当前位置:文档之家› 称重传感器常用技术参数.

称重传感器常用技术参数.

称重传感器常用技术参数.
称重传感器常用技术参数.

称重传感器常用技术参数

一、用分项指标表示法在介绍称重传感器技术参数时,传统的方法是采用分项指标,其优点是物理意义明确,沿用多年,熟悉的人较多。我们现在列出其主要项目如下:

*额定容量生产厂家给出的称量范围的上限值。

*额定输出(灵敏度)加额定载荷时和无载荷时,传感器输出信号的差值。由于称重传感器的输出信号与所加的激励电压有关,所以额定输出的单位以mV/V来表示。并称之为灵敏度。

*灵敏度允差传感器的实际稳定输出与对应的标称额定输出之差对该标称额定输出的百分比。例如,某称重传感器的实际额定输出为2.002mV/V,与之相适应的标准额定输出则为2mV/V,则其灵敏度允差为:((2.002 – 2。000)/2.000)*100% = 0.1% *非线性由空载荷的输出值和额定载荷时输出值所决定的直线和增加负荷之实测曲线之间最大偏差对于额定输出值的百分比。

*滞后允差从无载荷逐渐加载到额定载荷然后再逐渐卸载。在同一载荷点上加载和卸载输出量的最大差值对额定输出值的百分比。

*重复性误差在相同的环境条件下,对传感器反复加荷到额定载荷并卸载。加荷过程中同一负荷点上输出值的最大差值对额定输出的百分比。

*蠕变在负荷不变(一般取为额定载荷),其它测试条件也保持不变的情形下,称重传感器输出随时间的变化量对额定输出的百分

比。

*零点输出在推荐电压激励下,未加载荷时传感器的输出值对额定输出的百分比。

*绝缘阻抗传感器的电路和弹性体之间的直流阻抗值。

*输入阻抗信号输出端开路,传感器未加负荷时,从电源激励输入端测得的阻抗值。

*输出阻抗电源激励输入端短路,传感器未加载荷时,从信号输出端测得的阻抗。

*温度补偿范围在此温度范围内,传感器的额定输出和零平衡均经过严密补偿,从而不会超出规定的范围。

*零点温度影响环境温度的变化引起的零平衡变化。一般以温度每变化10K时,引起的零平衡变化量对额定输出的百分比来表示。

*额定输出温度影响环境温度的变化引起的额定输出变化。一般以温度每变化10K引起额定定输出的变化量额定输出的百分比来表示。

*使用温度范围传感器在此温度范围内使用其任何性能参数均不会产生永久性有害变化

二、在《OIML60号国际建议》中采用的术语。以《OIML60号国际建议》92年版为基础,参考《JJG669--90称重传感器检定规程》新的技术参数大致有:

*称重传感器输出被测量(质量)通过称重传感器转换而得到的可测量。

*称重传感器分度值称重传感器的测量范围被等分后其中一份的大小。

*称重传感器检定分度值(V)为了准确度分级,在称重传感器测试中采用的,以质量单位表达的称重传感器分度值。

*称重传感器最小检定分度值(Vmin)称重传感器测量范围可以被分度的最小检定分度值勤。

*最小静负荷(Fsmin)可以施加于称重传感器而不会超出最大允许误差的质量的最小值。

*最大称量可以施加于称重传感器而不会超出最大允许误差的质量的最大值。

*非线性(L)称重传感器进程校准曲线与理论直线的偏差。

*滞后误差(H)施加同一级负荷时称重传感器输出读数之间的最大差值;其中一次是由最小静负荷开始的进程读数,另一次是由最大称量开始的回程读数。

*蠕变(Cp)在负荷不变,所有环境条件和其它变量也保持不变的情况下,称重传感器满负荷输出随时间的变化。

*最小静负荷输出恢复植(CrFsmin)负荷施加前,后测得的称重传感器最小静负荷输出之间的差值。

*重复性误差(R)在相同的负荷和相同的环境条件下,使连续数次进行实验所得的称重传感器输出读数之间的差值。

*温度对最小静负荷输出的影响(Fsmin)由于环境温度变化而引起的最小静负荷输出之间的变化。 *温度对输出灵敏度的影响(St)

