当前位置:文档之家› 武汉工程大学自动控制原理实验三

武汉工程大学自动控制原理实验三

武汉工程大学自动控制原理实验三
武汉工程大学自动控制原理实验三

《自动控制原理》实验三

一、实验目的

1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法;

2、了解系统参数或零极点位置变化对系统根轨迹的影响;

二、实验设备

1、硬件:个人计算机

2、软件:MATLAB 仿真软件(版本6.5或以上)

三、实验内容和步骤 1.根轨迹的绘制

利用Matlab 绘制跟轨迹的步骤如下:

1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K )

()

(s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。

关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。

图3.1 函数rlocus 的调用

例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。

图3.2 闭环系统一

图3.3 闭环系统一的根轨迹及其绘制程序

图 3.4 函数 rlocfind 的使用方法

注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。

当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys: sys = zpk([zero],[pole],1);

当系统开环传达函数无零点时,[zero]写成空集[]。

对于图 3.2 所示系统,

G(s)H(s)=

)2()1(++s s s K *11+s =)

3)(2()

1(+++s s s s K .

可如下式调用函数 z pk 构成系统 s ys:

sys=zpk([-1],[0 -2 -3],1)

若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 r locfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在

调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某点 并点击鼠标左键,这时图上会出现一个关于该点的信息框,其中包括该系统在此点的特征根的值及其 对应的 K 值、超调量和阻尼比等值。图 3.4 给出了函数 rlocfind 的用法。 2.实验内容

图3.5 闭环系统二

1)对于图 3.5 所示系统,编写程序分别绘制当

(1) G(s)=)

2(+s s K

,

(2) G(s)=)

4)(1(++s s s K

,

(3) G(s)=)

6)(4)(2(+++s s s s K

,

(4) G(s)=)24)(24)(4)(2(j s j s s s s K

-+++++,

(5) G(s)=)2()

4(++s s s K ,

(6) G(s)=)

4)(2()

6(+++s s s s K ,

(7) G(s)=

)

4)(2()

24)(24(++-+++s s s j s j s K

时系统的根轨迹,并就结果进行分析。 解析:

Lab3_1_1.m

程序:

sys=zpk([],[0 -2],1);rlocus(sys) 仿真结果:

分析: 系统有限开环极点数n=2:=(0,0) =(-2,0) ,开环有限零点数m=0,

m

渐近线与实轴交角

渐近线与实轴的交点:== -1。P(s)=

K=--s(s+2) , 求导令 dK/ds=-2s-2=0,则s=-1,会合点为(-1,0)此时K=1。 当0K 时,系统根轨迹从极点=(0,0) =(-2,0)处出发,所有根轨迹都位于实轴上;当

K=1时,根轨迹在(-1,0)处会合,在(-1,0)处分别以0

90,方向直线延伸,K ?→?

∞时 根轨迹沿渐近线趋近无穷远处,

由分析可知,程序运行结果与分析结果一致。

Lab3_1_2.m

程序:

sys=zpk([],[0 -2 -4],1);rlocus(sys) 仿真结果:

分析:系统有限开环极点数n=3:=(0,0) =(-2,0)=(-4,0)

开环有限零点数m=0,

m

渐近线与实轴交角

渐近线与实轴的交点:==-2 。将s=j代入特征方程s(s+2)(s+4)+K=0,,令实部方程为零得K-=0令虚部方程为零得8-2w=0解得w=2。根轨迹与虚轴的交点坐标为2,0)由于实轴上的根轨迹总是位于实轴上奇数个零极点的左面,故实轴上[-2,0],(-∞,-4]上必定为根轨迹 ;

[-2,0]之间的根轨迹:当0K时,根轨迹分别从=(0,0) =(-2,0)出发,在实轴上会

?∞时根轨迹沿渐近线趋近无穷远处;合,分离后分别沿渐近线趋于无穷,K?→

?∞时根(-∞,-4)之间的根轨迹:K=0时,从-4出发,沿负实轴趋于无穷,K?→

轨迹沿渐近线趋近无穷远处

由分析可知,程序运行结果与分析结果一致。

Lab3_1_3.m

程序:

sys=zpk([],[0 -2 -4 -6],1);rlocus(sys)

仿真结果:

分析:系统有限开环极点数n=4:=(0,0) =(-2,0) =(-4,0) =(-6,0),开环有限零点数m=0,

m

渐近线与实轴交角渐近线与实轴交角

渐近线与实轴的交点:==-2

求分离点:K=-s(s+2)(s+4)(s+6)=+12

求导令 dK/ds= =0,解得:=-0.763 =-3 =-5.263

由于带入特征方程时,k<0,故舍去。

根轨迹与虚轴的交点:将s=jw,代入特征方程+12,令实部等于零得-

令虚部等于零,得-12

解得w=2, k=160。由于实轴上的根轨迹总是位于实轴上奇数个零极点的左面,故实轴上[-2,0],[-6,-4]上必定为根轨迹 ;

[-2,0]之间的根轨迹:当0K时时,分别从=(0,0) =(-2,0)出发,在实轴上会合,再

?∞时根轨迹沿渐近线趋近无穷远处;分别沿45 -45渐近线趋于无穷远处,K?→

[-6,-4]之间的根轨迹:当K=0时,分别从=(-4,0) =(-6,0)出发,在实轴上会合,

?∞时根轨迹沿渐近线趋近无穷远再分别沿135 -135渐近线趋于无穷远处,K?→

根据分析可知,程序运行结果与理分析结果一致。

Lab3_1_4.m

程序:

sys=zpk([],[0 -2 -4-2j -4+2j],1);rlocus(sys) 仿真结果:

理论分析: 系统有限开环极点数n=5:=(0,0) =(-2,0)=(-4,0) =(-4 -j2,) =(-4 +j2) 开环有限零点数m=0,

m

渐近线与实轴交角

渐近线与实轴的交点:==-2.8

根轨迹与虚轴的交点:将s=jw 代入特征方程

,016018476142345=+++++K s s s s s 令实部等于零得 14- 令虚部等于零,得 解得=2.15=2.1573.85

将=2.1573.85时,K 。故=2.15

由于实轴上的根轨迹总是位于实轴上奇数个零极点的左面,故实轴上[-2,0],(-∞,-4]上必定为根轨迹 ;

[-2,0]之间的根轨迹:当K=0时,分别从=(0,0) =(-2,0)出发,在s=-0.64在会合

点处会合后分离,然后沿36 -36的渐近线趋于无穷远处,无穷远处,K ?→?

∞; (-∞,-4]之间的根轨迹:当K=0时,从=(-4,0)出发,沿180 渐近线趋于无穷远

处,K ?→?

∞时 根轨迹沿渐近线趋近无穷远处,同时,当K=0时,系统根轨迹分别从=(-4 -j2,) =(-4 +j2)出发,沿108-108渐近线趋于无穷远处,K ?→?

