忽视。本文就最小二乘法的引入,原理的证明,简单的应用进行归纳和总结,使读者对最小二乘法有更为清晰、系统、全面地认识。 【关键词】最小二乘法;回归模型;参数估计;系统辨识最小二乘法作为一种传统的参数估计方法,早已经被大家所了解。然而大多同学对最小二乘法的认识都比较模糊,仅仅把最小二乘法理解为简单的线性参数估计。事实上,最小二乘法在参数估计、系统辨识以及预测、预报等众多领域都有着广泛的应用。本文就最小二乘法的引入、最小二乘法原理的简单证明、最小二乘法在线性参数估计、欧氏空间、多项式拟合以及经济领域的模型参数估计等应用方面进行具体的阐释。本文的一些理论建立在学习过高等代数、数值分析及了解简单的经济计量学的基础上。本文的理论简明易懂,仅对现实中常见的问题用最小二乘法理论结合阐释。 1问题的引入 例 已知某种材料在生产过程中的废品率y 与某种化学成分x 有关。下列表中记载了某工厂生产中y 与相应的x 的几次数值: 我们想找出y 对x 的一个近似公式。 解把表中数值划出图来看,发现它的变化趋势近于一条直线。因此我们决定选取x 的一次式ax+b 来表达。当然最好能选到适当的a ,b 使下面的等式 3.6a+b -1.00=03.7a+b -0.9=03.8a+b -0.9=03.9a+b -0.81=0 4.0a+b -0.60=04.1a+b -0.56=04.2a+b -0.35=0 都成立。实际上是不可能的,任何a ,b 代入上面各式都会发生误差。于是想找a ,b 使上面各式的误差的平方和最小,即找到a ,b 使 (3.6a+b -1.00)2+(3.7a+b -0.9)2+(3.8a+b -0.9)2+(3.9a+b -0.81)2+(4.0a+b -0.60)2+(4.1a+b -0.56)2+(4.2a+b -0.35)2 最小。这里讨论的是误差的平方即二乘方,故称为最小二乘法。现在转向为一般的最小二乘法问题: 实系数线性方程组 a 11x 1+a 12x 2+…+a 1n x n - b 1=0 a 21x 1+a 22x 2+…+a 2n x n - b 2=0………… a m 1x 1 +a m 2x 2+…+a mn x n -b m = 1.1 可能无解。即任何一组实数x 1,x 2,……,x s 都可能使 m i =1 Σ(a i 1x 1+a i 2x 2+…+a in x n -b i )2 (*) 不等于零。 我们设法找到实数组x 0 1,x 0 2,…,x 0 s 使最小,这样的x 0 1,x 0 2,…,x 0 s 称为方程组的最小二乘解。这样问题就叫最小二乘法问题。 [1] 2 最小二乘法原理的证明 2.1 最小二乘法原理的初等证明 定理:X =(x 1,x 2,……x n )T 是矛盾方程组(1.1)的最小二乘解的充要条件是X 是方程组 (m i =1Σa 2 i 1)x 1+ m i =1Σa i 1a i 211x 2+…+ m i =j Σa i 1a in 11x n =m i =1 Σa i 1b i m i =1Σa i 2a i 1 1 1x 1+ m i =1Σa 2 i 2 11x 2+…+m i =1Σa i 2a in 11x n = m i =1Σa i 2b i m i =1 Σa in a i 11 1x 1+m i =1Σa in a i 211x 2+…+ m i =1 Σa 2 in 11x