由于环境温度变化而引起的输出灵敏度的变化。

*称重传感器测量范围被测量(质量)值范围,测量结果在此范围内不会超出最大允许误差。

*安全极限负荷可以施加于称重传感器的最大负荷,此时称重传感器在性能特征上,不会产生超出规定值的永久性漂移。

*温湿度对最小静负荷输出影响(FsminH)由于温湿度变化而引起的最小静负荷输出的变化。

*温湿度对输出灵敏度的影响由于温湿度变化而引起的输出灵敏度的变化。

此外,在《JJG699—90称重传感器检定规程》中,还列出了一个技术参数,即

*最小负荷(Fmin)力发生装置能达到的最接近称重传感器最小静负荷的质量值。正是因为传感器测量时,总要在测力机上进行,而又很难直接测量最小静负荷点性能。再要说明一点,《OIML60号国际建议》是专门为称重传感器而制定的,它对称重传感器的评定的出发点就是要适应衡器的要求。当传感器用于其它目的时,这种评估方式不一定最合适。

称重传感器故障检测及原因分析

称重传感器故障检测及原因分析 一、概述 动态、静态电子秤大量使用的称重传感器为电阻应变式称重传感器。称重传感器由弹性体、应变计、检测电路三部分组成。 二、称重传感器的故障现象 因传感器故障造成称量系统故障的现象归纳起来主要表现为: 1.空载或称重过程中,显示数据不稳定、跳变。 2.零位漂移。 3.加载后无显示。 4.空载时显示数据过大,称重误差大。 5.称重后称无法回零。 6.重复性变差、线性、灵敏度差。 三、称重传感器故障常用检测方法 当计量系统出现故障现象后,我们可通过观察和仪表测量等方法,确定仪表无故障和秤体处于完好状态后,可做偏载测试以初步判断哪只传感器存在故障。 对传感器好坏的检测,我主要可以借助万用表其性能、技术参数进行测量,与生产厂家使用说明书提供及平时检修总结出来的技术数据进行对比,从而找出发生故障的传感器,具体的检测方法有: 1、阻抗判断法:切断工作电源,逐个将传感器的输出、输入线拆开,若用万用表测量输出、输入阻抗和信号电缆各芯与屏蔽层的绝缘性能(测量电阻值)下降,即可判断出该只传感器有故障。 1端和4端:激励工作电压输入端 2端和3端:重量毫伏电压信号输出端

测量方法:不加电的情况下, 1. 测量1、4端的电阻380Ω±5Ω 2. 测量2、3端的电阻为350Ω±3Ω 3. 测量1、2端,测量1、3端电阻应该相等,大约300Ω±3Ω 4.测量4、2端,测量4、3端电阻应该相等,大约300Ω±3Ω 注:电阻值根据具体的传感器大小可能不同;如果根据以上的测量方法得出的电阻大小不等,传感器多半损坏,应更换。 2、输出信号判断法: 有时传感器损坏,但阻抗并没有很大变化,果采用阻抗法无法检测出传感器的好坏,可采用此法作进一步地检测。给仪表送电后,逐个将传感器的输出线拆掉,需要注意的是在拆线过程中要特别小心操作以防触电,且不可将输出线与输入激励线短路,在空载情况下,用万用表直流mV档测其输出线的mV值。 假定额定激励电压为U(V),传感器的灵敏度为M(mV/V),传感器载荷重量为K(kg),传感器的额定容量为F(kg),则每只传感器输出电压应为:U×M×K/F (mV) 同一衡器同型号的传感器在无载荷情况下其输出mv值基本一致。若超出计算值或传感器的额定输出且输出不稳定,即可判断该只传感器有故障。