∞时 根轨迹沿渐近线趋近无穷远处

根据分析可知,程序运行结果与分析结果一致

Lab3_1_5.m

程序:

sys=zpk([-4],[0 -2],1);rlocus(sys)

仿真结果:

理论分析:系统有限开环极点数n=2:=(0,0)=(-2,0) ,开环有限零点数m=1,=(-4,0)

m

渐近线与实轴交角渐近线与实轴交角

求分离点:求分离点:K=

求导令 dK/ds =0,

得:s=-42 。

根轨迹是一个以(-4,0)为圆心,2为半径的圆,根轨迹分别从=(0,0)=(-2,0)出发,在s=-4+2处会合,然后分开,顺着圆的轨迹在s=-4-2处会合,一条终止于s=-4

?-∞处。

处,另一条沿180趋近s?→

根据分析可知,程序运行结果与分析结果一致。

Lab3_1_6.m

程序:

sys=zpk([-6],[0 -2 -4],1);rlocus(sys)

仿真结果:

分析:系统有限开环极点数n=3:=(0,0)=(-2,0) =(-4,0),

开环有限零点数m=1,=(-6,0)

m

渐近线与实轴交角渐近线与实轴交角

渐近线与实轴的交点: ==0

根轨迹与虚轴的交点:将s=jw,代入特征方程s(s+2)(s+4)+K(s+6)=0,令实部等于零得-

令虚部等于零,得j

解得w=1,

将w=1时,K。所以根轨迹与虚轴没有交点

由于实轴上的根轨迹总是位于实轴上奇数个零极点的左面,故实轴上[-2,0],[-6,-4]上必定为根轨迹 ;

[-2,0]之间的渐近线:当0K时,根轨迹分别从=(0,0)=(-2,0)出发,然后在实轴上

?∞时根轨迹沿渐会合,分离后再分别沿着90 -90的渐近线趋于无穷远处,K?→

近线趋近无穷远处。

?∞时,根轨迹终止于[-6,-4]之间的根轨迹:当K=0时,从=(-4,0)出发,当K?→

零点-6

根据分析可知,程序运行结果与分析结果一致。

Lab3_1_7.m

程序:

sys=zpk([-4-2j -4+2j],[0 -2 -4],1);rlocus(sys)

仿真结果:

分析:系统有限开环极点数n=3:=(0,0) =(-2,0) =(-4,0),开环有限零点数m=2,=(-4-j2)=(-4+j2)

m

渐近线与实轴交角渐近线与实轴交角

渐近线与实轴的交点:==2

将s=jw,代入特征方程s(s+2)(s+4)+K(s+4+j2)(s+4-j2)=0,

令实部等于零得

令虚部等于零,得-

解得w=-10j2

将w=-10j2时,K。所以根轨迹与虚轴没有交点

由于实轴上的根轨迹总是位于实轴上奇数个零极点的左面,故实轴上[-2,0],(- -4]上必定为根轨迹 ;

[-2,0]之间的根轨迹:当0K时,根轨迹分别从=(0,0) =(-2,0)出发;在实轴上会?∞时,终止于零点=(-4-j2)=(-4+j2) 。

合点处会合;在K?→

?∞时,终止于(- -4]之间的根轨迹:当K=0时,根轨迹从=(-4,0)出发,在K?→

负实轴的无穷远处

根据分析可知,程序运行结果与分析结果一致。

2)对于图3.5 所示系统,编写程序分别绘制当G(s)=

,a = 10,9,8,3 和1 时根轨迹,并就结果进行分析。

Lab3_2_1.m

a=10时程序:

sys=zpk([-1],[0 0 -10],1);rlocus(sys)

仿真结果:

图1 Lab3_2_2.m

a=9时程序:

sys=zpk([-1],[0 0 -9],1);rlocus(sys)

仿真结果:

图2 Lab3_2_3.m

a=8时程序:

sys=zpk([-1],[0 0 -8],1);rlocus(sys)

仿真结果:

图3 Lab3_2_4.m

a=3时程序:

sys=zpk([-1],[0 0 -3],1);rlocus(sys)

仿真结果:

图4

Lab3_2_5.m

a=1时程序:

sys=zpk([-1],[0 0 -1],1);rlocus(sys)

仿真结果:

图5

理论分析:系统开环有限极点数n=3=(0,0)=(0,-a),开环有限零点数m=1,=(0,-1) ,当a的值从 10,9,8,3 变到1 时,极点=(0,-a)越来越接近零点=(0,-1),从根

轨迹的变化可以看出,当开环零点与极点靠的很近时,他们之间的作用会相互抵消,对系统影响也越来越大。

3)对于图3.5 所示系统,编写程序分别绘制当G(s)=

,a = 1,1.12,1.185 和3时系统的根轨迹,并就结果进行分析。

四个框图如下:

Lab3_3_1.m

a=1时程序:

sys=zpk([-2],[0 -1 -1],1);rlocus(sys)

仿真结果:

Lab3_3_2.m

a=1.12时程序:

p=[1 2];q=[1 2 1.12 0];sys=tf(p,q);rlocus(sys)

仿真结果:

Lab3_3_3.m

a=1.185时程序:

p=[1 2];q=[1 2 1.185 0];sys=tf(p,q);rlocus(sys) 仿真结果:

Lab3_3_4.m

a=3时程序:

p=[1 2];q=[1 2 3 0];sys=tf(p,q);rlocus(sys)

仿真结果:

分析: G(s)= 故系统特征方程为: s( +a)+k(s+2)=0,

化简得K= - ,令 =0,得+a=0 当a=1 ,1.12,1.185 和3时可见随着共轭极点的虚部绝对值的增加,根轨迹在实轴上的两个分离点从两边向中间靠拢,后变为一个分离点最后变为没有。但系统根轨迹一直在虚轴左侧,并没有影响到系统的稳定。

四、实验预习

根据实验内容,结合讲义和教材,作出理论分析和计算。

五、(1)将实验曲线和结果按实验内容进行归纳、整理,分析参数变化对系统的影响,并与理论结果进行

比较,如有矛盾处请分析原因。

(2)可自行增加或设计实验情形,借以充分说明你的结论。

(3)附上所有程序段。

六、思考题

(1)实验内容3)中共轭复极点虚部绝对值由小变大时根轨迹发生了怎样的变化?为什么?

解:共轭复极点虚部绝对值由小变大时,从图像中可以看出:有两条根轨迹在实轴上无分离点,因为共轭复极点虚部绝对值由小变大时,根轨迹在实轴上的两个分

离点从两边向中间靠拢,后变为一个分离点最后变为没有,从而最后分离点会不在实轴上,出现带虚部的分离点,所以根轨迹会越来越远离实轴。

(2)为什么用鼠标移动实验结果图形中根轨迹上的点时,只能在同一颜色根轨迹上运动,而不能移动到其他颜色的根轨迹曲线上

(如果根轨迹有会合点和分离点的话)?

解:因为一种颜色的根轨迹代表着特征方程式的根s随k变化的轨迹曲线,根轨迹描叙的是K从0 到+变化时特征方程式的根s的变化情况,一个分支只代表一个特征方程式的根随K值的变化情况,因此只能在一条分支上运动,所以此时不能移动到其他颜色的根轨迹曲线上.