n = m i =1 Σa in b i 2.2 的解[2] 证明:设Y = m i =1Σ b i -n k =1 Σa ik x k 11 2 2.3 把Y 整理为关于x j (1≦j ≦n)的二次函数得 Y = m i =1 Σa 2ij 1 1x 2 j +2m i =1 Σ(a j (a i 1x 1+…+a i ,j -1x j -1+a i ,j +1x j +1+…+a 1n x n b j ))x j +m i =1 Σ(a i 1x 1+…+a i ,j -1x j -1+a i ,j +1x j +1+…+a in x n -b j )2 j=1,2,3,……,n 必要性:设X =(x 1,x 2,……,x n )T 是方程组⑴的最小二乘解,由定义1知⑴式中Y 有最小值,且X 是最小值点。由二次函数的性质得知二次函数 m i =1 Σa 2ij 〉0(j=1,2,……,n ),故a ij 不全部为零(与A 列满秩的假设一 致),且X 满足: X = m i =1 Σ[a ij (a i 1x 1 +…+a i ,j -1x i,j -1 +a i ,j +1x i,j +1+…+a in x n -b n )] m i =1 Σa ij (j=1,2,……,n) 2.4 化简得: m i =1 Σa ij a i 111x 1+m i =1Σa ij a i 211x 2+…+ m i =1Σa ij a i,j-111x j -1+ m i =1 Σa 2 ij 11x j + m i =1Σa ij a i,j+111x j +1+…+m i =1Σa ij a in 1 1x n =m i =1 Σa ij b i (j=1,2,…n) 这就是方程组⑵。不难看出方程组⑵的系数矩阵为A T A (A T 表示A 的转置矩阵),由A 列满秩知|A T A |≠0,故⑵有唯一解。必要性得证。 充分性:设X 是方程组(2)2.2的解,由x j (j =1,2,...,n )满足方程组2.2,也就是满足⑷式,再由于A 列满秩,a ij (i =1,2,...,m )不全为零,故⑶中二次项系数 m i =1 Σa 2 ij >0,因此,⑷中式Y 有最小值且最小值点为X =(x 1 , x 2,...,x n ),所以X 是方程组⑴的最小二乘解。 2.2利用欧氏空间证明最小二乘法下面我们利用欧氏空间的概念来表达最小二乘法,并给出最小二乘解所满足的代数条件。令 A = a 11a 12…a 1n a 21a 22 …a 2n … ……… a m 1 a m 2… a mn ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠B = b 1b 2… b m ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠ X = x 1x 2… x m ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠ Y =n j =1Σa 1j x 1n j =1Σa 2j x 2n j =1 Σa mj x m ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠ ≠ ≠≠≠≠ ≠ ≠≠≠≠≠ ≠≠ ≠ =AX 2.5 ○职校论坛○ 282