称重传感器设计word版

称重传感器是用来将重量信号或压力信号转换成电量信号的转换装置。称重传感器采用金属电阻应变计组成测量桥路,利用金属电阻丝在张力作用下伸长变细,电阻增加的原理,即金属电阻随所受应变而变化的效应而制成的(应变,就是尺寸的变化)。 称重传感器的构造原理金属电阻具有阻碍电流流动的性质,即具有电阻(Ω),其阻值依金属的种类而异。同一种金属丝,一般来讲,越是细长,其电阻值就越大。当金属电阻丝受外力作用而伸缩时,其电阻值就会在某一范围内增减。因此,将金属丝(或膜)紧贴在被测物体上,而且这种丝或膜又很细或很薄,粘贴又十分完善,那么,当被测物体受外力而伸缩时,金属电阻丝(膜)也会按比例伸缩,其阻值也会相应变化。称重传感器就是将金属电阻应变计粘贴在金属称重梁上进行测量重量信号的。 称重传感器的外形构造与测重形式,变频传感器的外形构造随被测对象的不同,其外形构造也会不同。A.比较常见的称重传感器的外形构造:柱式;S 型;轮辐式;环式;碟式;箱形等。 B.测重形式:正应力测量(柱型、单点式等),剪应力测量(双剪切梁式、部分S 型、轮辐式等)又可分为压式(柱式、碟式等)、拉式(部分S 型传感器、环式传感器)、拉压两用(部分柱式、轮辐式、S 型等) C.弹性元件内部应变梁的结构形式:平行梁、剪切梁等 D.不同结构形式的传感器的应用对象:柱式——大吨位汽车衡、轮道衡、料斗秤、料罐秤,试验机,力值监控与测量等;S 型——用于料斗秤、料罐秤、包装机,材料试验机等;双剪切梁式——汽车衡、轨道衡等;单点式——天平、计价秤、计数秤、平台秤,工业现场重量控制及测量; 称重传感器的电路组成.称重传感器进行测量时,我们需要知道的是应变计受到载荷时的电阻变化。通常采用应变计组成桥式电路(惠斯登电桥),将应变计引起的电阻变化转换成电压变化来进行测量的。 变频传感器的输出灵敏度的表示方法,传感器响应(输出)的变化对相应的激励(施加的载荷)变化的比。传感器的输出灵敏度采用额定载荷状态电桥的输出电压与输入激励电压之比值(mV/V)来表示。通常称传感器的输出灵敏度。 为什么传感器内部要加补偿电路?称重传感器在制造过程中,为了改善它的性能,特别是改善温度特性,一般要在应变计电路中附加对零点和灵敏度的温度补偿。即除了应变计外,其中还增加了各种补偿电阻。零点补偿的目的是尽量减小电桥零点随温度的变化,因此,除变频传感器本身的温度自补偿外,又加入了电阻温度系数和电桥中应变计的温度系数不同的电阻元件(如铜电阻或镍电阻等),以加强补偿作用。灵敏度补偿的目的是减小输出电压随温度的变化,即补偿弹性体的弹性系数和应变计的灵敏度系数随温度的变化。因此,对电桥中串接了两个与电桥温度补偿作用相同的电阻。同时电路中的其它电阻用于将电桥的初始平衡,额定输出和输入电阻等参数调整到规定的数值。 此篇文章的形成是基于对称重传感器设计者能有所帮助。它深入分析推导出一些公式,这些公式能够计算出位于称重传感器上的某些尺寸大小,并提供所需要的输出。此篇文章还介绍了各种误差来源及设计建议。 粘贴式电阻应变计广泛应用于当今高精度测力与称重传感器的制造中。本篇文章为帮助称重传感器设计者计算出称重传感器尺寸大小,从而为获得唯一需要的输出作了充分的准备。设计者既可以运用有限元分析法经计算机程序(如果可能)来确定称重传感器所需要的尺寸,或运用本文所提供的公式来计算此尺寸。应力公式选自一部非常好的书——应力与应变公式(见参考文献[1])。除了公式汇编,本文还讨论了误差的可能来源及设计建议,有关误差来源的信息主要是基于作者的经验。文中所描述的相关称重传感器没有作专利调查,在考虑把所讨论的设计用于产品的生产或推向市场前,有必要作一下调查。