武汉工程大学实验一Matlab软件使用

武汉工程大学数字信号处理实验报告一 专业班级:14级通信03班 学生姓名:秦重双 学号:1404201114 实验时间:2017年5月2日 实验地点:4B315 指导老师:杨述斌

实验一 MATLAB软件使用 一、实验目的 1、熟悉MATLAB软件环境; 2、熟悉MATLAB的常用运算符; 3、了解MATLAB的一些常用函数特别是信号处理常用的函数; 二、实验内容 1、浏览MATLAB软件的窗口和菜单。 2、在命令窗口输入help和要查询的函数名称,就可以得到相应的帮助信息;直接用菜单中 的help,可以查到更详细的信息。 2、MATLAB中的固定变量: ans:在没有定义变量名时,系统默认变量名为ans; pi:表示 。 exp:表示数学中的e。 3、复数表示:如a+i*b或a+j*b,虚数用i和j表示。 4、请用help查看以下运算操作符的功能: +- * / \ ^ ‘; .* ./ .\ .^ .’; & | ~ xor;~= 完成下列操作,记录运算结果,并说明具体的运算功能: 输入矩阵 x=[1,2],y=[3,4],x’*y,回车;

输入x.*y,回车; 输入x.^y,回车; 输入2^3,回车;

5、请建立一个4×4的矩阵,矩阵中的元数值自定。要求写下输入的指令并记录结果; 6、本课程实验中常用的基本函数: (1)输入a=3+4*j,b=abs(a),记录运算结果,说出函数abs()的功能; abs为取复数X的模 (2)输入a=3+3*j,b=angle(a),记录运算结果,说出函数angle()的功能; angle()为X的相位 (3)zeros(m,n),m和n为正整数,请输入参数并记录结果,然后确定该函数的功能; m=2,n=3,即为两行三列的零矩阵 (4)ones(m,n),m和n为正整数,请输入参数并记录结果,然后确定该函数的功能; m=3,n=2为两行三列的一矩阵 (5)y=conv(x1,h1),输入help conv查看该函数的功能,并用讲过的例题或作业题来验证,请写下指令程序并记录结果;

武汉大学分析化学(第五版)下册答案

仪器分析部分作业题参考答案 第一章 绪论 1-2 1、主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析是利用物质的物理或物理化学性质进行分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能用于组分的定量或定性分析;仪器分析还能用于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度高,适合于常量组分分析;仪器分析灵敏度高、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。 2、共同点:都是进行组分测量的手段,是分析化学的组成部分。 1-5 分析仪器与仪器分析的区别:分析仪器是实现仪器分析的一种技术设备,是一种装置;仪器分析是利用仪器设备进行组分分析的一种技术手段。 分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的目的,分析仪器是仪器分析的工具。仪器分析与分析仪器的发展相互促进。 1-7 因为仪器分析直接测量的是物质的各种物理信号而不是其浓度或质量数,而信号与浓度或质量数之间只有在一定的范围内才某种确定的关系,且这种关系还受仪器、方法及样品基体等的影响。因此要进行组分的定量分析,并消除仪器、方法及样品基体等对测量的影响,必须首先建立特定测量条件下信号与浓度或质量数之间的关系,即进行定量分析校正。 第二章光谱分析法导论 2-1 光谱仪的一般组成包括:光源、单色器、样品引入系统、检测器、信号处理与输出装置。各部件的主要作用为: 光源:提供能量使待测组分产生吸收包括激发到高能态; 单色器:将复合光分解为单色光并采集特定波长的光入射样品或检测器;样品引入系统:将样品以合适的方式引入光路中并可以充当样品容器的作用;检测器:将光信号转化为可量化输出的信号 信号处理与输出装置:对信号进行放大、转化、数学处理、滤除噪音,然后以合适的方 式输出。 2-2: 单色器的组成包括:入射狭缝、透镜、单色元件、聚焦透镜、出射狭缝。各部件的主要作用为: 入射狭缝:采集来自光源或样品池的复合光;透镜:将入射狭缝采集的复合光分解为平行光;单色元件:将复合光色散为单色光(即将光按波长排列) 聚焦透镜:将单色元件色散后的具有相同波长的光在单色器的出口曲面上成像;出射狭缝:采集色散后具有特定波长的光入射样品或检测器 2-3 棱镜的分光原理是光的折射。由于不同波长的光在相同介质中有不同的折射率,据此能把不同波长的光分开。光栅的分光原理是光的衍射与干涉的总效果。不同波长的光通过光栅衍射后有不同的衍射角,据此把不同波长的光分开。 2-6

武汉大学计算机学院 嵌入式实验报告

武汉大学计算机学院 课程实验(设计)报告 课程名称:嵌入式实验 专业、班: 08级 姓名: 学号: 学期:2010-2011第1学期 成绩(教师填写) 实 一二三四五六七八九总评验 分数 分数 (百分制)

实验一80C51单片机P1口演示实验 实验目的: (1)掌握P1口作为I/O口时的使用方法。 (2)理解读引脚和读锁存器的区别。 实验内容: 用P1.3脚的状态来控制P1.2的LED亮灭。 实验设备: (1)超想-3000TB综合实验仪 1 台 (2)超想3000仿真器 1 台 (3)连线若干根 (4)计算机1台 实验步骤: (1)编写程序实现当P1.3为低电平时,发光管亮;P1.3为高电平时,发光管灭。 (2)修改程序在执行读P1.3之前,先执行CLR P1.3,观察结果是否正确,分析在第二种情况下程序为什 么不能正确执行,理解读引脚和读锁存器区别。 实验结果: (1)当P1.3为低电平时,发光管亮;P1.3为高电平时,发光管灭。 (2)不正确。因为先执行CLR P1.3之后,当读P1.3的时候它的值就一直是0,所以发光管会一直亮而不 会灭。单片机在执行从端口的单个位输入数据的指令(例如MOV C,P1.0)时,它需要读取引脚上的数据。此时,端口锁存器必须置为‘1’,否则,输出场效应管导通,回拉低引脚上的高输出电平。 系统复位时,会把所有锁存器置‘1’,然后可以直接使用端口引脚作为输入而无需再明确设置端口锁存器。但是,如果端口锁存器被清零(如CLR P1.0),就不能再把该端口直接作为输入口使用,除非先把对应的锁存器置为‘1’(如 SETB P1.0)。 (3)而在引脚负载很大的情况(如驱动晶体管)下,在执行“读——改——写”一类的指令(如CPL P1.0) 时,需要从锁存器中读取数据,以免错误地判断引脚电平。 实验二 80C51单片机RAM存储器扩展实验 实验目的: 学习RAM6264的扩展 实验内容: 往RAM中写入一串数据,然后读出,进行比较 实验设备: (1)超想-3000TB综合实验仪 1 台 (2)超想3000仿真器 1 台

武汉理工大学-操作系统实验报告

学 生 实 验 报 告 书 实验课程名称 操 作 系 统 开 课 学 院 计算机科学与技术学院 指导老师姓名 学 生 姓 名 学生专业班级 软件工程 2014 — 2015 学年 第 一 学期 学生学号 实验课成绩