系统辨识方法

系统辨识方学习总结 一.系统辨识的定义 关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观 测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。L.Ljung也给 “辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。出了一个定义: 二.系统描述的数学模型 按照系统分析的定义,数学模型可以分为时间域和频率域两种。经典控制理论中微 分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程 和离散状态空间方程也如此。一般在经典控制论中采用频域传递函数建模,而在现代控 制论中则采用时域状态空间方程建模。 三.系统辨识的步骤与内容 (1)先验知识与明确辨识目的 这一步为执行辨识任务提供尽可能多的信息。首先从各个方面尽量的了解待辨识的 系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。 对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。 (2)试验设计 试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度 的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。主要涉及以下两个问 题,扰动信号的选择和采样方法和采样间隔 (3)模型结构的确定 模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的, 对所辨识系统的眼前知识的掌握程度密切相关。为了讨论模型和类型和结构的选择,引 入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。所谓模型结 构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。在单输入单 输出系统的情况下,系统模型结构就只是模型的阶次。当具有一定阶次的模型的所有参 数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。 (4)模型参数的估计 参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶 段就称为模型参数估计。

2003版系统辨识最小二乘法大作业

西北工业大学系统辩识大作业 题目:最小二乘法系统辨识

一、 问题重述: 用递推最小二乘法、加权最小二乘法、遗忘因子法、增广最小二乘法、广义最小二乘法、辅助变量法辨识如下模型的参数 离散化有 z^4 - 3.935 z^3 + 5.806 z^2 - 3.807 z + 0.9362 ---------------------------------------------- = z^4 - 3.808 z^3 + 5.434 z^2 - 3.445 z + 0.8187 噪声的成形滤波器 离散化有 4.004e-010 z^3 + 4.232e-009 z^2 + 4.066e-009 z + 3.551e-010 ----------------------------------------------------------------------------- = z^4 - 3.808 z^3 + 5.434 z^2 - 3.445 z + 0.8187 采样时间0.01s 要求:1.用Matlab 写出程序代码; 2.画出实际模型和辨识得到模型的误差曲线; 3.画出递推算法迭代时各辨识参数的变化曲线; 最小二乘法: 在系统辨识领域中 ,最小二乘法是一种得到广泛应用的估计方法 ,可用于动态 ,静态 , 线性 ,非线性系统。在使用最小二乘法进行参数估计时 ,为了实现实时控制 ,必须优化成参数递推算法 ,即最小二乘递推算法。这种辨识方法主要用于在线辨识。MATLAB 是一套高性能数字计算和可视化软件 ,它集成概念设计 ,算法开发 ,建模仿真 ,实时实现于一体 ,构成了一个使用方便、界面友好的用户环境 ,其强大的扩展功能为各领域的应用提供了基础。对 4324326.51411.5320120232320 Y s s s s G U s s s s ++++== ++++432 120120232320 E N W s s s s == ++++

系统辨识经典辨识方法

经典辨识方法报告 1. 面积法 辨识原理 分子多项式为1的系统 1 1 )(11 1++++= --s a s a s a s G n n n n Λ……………………………………………() 由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。大多数自衡的工业过程对象的y(t)可以用下式描述来近似 1)() ()()(a 111=++++--t y dt t dy a dt t y d a dt t y d n n n n K ……………………………() 面积法原则上可以求出n 为任意阶的各系数。以n=3为例,注意到 1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dt t y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得 ?-=++t dt t y t y a dt t dy a dt t y d a 01223 )](1[)() ()(…………………………………() 定义 ?-=t dt t y t F 01)](1[)(……………………………………………………………() 则由式()给出的条件可知,在t →∞ ?∞ -=01)](1[a dt t y ……………………………………………………………() 将式a 1y(t)移到等式右边,定义 )()]()([)() (a 201123 t F dt t y a t F t y a dt t dy t =-=+?…………………………………() 利用初始条件()当t →∞时 )(a 22∞=F …………………………………………………………………… () 同理有a 3=F 3(∞) 以此类推,若n ≥2,有a n =F n (∞) 分子、分母分别为m 阶和n 阶多项式的系统

系统辨识之最小二乘法

方法一、最小二乘一次性算法: 首先对最小二乘法的一次性辨识算法做简要介绍如下: 过程的黑箱模型如图所示: 其中u(k)和z(k)分别是过程的输入输出,)(1-z G 描述输入输出关系的模型,成为过程模型。 过程的输入输出关系可以描述成以下最小二乘格式: )()()(k n k h k z T +=θ (1) 其中z(k)为系统输出,θ是待辨识的参数,h(k)是观测数据向量,n(k) 是均值为0的随机噪声。 利用数据序列{z (k )}和{h (k )}极小化下列准则函数: ∑=-=L k T k h k z J 12])()([)(θθ (2) 使J 最小的θ的估计值^ θ,成为最小二乘估计值。 具体的对于时不变SISO 动态过程的数学模型为 )()()()()(11k n k u z B k z z A +=-- (3) 应该利用过程的输入、输出数据确定)(1-z A 和 )(1-Z B 的系数。 对于求解θ的估计值^θ,一般对模型的阶次 a n , b n 已定,且b a n n >;其次将(3)模 型写成最小二乘格式 )()()(k n k h k z T +=θ (4) 式中 ?????=------=T n n T b a b a b b b a a a n k u k u n k z k z k h ],,,,,,,[)](,),1(),(,),1([)(2121 θ (5)