称重传感器

简介 称重传感器实际上是一种将质量信号转变为可测量的电信号输出的装置。用传感器茵先要考虑传感器所处的实际工作环境,这点对正确选用称重传感器至关重要,它关系到传感器能否正常工作以及它的安全和使用寿命,乃至整个衡器的可靠性和安全性。 [1]在称重传感器主要技术指标的基本概念和评价方法上,新旧国标有质的差异。 传统概念上,负荷传感器是称重传感器、测力传感器的统称,用单项参数评价它的计量特性。旧国标将应用对象和使用环境条件完全不同的―称重‖和―测力‖两种传感器合二为一来考虑,对试验和评价方法未给予区分。旧国标共有21项指标,均在常温下进行试验;并用非线性、滞后误差、重复性误差、蠕变、零点温度附加误差以及额定输出温度附加误差6项指标中的最大误差,来确定称重传感器准确度等级,分别用0.02、0.03、0.05......1.0表示。 衡器上使用的一种力传感器。它能将作用在被测物体上的重力按一定比例转换成可计量的输出信号。考虑到不同使用地点的重力加速度和空气浮力对转换的影响,称重传感器的性能指标主要有线性误差、滞后误差、重复性误差、蠕变、零点温度特性和灵敏度温度特性等。在各种衡器和质量计量系统中,通常用综合误差带来综合控制传感器准确度,并将综合误差带与衡器误差带(图1)联系起来,以便选用对应于某一准确度衡器的称重传感器。国际法制计量组织(OIML)规定,传感器的误差带δ占衡器误差带Δ的70%,称重传感器的线性误差、滞后误差以及在规定温度范围内由于温度对灵敏度的影响所引起的误差等的总和不能超过误差带δ。这就允许制造厂对构成计量总误差的各个分量进行调整,从而获得期望的准确度。 [编辑本段] 分类 [2]称重传感器按转换方法分为光电式、液压式、电磁力式、电容式、磁极变形式、振动式、陀螺仪式、电阴应变式等8类,以电阻应变式使用最广。 光电式传感器

地磅原理及基础知识

地磅原理及基础知识 <点击复制本贴地址,推荐给朋友> 地磅按秤体结构可分为:U型钢地磅、槽钢地磅、工字钢地磅、钢筋混凝土地磅;按传感器可分为数字式地磅、模拟式地磅、全地磅;汽车衡俗 称地磅。地磅按传感器输出信号分类可分为模拟式地磅与数字式地磅;按称量方式分为静态汽车衡与动态汽车衡(地磅);按安装方式可分为地 上衡与地中衡;按秤台结构分为钢结构台面与混凝土台面;按使用环境状况可分为防爆地磅与非防爆地磅;按地磅的自动化程度可分为非自动 地磅与自动地磅。她们的基本配置就是一样的。都需要传感器、接线盒、打印机、称重仪表,现如今的地磅可以配上电脑与称重软件。 地磅英文为:scale,所以在行业内就有:SCS系列之称; 常用规格有:宽3~3、4 长有6~24,称重范围30T~200T,有的厂家可以生产到250T 地磅标准配置主要由承重传力机构(秤体)、高精度称重传感器、称重显示仪表三大主件组成,由此即可完成地磅基本的称重功能,也可根 据不同用户的要求,选配打印机、大屏幕显示器、称重管理软件系统以完成更高层次的数据管理及传输的需要。 承重与传力机构——将物体的重量传递给称重传感器的机械平台,常见有钢结构及钢混结构二种型式。 高精度称重传感器——就是地磅的核心部件,起着将重量值转换成对应的可测电信号的作用,它的优劣性直接关系到整台衡器的品质。 称重显示仪表——用于测量传感器传输的电信号,再通过专用软件处理显示重量读数,并可将数据进一步传递至打印机、大屏幕显示器、 电脑管理系统。 打印机:用于打印重量数据表单大屏幕:用于远距离读数 称重管理软件-系统:用于重量数据的进一步处理、储存、传输等。 不同厂家的地磅,强调的参数与侧重点不一样,不过大致一样,下面以科杰衡器厂的为例 数字式地磅的特点: 数字式地磅解决传输信号弱及干扰问题--数字化通讯 1、模拟式传感器的输出信号最大一般在数十毫伏,在电缆传输这些弱信号过程中,很容易受到干扰,从而造成系统工作不稳定或计量 准确性降低。而数字式传感器的输出信号均在3-4V左右,其抗干扰能力远大于模拟信号数百倍,解决传输信号弱及干扰问题; 2、采用RS485总线技术,实现信号的远距离传输,传输距离不小于1000米; 3、总线结构便于多个称重传感器的应用,在同一个系统中最多可接