实验课程名称:操作系统 实验项目名称Linux键盘命令和vi实验成绩 实验者专业班级组别 同组者实验日期年月日第一部分:实验分析与设计(可加页) 一、实验内容描述(问题域描述) 掌握Linux系统键盘命令的使用方法。 二、实验设计(包括实验方案设计,实验手段的确定,实验步骤,实验过程等) Vi编辑器是所有计算机系统中最常用的一种工具。UNIX下的编辑器有ex,sed和vi等,其中,使用最为广泛的是vi。 1.进入vi 在系统提示符号输入vi及文件名称后,就进入vi全屏幕编辑画面: 例如:$ vi myfile 有一点要注意,在进入vi之后,是处于“命令行模式”,要切换到“插入模式”才能够输入文字。 2. 切换至插入模式编辑文件 在“命令行模式”下按一下字母“i”就可以进入“插入模式”,这时候就可以开始输入文字了。 3. Insert 的切换 处于“插入模式”,就只能一直输入文字,按一下“ESC”键转到”命令行模式”能够删除文字。 4. 退出vi及保存文件 在“命令行模式”下,按一下“:”冒号键进入“Last line mode”,例如: : w myfilename : wq (输入”wq”,存盘并退出vi) : q! (输入q!,不存盘强制退出vi) 三、主要实验工具、仪器设备及耗材 安装Linux系统的计算机一台。

第二部分:实验结果分析(可加页) 一、调试过程(包括调试方法描述、实验数据记录,实验现象记录,实验过程发现的问题等) 在整个过程中,最困难的就是记忆整个Vi命令。在查阅资料的情况下,这个问题得到了解决。 二、实验结果描述 1.进入vi 在系统提示符号输入vi及文件名称后,就进入vi全屏幕编辑画面 图1 vi主界面 2.切换至插入模式编辑文件 在“命令行模式”下按一下字母”i”就可以进入”插入模式”。 3.退出vi及保存文件 在”命令行模式”下,按一下”:”冒号键进入”Last line mode”;输入w filename 将文章以指定的文件名filename保存;输入wq存盘并退出vi。 三、实验小结、建议及体会 这次实验让对Linux操作系统有了初步的了解,我掌握了一些Linux系统常用的命令。

武汉工程大学实验报告

实验名称:Matlab 的基本操作与编程 一、实验目的: 1)熟悉MATLAB 软件的运行环境和基本操作 2)掌握MATLAB 矩阵的输入方式、元素的提取与组合 3)掌握数值运算。 4)掌握MATLAB 软件的绘图功能 5)掌握M 函数的编写。 二、实验内容: 1)启动MATLAB 软件,观察其界面组成及操作方法,了解各部分的功能 2)使用基本的MATLAB 命令,并观察记录执行结果 帮助、查询信息类命令:Demo 、help 、who 、whos 显示、记录格式等命令:clc 、clear 、format 尝试一下其他的命令(dos 命令) 3)生成一个5阶魔方矩阵,并提取其第(3、4、5)行,第(2、3、4)列构成的新的矩阵 5)用命令行方式求解下式的值 4 2 cos lim 2 2x x e x -→(提示使用syms x 定义一个符号,使用limit 函数) 6)MATLAB 的绘图 (1) 二维绘图命令plot :画出,sin x y =在]2,0[π∈x 上的图形 (2) 三维绘图命令plot3: 画出三维螺旋线 ?? ? ??===t z t y t x cos sin ,]4,0[π∈t 的图形. mesh 命令:绘制) 2(22y x e z +-=,在]5,5[-∈x ,]5,5[-∈y 区间的曲面 7)编写M 函数 利用程序流程控制语句编写一个函数myfactorial (n ),实现n !(阶乘)。要求使用help 命令可以列出相关的帮助信息。

三、实验结果及分析

实验名称:典型闭环系统的数字仿真及计算机解题 一、实验目的: 1)熟悉典型闭环的仿真过程 2)掌握MATLAB 编程实现典型闭环环节仿真 3)利用典型闭环环节仿真程序解题。 4)掌握MATLAB 下对控制系统进行时域、频域和根轨迹的分析 二、实验内容: 1)编写典型环节阶跃响应函数 典型环节冲击响应函数function [yout,t] = my_step(num,den,v,t0,tf,h,R,n) 输入参数: num :传递函数的分子系数向量 den :传递函数的分母系数向量 v :反馈比例系数 t0:仿真起始时间 tf :仿真终止时间 h :仿真步长 R:阶跃幅值 n:系统阶次 输出参数: yout :响应输出 t :时间向量 2)用上述函数分析以下系统,同时用simulink 分析该系统,并比较其结果。 3)被控对象的传递函数为 )20030(400 )(2++= S S S s G ,用simulin 建模并分 析其单位阶跃响应。用MATLAB 命令绘出其伯德图和根轨迹图。

分析化学课后答案武汉大学第五版上册完整版

第1章 分析化学概论 1. 称取纯金属锌,溶于HCl 后,定量转移并稀释到250mL 容量瓶中,定容,摇匀。计算 Zn 2+溶液的浓度。 解:213 0.325065.39 0.0198825010 Zn c mol L +--= =?g 2. 有L 的H 2SO 4溶液480mL,现欲使其浓度增至L 。问应加入L H 2SO 4的溶液多少毫升 解:112212()c V c V c V V +=+ 220.0982/0.4800.5000/0.1000/(0.480)mol L L mol L V mol L L V ?+?=?+ 2 2.16V mL = 4.要求在滴定时消耗LNaOH 溶液25~30mL 。问应称取基准试剂邻苯二甲酸氢钾(KHC 8H 4O 4)多少克如果改用 22422H C O H O ?做基准物质,又应称取多少克 解: 844:1:1NaOH KHC H O n n = 1110.2/0.025204.22/ 1.0m n M cV M mol L L g mol g ===??= 2220.2/0.030204.22/ 1.2m n M cV M mol L L g mol g ===??= 应称取邻苯二甲酸氢钾~ 22422:2:1 NaOH H C O H O n n ?= 1111 2 1 0.2/0.025126.07/0.32m n M cV M mol L L g mol g == =???=

2221 2 1 0.2/0.030126.07/0.42m n M cV M mol L L g mol g ===???=应称取22422H C O H O ?~ 6.含S 有机试样,在氧气中燃烧,使S 氧化为SO 2,用预中和过的H 2O 2将SO 2吸收,全部转化为H 2SO 4,以LKOH 标准溶液滴定至化学计量点,消耗。求试样中S 的质量分数。 解: 2242S SO H SO KOH ::: 100%1 0.108/0.028232.066/2100% 0.47110.3%nM w m mol L L g mol g = ????=?= 8.不纯CaCO 3试样中不含干扰测定的组分。加入溶解,煮沸除去CO 2,用LNaOH 溶液反滴定过量酸,消耗,计算试样中CaCO 3的质量分数。 解: 32CaCO HCl : NaOH HCl : 00 1 ()2100%100% 1 (0.2600/0.0250.2450/0.0065)100.09/2100% 0.250098.24%cV cV M nM w m m mol L L mol L L g mol g -=?=??-??=?= 9 今含有 MgSO 4·7H 2O 纯试剂一瓶,设不含其他杂质,但 有部分失水变为MgSO 4·6H 2O ,测定其中Mg 含量后,全部按MgSO 4·7H 2O 计算,得质量分数为%。试计算试剂中MgSO 4·6H 2O