L k ,,2,1 = 因此结合式(4)(5)可以得到一个线性方程组 L L L n H Z +=θ (6) 其中 ???==T L T L L n n n n L z z z z )](),2(),1([)](),2(),1([ (7) 对此可以分析得出,L H 矩阵的行数为),max(b a n n L -,列数b a n n +。 在过程的输入为2n 阶次,噪声为方差为1,均值为0的随机序列,数据长度)(b a n n L +>的情况下,取加权矩阵L Λ为正定的单位矩阵I ,可以得出: L T L L T L z H H H 1^ )(-=θ (8) 其次,利用在Matlab 中编写M 文件,实现上述算法。 此次算法的实现,采用6阶M 序作为过程黑箱的输入;噪声采用方差为1,均值为0的随机数序列;黑箱模型假设为:y(k)-1.5y(k-1)+0.7y(k-2)=2u(k-1)+0.5u(k-2),则系统输出为Z(k)-1.5Z(k-1)+0.7Z(k-2)=2U(k-1)+0.5U(k-2)+n (k );模型的阶次2,2==b a n n ;数据长度取L=200。 程序清单如下见附录:最小二乘一次性算法Matlab 程序 运行结果如下: 图1 最小二乘一次性算法参数真值与估计值 其中re 为真值,ans 为估计值^ θ 结果发现辨识出的参数与真值之间存在细微误差,这是由于系统噪声以及数据长度L 的限制引起的,最小二乘辨识法是一种无偏估计方法。 方法二、最小二乘递推算法: 最小二乘一次性算法计算量大,并且浪费存储空间,不利于在线应用,由此引出最小

系统辨识与自适应控制读书报告

系统辨识与自适应控制读书报告 1、概述 20世纪60年代,自动控制理论发展到了很高的水平。与此同时,工业大生产的发展,也要求将控制技术提高到更高的水平。现代控制理论的应用是建立在已知受控对象的数学模型这一前提下的,而在当时对受控对象数学模型的研究相对较为滞后。现代控制理论的应用遇到了确定受控对象合适的数学模型的各种困难。因此,建立系统数学模型的方法——系统辨识,就成为应用现代控制理论的重要前提。在另一方面,随着计算机科学的飞速发展,计算机为辨识系统所需要进行的离线计算和在线计算提供了高效的工具。在这样的背景下,系统辨识问题便愈来愈受到人们的重视,成为发展系统理论,开展实际应用工作中必不可少的组成部分。 “系统辨识”是研究如何利用系统试验或运行的、含有噪声的输入输出数据来建立被研究对象数学模型的一种理论和方法。系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。辨识问题可以归结为用一个模型来表示客观系统本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。当然也可以有另外的描述,辨识有三个要素:数据,模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。 自适应系统利用可调系统的输入量、状态向量及输出量来测量某种性能指标,根据测得的性能指标与给定的性能指标的比较,自适应机构修改可调系统的参数或者产生辅助输入量,以保持测得的性能指标接近于给定的性能指标,或者说测得的性能指标处于可接受性能指标的集合内。自适应系统的基本结构如图1所示。图中所示的可调系统可以理解为这样一个系统,它能够用调整它的参数或者输入信号的方法来调整系统特性。 未知扰动已知扰动 图1 自适应系统的基本结构 2、系统辨识的方法

系统辨识最小二乘法大作业 (2)

系统辨识大作业 最小二乘法及其相关估值方法应用 学院:自动化学院 学号: 姓名:日期:

基于最小二乘法的多种系统辨识方法研究 一、实验原理 1.最小二乘法 在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。 设单输入-单输出线性定长系统的差分方程为 (5.1.1) 式中:为随机干扰;为理论上的输出值。只有通过观测才能得到,在观测过程中往往附加有随机干扰。的观测值可表示为 (5.1.2) 式中:为随机干扰。由式(5.1.2)得 (5.1.3) 将式(5.1.3)带入式(5.1.1)得 (5.1.4) 我们可能不知道的统计特性,在这种情况下,往往把看做均值为0的白噪声。 设 (5.1.5) 则式(5.1.4)可写成 (5.1.6) 在观测时也有测量误差,系统内部也可能有噪声,应当考虑它们的影响。因此假定不仅包含了的测量误差,而且包含了的测量误差和系统内部噪声。假定是不相关随机序列(实际上是相关随机序列)。 现分别测出个随机输入值,则可写成个方程,即 上述个方程可写成向量-矩阵形式 (5.1.7) 设 则式(5.1.7)可写为