电阻应变式称重传感器的故障检测方法

电阻应变式称重传感器的故障检测方法 2016-04-22 08:32:50 来源:eefocus 关键字:电阻应变式称重传感器故障检测 电阻应变式称重传感器是一种常用的测量仪器,可以将测量的力信号转换为电信号输出,是称重检测系统中的核心元件。电阻应变式称重传感器在使用过程中会出现一定的故障,我们对于电阻应变式称重传感器的故障检测方法是必须要掌握的,下面小编就来介绍一下具体的方法吧。 电阻应变式称重传感器故障往往会因为一些人为或自然因素损坏,比如传感器过载,冲击,或不小心跌落,大力拽传感器导线,雷击或大电流通过传感器,化学腐蚀,潮气浸蚀或高粉尘环境以及传感器内部的元器件的老化等。直接导致的后果可能是称重系统漂移,显示不稳定或不显示数据等现象。 首先,在从称重系统中拆除称重传感器前应该仔细慎重地判别系统的结构和传感器是否存在下列问题: 1)检查是否是系统传力故障,可能由于灰尘,机械部位未对准,元件传力延缓等原因,而非传感器故障; 2)检查系统在传力部位是否有损伤,锈蚀或者明显的磨损;冬季应注意传感器传力部位 是否有结冰现象,影响系统的传力和复位; 3)检查系统的限位装置是否工作,其间隙是否符合要求; 4)检查传感器电缆线与接线盒和显示仪表连接是否正确,有无断线或连接导线接触不良的情形;重点检查总线九芯插头及接线盒内的接线可靠性; 5)检查接线盒和仪表是否有故障,尤其是接线盒中电位器和接线端子的情况; 6)检查传感器是否锈蚀、受潮(特别是贴片孔区域);传感器电缆线的完整性;传感器电缆 线入口处的环境等。 建议用户配备下述的仪表设备作为检测传感器的必要的装置: A)高性能经校准的数字万用表(四位半以上),检查准确度能达到±0.1Ω和±0.01mv,检查 传感器的零点输出和桥路完整性; B)兆欧表(绝缘表),测试传感器的绝缘阻抗。推荐量程范围50VDC下测试5000MΩ。