武汉大学计算机网络实验报告 (2)

武汉大学教学实验报告 动力与机械学院能源动力系统及自动化专业2013 年11 月10 日

一、实验操作过程 1.在仿真软件packet tracer上按照实验的要求选择无线路由器,一般路由器和PC机构建一个无线局域网,局域网的网络拓扑图如下: 2.按照实验指导书上的表9.1(参数配置表)对路由器,DNS服务器,WWW服务器和PC机进行相关参数的配置: 服务器配置信息(子网掩码均为255.255.255.0) 主机名IP地址默认网关 DNS 202.2.2.1 202.2.2.2 WWW 202.3.3.1 202.3.3.3 路由器配置信息(子网掩码均为255.255.255.0) 主机名型号IP地址默认网关时钟频率ISP 2620XM e1/0:202.2.2.2 e1/1:202.3.3.3 s0/0:202.1.1.2 64000 Router2(Server) 2620XM f0/0:192.168.1.1 s0/0:202.1.1.1 Wireless Router Linksys WRT300N 192.168.1.2 192.168.1.1 202.2.2.1 备注:PC机的IP地址将通过无线路由器的设置自动分配 2.1 对router0(sever)断的配置: 将下列程序代码输到router0中的IOS命令行中并执行,对router0路由器进行设置。Router>en Router#conf t

2.3 WWW服务器的相关配置 对www服务器进行与DNS服务器相似的配置,包括它的IP地址,子网掩码,网关等,具体的相关配置图见下图: WWW服务器的相关配置图

武汉大学—分析化学实验考试题目

《分析化学实验》试卷(A) 一、填空(31分,每空1分) 1 移液管、吸量管和容量瓶都是有的精确玻璃量器,均不宜放在烘箱中烘烤。 2 滴定管读数时,滴定管应保持,以液面呈处与为准,眼睛视线与在同一水平线上。 3 减重称量法常用称量瓶,使用前将称量瓶,称量时不可用手直接拿称量瓶,而要用套住瓶身中部进行操作,这样可避免手汗和体温的影响。 4 标定NaOH溶液时,常用和等作基准物质进行直接标定。 5 标定HCl溶液时,常用和等作基准物质进行直接标定。 6 使用分光光度计,拿比色皿时,用手捏住比色皿的,切勿触及,以免透光面被沾污或磨损。 7 配位滴定法中常用的氨羧配位剂是简称 8 以Zn等基准物质对EDTA进行标定时,如果以EBT为指示剂(EDTA为滴定剂)滴定是在pH约为的条件下,终点时,溶液由色变为色。XO指示剂只适用于(EDTA为滴定剂)pH约为的条件下,终点时,溶液由色变为色。如果以PAN为指示剂(EDTA为滴定剂)滴定是在pH约为的条件下,终点时,溶液由色变为色。 8. 1+1 的H2SO4溶液浓度为 mol/L; 1+1 的HCl溶液浓度为 mol/L。1+1 的NH3溶液浓度为 _mol/L。冰醋酸的浓度为 mol/L。 9.如果基准物未烘干,将使标准溶液浓度的标定结果 10. A (纵坐标)~λ(横坐标)作图为曲线,

A (纵坐标)~ C (横坐标)作图为。 二、简答(69分) 1 用减量法称取试样时,如果称量瓶内的试样吸湿,对称量结果会有什么影响影响?如果试样倒入烧杯(或其他承接容器)后再吸湿,对称量结果会有什么影响?(6分) 2 举例说明什么是络合滴定中的“置换滴定法”。(15分) 3 标定Na2S2O3时淀粉指示剂为什么应在近终点时加入?(6分) 4 .配制酸碱标准溶液时,为什么用量筒量取HCl,用台秤称取NaOH(S)、而不用吸量管和分析天平?(6分) 5.标准溶液装入滴定管之前,为什么要用该溶液润洗滴定管2~3次?而锥形瓶是否也需用该溶液润洗或烘干,为什么?(6分) 6 滴定至临近终点时加入半滴的操作是怎样进行的?(5分) 7如何测定含有Ca2+、Mg2+的混合溶液中的Ca2+、Mg2+分量?(25分)(写出原理、操作步骤、所用仪器、试剂) (lgK’MgY =8.70 , lgK’CaY =10.69) 《分析化学实验》试卷(B) 一、填空(20分,每空1分) 1.标定NaOH溶液的邻苯二甲酸氢钾中含有邻苯二甲酸,对测定结果的影响是;标定HCl溶液的浓度时,可用Na2CO3或硼砂(Na2B4O7·10H2O)为基准物质,若Na2CO3吸水,则标定结果;若硼砂结晶水部分失去,则标定结果。 2.邻二氮菲吸光光度法测定蜂蜜中微量铁实验中,盐酸羟胺作; 醋酸钠的作用是;制作吸收光谱的目的是。将含铁试样稀释时,其最大吸收峰的波长; 3.欲配制 1000ml 0.1mol/L HCl 溶液,应取浓盐酸ml;欲配制(1+1)H2SO4应将。

武汉大学电力系统分析实验报告

电气工程学院 《电力系统分析综合实验》2017年度PSASP实验报告 学号: 姓名: 班级:

实验目的: 通过电力系统分析的课程学习,我们都对简单电力系统的正常和故障运行状态有了大致的了解。但电力系统结构较为复杂,对电力系统极性分析计算量大,如果手工计算,将花费 大量的时间和精力,且容易发生错误。而通过使用电力系统分析程序PSASP,我们能对电 力系统潮流以及故障状态进行快速、准确的分析和计算。在实验过程中,我们能够加深对电力系统分析的了解,并学会了如何使用计算机软件等工具进行电力系统分析计算,这对我们以后的学习和工作都是有帮助的。 潮流计算部分: 本次实验潮流计算部分包括使用牛顿法对常规运行方式下的潮流进行计算,以及应用PQ分解法规划运行方式下的潮流计算。在规划潮流运行方式下,增加STNC-230母线负荷的有功至1.5.p.u,无功保持不变,计算潮流。潮流计算中,需要添加母线并输入所有母线 的数据,然后再添加发电机、负荷、交流线、变压器、支路,输入这些元件的数据。对运行方案和潮流计算作业进行定义,就可以定义的潮流计算作业进行潮流计算。 因为软件存在安装存在问题,无法使用图形支持模式,故只能使用文本支持模式,所以 无法使用PSASP绘制网络拓扑结构图,实验报告中的网络拓扑结构图均使用Visio绘制, 请见谅。 常规潮流计算: 下图是常规模式下的网络拓扑结构图,并在各节点标注电压大小以及相位。 下图为利用复数功率形式表示的各支路功率(参考方向选择数据表格中各支路的i侧母