(5.1.8) 式中:为维输出向量;为维噪声向量;为维参数向量;为测量矩阵。因此式(5.1.8)是一个含有个未知参数,由个方程组成的联立方程组。如果,方程数少于未知数数目,则方程组的解是不定的,不能唯一地确定参数向量。如果,方程组正好与未知数数目相等,当噪声时,就能准确地解出 (5.1.9) 如果噪声,则 (5.1.10) 从上式可以看出噪声对参数估计是有影响的,为了尽量较小噪声对估值的影响。在给定输出向量和测量矩阵的条件下求系统参数的估值,这就是系统辨识问题。可用最小二乘法来求的估值,以下讨论最小二乘法估计。 2.最小二乘法估计算法 设表示的最优估值,表示的最优估值,则有 (5.1.11) 写出式(5.1.11)的某一行,则有 (5.1.12) 设表示与之差,即 - (5.1.13)式中 成为残差。把分别代入式(5.1.13)可得残差。设 则有 (5.1.14) 最小二乘估计要求残差的平方和为最小,即按照指数函数 (5.1.15) 为最小来确定估值。求对的偏导数并令其等于0可得 (5.1.16) (5.1.17)

基于最小二乘法的系统辨识的设计与开发(整理版)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 基于最小二乘法的系统辨识的设计与开发(整理版)课程(论文)题目: 基于最小二乘法的系统辨识摘要: 最小二乘法是一种经典的数据处理方法。 最小二乘的一次性完成辨识算法(也称批处理算法),他的特点是直接利用已经获得的所有(一批)观测数据进行运算处理。 在系统辨识领域中, 最小二乘法是一种得到广泛应用的估计方法, 可用于动态系统, 静态系统, 线性系统, 非线性系统。 在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。 关键词: 最小二乘法;系统辨识;参数估计 1 引言最小二乘理论是有高斯( K.F.Gauss)在 1795 年提出: 未知量的最大可能值是这样一个数值,它使各次实际观测值和计算值之间的差值的平方乘以度量其精度的数值以后的和最小。 这就是最小二乘法的最早思想。 最小二乘辨识方法提供一个估算方法,使之能得到一个在最小方差意义上与实验数据最好拟合的数学模型。 递推最小二乘法是在最小二乘法得到的观测数据的基础上,用新引入的数据对上一次估计的结果进行修正递推出下一个参数估计值,直到估计值达到满意的精确度为止。 1 / 10

对工程实践中测得的数据进行理论分析,用恰当的函数去模拟数据原型是一类十分重要的问题,最常用的逼近原则是让实测数据和估计数据之间的距离平方和最小,这即是最小二乘法。 最小二乘法是一种经典的数据处理方法。 在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。 2 最小二乘法的系统辨识设单输入单输出线性定常系统的差分方程为: 1),()()() 1()(01knkubkubnkxakxakxnn ( 1)上式中: )(ku为输入信号;)(kx为理论上的输出值。 )(kx只有通过观测才能得到,在观测过程中往往附加有随机干扰。 )(kx的观测值)(ky可表示为 ( 2)将式( 2)代入式( 1)得 1()()() 1()(101kubkubnkyakyakyn (3) 我们可能不知道)(kn的统计特性,在这种情况下,往往把)(kn看做均值为 0 的白噪声。 设 ( 4)则式( 3)可以写成 (5) 在测量)(ku时也有测量误差,系统内部也可能有噪声,应当

相关主题
文本预览
相关文档 最新文档