线至j侧),因为无法使用图形支持模式,故只能通过文本支持环境计算出个交流线功率,下图为计算结果。

武汉大学分析化学总结

1. 绝对误差:测量值与真实值之间的差值,即E a=x?x T,误差越小,表示测量值与真实值越接近,准确度越高;反之,误差越大,准确度越低.当测量值大于真实值时,误差为正值,表示测定结果偏高;反之,误差为负值,表示测定结果偏低.相对误差:指绝对误差相 当于真实值的百分率,表示为:E r=E a x T ×100%=x?x T x T ×100%,相对误差有大小,正负之 分. 2. 偏差(d)表示测量值(x)与平均值(x )的差值:d=x?x .平均偏差:单次测定偏差的绝对值的平均值: d=1 d1+d2+?+d n= 1 |d i| n i=1 单次测定结果的相对平均偏差(d r)为:d r=d x ×100%. 3. 单次测定的标准偏差的表达式是: s= (x i?x )2 n i=1 相对标准偏差亦称变异系数:RSD=s r=s x ×100%. 4. 精密度←偏差←偶然误差→增加平行实验次数 ↓ d,s,RSD 准确度←误差←系统误差→针对产生的途径减免 ↓ E a,E r 5. 设测量值为A,B,C,其绝对误差为E A,E B,E C,相对误差为E A A ,E B B ,E C C ,标准偏差为s A,s B,s C,计算 结果用R表示,R的绝对误差为E R,相对误差为E R R ,标准偏差为s R. ⑴系统误差的传递公式 ①加减法:若分析结果的计算公式为R=A+B?C,则E R=E A+E B?E C. 如果有关项有系数,例如R=A+mB?C,则为E R=E A+m E B?E C. ②乘除法:若分析结果的计算公式R=A B C ,则E R R =E A A +E B B ?E C C ,如果计算公式带有系数,如 R=m AB C ,同样可得到E R R =E A A +E B B ?E C C . 即在乘除运算中,分析结果的相对系统误差等于各 测量值相对系统误差的代数和. ③指数关系:若分析结果R与测量值A有如下关系R=m A n,其误差传递关系为E R R =n E A A , 即分析结果的相对系统系统误差为测量值的相对系统误差的指数倍. ④对数关系:若分析结果R与测量值A有下列关系R=mlgA,其误差传递关系式为 E R=0.434m E A A . ⑵随机误差的传递,随机误差用标准偏差s来表示最好,因此均以标准偏差传递.

武汉大学单级放大电路实验报告

武汉大学计算机学院教学实验报告 课程名称电路与电子技术成绩教师签名 实验名称单级放大电路(多人合作实验)实验序号06 实验日期2011-12-12 姓名学号专业年级-班 小题分: 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识;实验内容;必要的原理分析) 实验目的: 1.掌握放大器静态工作点的调试方法及其对放大器性能的影响。 2.学习测量放大器的静态工作点Q,Av,ri,ro的方法啊,了解共射极电路特性。 3.学习放大器的动态性能。 实验内容: 测量放大器的动态和静态工作状态结果填入相应表格当中,记录相应的β值,A值和等效的输入电阻ri与输出电阻r0。 二、实验环境及实验步骤 小题分: (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用电表 4.TRE-A3模拟电路实验箱 实验步骤: 1.?值测量 (1)按图2.1所示连接电路,将Rp的阻值调到最大值。 (2)连线完毕仔细检查,确定无误后再接通电源。改变Rp,记录Ic分别为0.8mA,1mA, 1.2mA时三极管V的?值。

Ib(mA)0.05 0.06 0.066 Ic(mA) 0.8 1 1.2 ? 16 16.67 18.18 ?=Ic/Ib代入各式即可 2.Q点测量 信号源频率f=500Hz时,逐渐加大ui幅度,观察uo不失真时的最大输入ui值和最大输出uo值,并测量Ib,Ic,和VCE填入表2.2 表2.2 实测法估算法误差 IB (uA)IC (mA) Vce (V) IB’ (uA) IC’ (mA) V’ce (V) IB-I’B IC-I’C Vce-V’ 47.2 1.4 4.86 47.2 1.56 3 0 0.16 1.86 估算法:Ib=V1/(R1+R2)=12/(51k+200K)=47.2uA Ic= ?Ib=1.56mA Vce=V1-R3*Ic=3V 3.Av值测量 (1)将信号发生器调到频率f=500Hz,幅值为5mA,接到放大器输入端ui,观察ui和uo 端的波形,用示波器进行测量,并将测得的ui,uo和实测计算的Av值及理论估算的Av’值填入表2.3 表2.3 实测法估算法误差 Ui(mV)Uo(V) Av=uo/ui Av’Av’-Av 5 -1.3 -260 -31 .7 -55.7 估算法:Vbe=V1-Ib(R1+R2) Vce=V1-Ic*R3 Av’=Vce/Vbe=-315.7 (2)保持Vi=5mV不变,放大器接入负载RL,在改变Rc的数值情况下测量,并将计算结果填表2.4 表2.4 给定参数实 实测计 估算 Rc RL Vi(mV) V o(V) Av Av 2k 5k 5 0.83 165 177.89 2k 2k2 5 0.60 119 129.7 5k1 5k1 5 1.30 260 315.76 5k1 2k2 5 0.90 180 190.3

分析化学实验报告(武汉大学第五版)

分析化学实验报告 陈峻 (贵州大学矿业学院贵州花溪 550025) 摘要:熟悉电子天平得原理与使用规则,同时可以学习电子天平得基本操作与常用称量方法;学习利用HCl与NaOH相互滴定,便分别以甲基橙与酚酞为指示剂得 滴定终点;通过KHC 8H 4 O 4 标定NaOH溶液,以学习有机酸摩尔质量得测定方法、熟 悉常量法滴定操作并了解基准物质KHC 8H 4 O 4 得性质及应用;通过对食用醋总浓度 得测定,以了解强碱滴定弱酸过程中溶液pH得变化以及指示剂得选择。 关键词:定量分析;电子天平;滴定分析;摩尔质量;滴定;酸度,配制与标定 前言 实验就是联系理论与实际得桥梁,学好了各种实验,不仅能使学生掌握基本操作技能,提高动手能力,而且能培养学生实事求就是得科学态度与良好得实验习惯,促其形成严格得量得观念。天平就是大多数实验都必须用到得器材,学好天平得使用就是前提,滴定就是分析得基础方法,学好配制与滴定就是根本。 (一)、分析天平称量练习 一、实验目得: 1、熟悉电子分析天平得使用原理与使用规则。 2、学习分析天平得基本操作与常用称量法。 二、主要试剂与仪器 石英砂电子分析天平称量瓶烧杯小钥匙 三、实验步骤 1、国定质量称量(称取0、5000g 石英砂试样3份) 打开电子天平,待其显示数字后将洁净、干燥得小烧杯放在秤盘上,关好天平门。然后按自动清零键,等待天平显示0、0000 g。若显示其她数字,可再次按清零键,使其显示0、0000

g。 打开天平门,用小钥匙将试样慢慢加到小烧杯中央,直到天平显示0、5000 g。然后关好 天平门,瞧读数就是否仍然为0、5000g。若所称量小于该值,可继续加试样;若显示得量超过 该值,则需重新称量。每次称量数据应及时记录。 2、递减称量(称取 0、30~0、32 g石英砂试样 3 份) 按电子天平清零键,使其显示0、0000 g,然后打开天平门,将1个洁净、干燥得小烧杯 放在秤盘上,关好天平门,读取并记录其质量。 另取一只洁净、干燥得称量瓶,向其中加入约五分之一体积得石英砂,盖好盖。然后将 其置于天平秤盘上,关好天平门,按清零键,使其显示0、0000 g。取出称量瓶,将部分石英 砂轻敲至小烧杯中,再称量,瞧天平读数就是否在-0、30~-0、32 g 范围内。若敲出量不够, 则继续敲出,直至与从称量瓶中敲出得石英砂量,瞧其差别就是否合乎要求(一般应小于 0、4 mg)。若敲出量超过0、32 g,则需重新称量。重复上述操作,称取第二份与第三份试样。 四、实验数据记录表格 表1 固定质量称量 编号 1 2 3 m/g 0、504 0、500 0、503 表2 递减法称量 编号 1 2 3 m(空烧杯)/g 36、678 36、990 37、296 称量瓶倒出试样m1 -0、313 -0、303 -0、313 M(烧杯+试样)/g 36、990 37、296 37、607

飞鸽传书实验报告

武汉工程大学 计算机科学与工程学院认识实习报告 专业 计算机科学与技术(计算机工程方向) 班级 学号 学生姓名 指导教师 实习时间 实习成绩 武汉工程大学计算机科学与工程学院制

说明: 1、实习指导教师由学院校内教师担任,负责组织实习、学生管理、参加实 习答辩、实习成绩评定、给出实习评语等工作。 2、实习报告由武汉工程大学计算机科学与工程学院提供基本格式(适用于 学院各专业),各专业教研室和指导教师可根据本专业特点及实习内容做适当的调整,学生须按指导教师下达的实习报告格式认真进行填写。 3、实习成绩由指导教师根据学生的实习情况给出各项分值及总评成绩。 4、指导教师评语一栏由实习指导教师(校内教师)就学生在整个实习期间 的表现给出客观、全面的评价,包括实习期间的表现、实习报告的质量、实习答辩的情况等。 5、学生必须参加实习答辩,凡不参加实习答辩者,实习成绩一律按不及格 处理。实习答辩小组应由2人及以上教师组成,其中校内指导教师必须参加,否则视作无效答辩。 6、实习报告正文字数应不少于5000字,实习日记字数不少于200字/天。 7、实习报告正文中实习目的与任务、实习地点、实习内容和要求等项,可 由指导教师统一给出(自主实习除外)。学生自主实习的,可根据实习的情况自行填写以上内容。 8、自主实习的学生还应提供由实习单位出具的实习鉴定表(复印件),与实 习报告一起装订,作为参加实习答辩和评定成绩的依据。

学生姓名:学号:班级:

指导教师评语

一、实习目的与任务 计算机科学与技术专业认识实习是学生在完成基础课学习转入到专业课学习阶段的一个极其重要的实践教学环节。其目的是通过参观和听取专业报告等多种方式,使学生了解本专业相关领域的发展现状,相关产品的研发过程和管理手段。具体任务包括: 1、了解计算机、网络通信等相关领域的发展现状和最新科研成果,以及在生产科研中的应用; 2、巩固学生的理论知识,培养学生的实践能力、创新能力,拓宽学生视野,树立努力学习专业知识的信心,并为学习后续课程打下一定的实践基础; 3、增强劳动观念,树立正确的劳动观和价值观。 二、实习地点 东软软件股份有限公司大连分公司 三、实习内容和要求 1、参观武汉烽火集团有限公司展厅,听取基地指导教师的介绍,了解我国光信息及通信 产业的发展现状、产品的研发过程。 2、在武汉锐诺斯科技有限公司,了解国际宽幅打印机的开发流程及发展动态。 3、在鑫人达电子有限公司,参观自动化焊接生产线,波峰焊接设备和全自动源器件切片; 全自动回流焊接设备。 4、听取专家报告,了解计算机教育相关知识,了解计算机信息技术最新研究动态,了解 国家重点实验室相关技术。 5、实习期间,每天需记实习日记(最好手写),字数不少于200字/天,内容包括:时间、 地点、主要实习内容等。实习结束后,撰写认识实习报告(模版打印)。

武汉理工大学计算机网络实验报告

学生学号0121210680117 实验课成绩 武汉理工大学 学生实验报告书 实验课程名称《计算机网络》 开课学院计算机科学与技术学院 指导老师姓名周兰采 学生姓名柏扬 学生专业班级软件1201 2013 —2014 学年第二学期

实验课程名称:计算机网络 实验项目名称获取网卡的MAC地址实验成绩 实验者专业班级组别 同组者实验日期 第一部分:实验分析与设计(可加页) 一、实验内容描述(问题域描述) 实验内容:编程获取以太网适配器的MAC地址。 二、实验基本原理与设计(包括实验方案设计,实验手段的确定,试验步骤等,用硬件逻辑或 者算法描述) 实验原理: 在系统的cmd命令提示符中,我们输入ipconfig/all就可以看到本机上所有的适配器的具体内容如媒体状态、连接特定的DNS后缀、描述、物理地址、DHCP 已启用、自动配置已启用信息。本实验是运用匹配的思想,先通过,在寻找匹配字符串物理地址,找到了就将:后面位置的内容赋值给mac,作为MAC地址,然后再主函数中输出即可。

实验代码如下: package socket; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class SystemTool { /** *@return mac地址 */ public static String getWindowsMACAddress() { String mac = null; BufferedReader bufferedReader = null; Process process = null; try { process = Runtime.getRuntime().exec("ipconfig /all");// windows 下的命令,显示信息中包含有mac地址信息 bufferedReader = new BufferedReader(new InputStreamReader(process.getInputStream())); String line = null;

最新武汉大学分析化学总结

1. 绝对误差:测量值与真实值之间的差值,即,误差越小,表示测量值与真实值越接近,准确度越高;反之,误差越大,准确度越低.当测量值大于真实值时,误差为正值,表示测定结果偏高;反之,误差为负值,表示测定结果偏低.相对误差:指绝对误差相 当于真实值的百分率,表示为:,相对误差有大小,正负之 分. 2. 偏差(d)表示测量值(x)与平均值()的差值:.平均偏差:单次测定偏差的绝对值的平均值: 单次测定结果的相对平均偏差为:. 3. 单次测定的标准偏差的表达式是: 相对标准偏差亦称变异系数:. 4. 精密度偏差偶然误差增加平行实验次数 准确度误差系统误差针对产生的途径减免 5. 设测量值为A,B,C,其绝对误差为相对误差为,标准偏差为,计算结果用R表示,R的绝对误差为,相对误差为,标准偏差为. ⑴系统误差的传递公式 ①加减法:若分析结果的计算公式为,则. 如果有关项有系数,例如,则为. ②乘除法:若分析结果的计算公式,则,如果计算公式带有系数,如 ,同样可得到. 即在乘除运算中,分析结果的相对系统误差等于各测量值相对系统误差的代数和. ③指数关系:若分析结果R与测量值A有如下关系,其误差传递关系为, 即分析结果的相对系统系统误差为测量值的相对系统误差的指数倍. ④对数关系:若分析结果R与测量值A有下列关系,其误差传递关系式为 . ⑵随机误差的传递,随机误差用标准偏差s来表示最好,因此均以标准偏差传递.

①加减法:若分析结果的计算是为R=A+B-C,则.即在加减运算中,不论是相加还是相减,分析结果的标准偏差的平方(称方差)都等于各测量值的标准差平方和.对于一般情况,,应为. ②乘除法:若分析结果的计算式为,则,即在乘除运算中,不论是相乘还是相除,分析结果的相对标准偏差的平方等于各测量值的相对标准偏差的平方之和.若有关项有系数,例如,其误差传递公式与上式相同. ③指数关系:若关系式为,可得到或. ④对数关系:若关系式为,可得到. 6. 如果分析结果R是A,B,C三个测量数值相加减的结果,例如,则极值误差为 ,即在加减法运算中,分析结果可能的极值误差是各测量值绝对 误差的绝对值加和.如果分析结果R是A,B,C三个测量数值相乘除的结果,例如,则极值误差为,即在乘除运算中,分析结果的极值相对误差等于各测量 值相对误差的绝对值之和. 7. 有效数字问题. 在分析化学中常遇到pH, pM,lgK等对数值,其有效数字位数取决于小数部分(尾数)数字的位数,因整数部分(首数)只代表该数的方次.例如,pH=10.28,换算为浓度时,应为,有效数字的位数是两位,不是四位. “四舍六入五成双”规则规定,当测量值中被修约的数字等于或小于4时,该数字舍去;等于或大于6时,则进位;等于5时,要看5前面的数字,若是奇数则进位,若是偶数则将5舍掉,即修约后末位数字都成为偶数;若5后面还有不是“0”的任何数,则此时无论5的前面是奇数还是偶数,均应进位. 8. 有效数字运算规则: ⑴加减法:几个数据相加或相减时,有效数字位数的保留,应以小数点后位数最少的数据为准,其他的数据均修约到这一位.其根据是小数点后位数最少的那个数的绝对误差最大.注意:先修约,在计算. ⑵几个数字相乘除时,有效数字的位数应以几个数中有效数字位数最少的那个数据为准.其根据是有效数字位数最少的那个数的相对误差最大.同样,先修约,再计算.在乘除法的运算中,经常会遇到9以上的大数,如9.00,9.86它们的相对误差的绝对值约为0.1%,与10.06,12.08这些四位有效数字的数值的相对误差绝对值接近,所以通常将它们当作四位有效数字的数值处理。 9. 频数分布: ⑴离散特性,最好的表示方法是标准偏差s,它更能反映出大的偏差,也即离散程度.当测量次数为无限多次时,其标准偏差称为总体标准偏差,用符号来表示,计算公式为 ,式中的为总体平均值. ⑵集中趋势:当数据无限多时将无限多次测定的平均值称为总体平均值,用符号表示,则

武汉大学计算机学院教学实验报告

武汉大学计算机学院教学实验报告 课题名称:电工实验专业:计算机科学与技术2013 年11 月15 日 实验名称电路仿真实验实验台号实验时数3小时 姓名秦贤康学号2013301500100年级2013 班3班 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识点;实验内容;必要的原理分析) 实验目的: 熟悉multisim仿真软件的使用 用multisim进行电路仿真,并验证书上的理论知识的正确性 内容:用仿真软件进行实验 二、实验环境及实验步骤 (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 一台微机 实验步骤: 用multisim先进行电路仿真,再记录下相关数据 三、实验过程与分析 (详细记录实验过程中发生的故障和问题,进行故障分析,说明故障排除的过程和方法。根据具体实验,记录、整理相应的数据表格、绘制曲线、波形图等)

实验内容及数据记录 1、简单直流电路 简单直流电路在有载状态下电源的电阻、电压和电路 简单直流电路在短路状态下电源的电阻、电压和电路 简单直流电 路在 开路状 态下电源的电阻、电压和电路 2、复杂直 流电路 复杂直流电路中各元件上的电压 复杂直流电路中各元件上的电流 复杂直流电路在E1作用下负载上的电压和电流 复杂直流电路在E2作用下的电压和电流 复杂直流电路在E1与E2作用下的电压和电流 复杂直 流电路 中的等效电阻 R (k Ω) 1 2 3 4 5 I (mA ) 24000 24000 24000 24000 24000 U (V ) 0.000024 0.000024 0.000024 0.000024 0.000024 R (k Ω) 1 2 3 4 5 I (mA ) 12 6.09 4.011 3.011 2.412 U (V ) 11.94 11.997 11.99 8 11.998 11.999 R (k Ω) 1 2 3 4 5 I (mA ) 0.000176 0.000176 0.000176 0.000176 0.000176 U (V ) 12 12 12 12 12 RL (k Ω) 1 2 3 4 5 URL (V ) 6.799 8.497 9.269 9.710 9.995 UR1(V ) 5.198 3.501 2.730 2.289 2.004 UR2(V ) -3.200 -1.502 -0.731 -0.290 -0.005286 UE1(V ) 11.997 11.998 11.999 11.999 11.999 UE2(V ) 9.999 10.000 10.000 10.000 10.000 RL (k Ω) 1 2 3 4 5 IRL (mA ) 6.807 4.258 3.100 2.437 2.209 IR1(mA ) 5.198 3.505 2.733 2.292 2.006 IR2(mA ) -1.603 2.499 --1.999 -1.666 -1.428 IE1(mA ) 5.198 3.505 2.733 2.292 2.006 IE2(mA ) -1.603 -2.501 -2.000 -1.666 -1.428 RL (k Ω) 1 2 3 4 5 UE1(V ) 4.798 5.996 6.540 6.851 7.053 IE1(mA ) 4.803 3.004 2.187 1.720 1.418 RL (k Ω) 1 2 3 4 5 UE2(V ) 2.002 2.501 2.729 2.858 2.942 IE2(mA ) 2.002 1.252 0.911 0.718 0.592 RL (k Ω) 1 2 3 4 5 URL (V ) 6.802 8.497 9.269 9.710 9.995 IRL (mA ) 6.807 4.258 3.100 2.437 2.209 R3(k Ω) 1 2 3 4 5 R6(k Ω) 2 3 4 5 6 R7(k Ω) 3 4 5 6 7 RL (k Ω) -1.603 2.499 --1.999 -1.666 -1.428 URL (V ) 5.198 3.505 2.733 2.292 2.006 IRL (A ) -1.603 -2.501 -2.000 -1.666 -1.428 R3(k Ω) 1 2 3 4 5

相关主题
文本预览
相关文档 最新文档