常用称重传感器参数说明

蚌埠力恒传感器称重传感器介绍参数时,传统的方法是采用分项指标,其优点是物理意义明确,沿用了多年,熟悉的人较多。 我们现在列出其主要的称重传感器技术参数如下: *额定容量:生产厂家给出的称量范围的上限值。 *额定输出(灵敏度):加额定载荷时和无载荷时,传感器输出信号的差值。由于称重传感器的输出信号与所加的激励电压有关https://www.doczj.com/doc/9c5484119.html, ,所以额定输出的单位以mV/V来表示。并称之为灵敏度。 *灵敏度允差:称重传感器的实际稳定输出与对应的标称额定输出之差对该标称额定输出的百分比。例如,某称重传感器的实际额定输出为2.002mV/V,与之相适应的标准额定输出则为2mV/V,则其灵敏度允差为:((2.002 –2。000)/2.000)*100% = 0.1% *非线性:由空载荷的输出值和额定载荷时输出值所决定的直线和增加负荷之实测曲线之间最大偏差对于额定输出值的百分比。 *滞后允差:从无载荷逐渐加载到额定载荷然后再逐渐卸载。在同一载荷点上加载和卸载输出量的最大差值对额定输出值的百分比。 *重复性误差:在相同的环境条件下,对传感器反复加荷到额定载荷并卸载。加

荷过程中同一负荷点上输出值的最大差值对额定输出的百分比。 *蠕变:在负荷不变(一般取为额定载荷),其它测试条件也保持不变的情形下,称重传感器输出随时间的变化量对额定输出的百分比。 *零点输出:在推荐电压激励下,未加载荷时称重传感器的输出值对额定输出的百分比。 *绝缘阻抗:传感器的电路和弹性体之间的直流阻抗值。 *输入阻抗:信号输出端开路,称重传感器未加负荷时,从电源激励输入端测得的阻抗值。 *输出阻抗:电源激励输入端短路,传感器未加载荷时,从信号输出端测得的阻抗。 *温度补偿范围:在此温度范围内,传感器的额定输出和零平衡均经过严密补偿,从而不会超出规定的范围。 *零点温度:影响环境温度的变化引起的零平衡变化。一般以温度每变化10K时,引起的零平衡变化量对额定输出的百分比来表示。

地磅基本原理及其学习基础知识材料

地磅原理及基础知识 <点击复制本贴地址,推荐给朋友> 地磅按秤体结构可分为:U型钢地磅、槽钢地磅、工字钢地磅、钢筋混凝土地磅;按传感器可分为数字式地磅、模拟式地磅、全地磅;汽车衡俗 称地磅。地磅按传感器输出信号分类可分为模拟式地磅和数字式地磅;按称量方式分为静态汽车衡和动态汽车衡(地磅);按安装方式可分为地 上衡和地中衡;按秤台结构分为钢结构台面和混凝土台面;按使用环境状况可分为防爆地磅和非防爆地磅;按地磅的自动化程度可分为非自动 地磅和自动地磅。他们的基本配置是一样的。都需要传感器、接线盒、打印机、称重仪表,现如今的地磅可以配上电脑和称重软件。 地磅英文为:scale,所以在行业内就有:SCS系列之称; 常用规格有:宽3~3.4 长有6~24,称重范围30T~200T,有的厂家可以生产到250T 地磅标准配置主要由承重传力机构(秤体)、高精度称重传感器、称重显示仪表三大主件组成,由此即可完成地磅基本的称重功能,也可根 据不同用户的要求,选配打印机、大屏幕显示器、称重管理软件系统以完成更高层次的数据管理及传输的需要。 承重和传力机构——将物体的重量传递给称重传感器的机械平台,常见有钢结构及钢混结构二种型式。 高精度称重传感器——是地磅的核心部件,起着将重量值转换成对应的可测电信号的作用,它的优劣性直接关系到整台衡器的品质。 称重显示仪表——用于测量传感器传输的电信号,再通过专用软件处理显示重量读数,并可将数据进一步传递至打印机、大屏幕显示器、 电脑管理系统。 打印机:用于打印重量数据表单大屏幕:用于远距离读数 称重管理软件-系统:用于重量数据的进一步处理、储存、传输等。 不同厂家的地磅,强调的参数和侧重点不一样,不过大致一样,下面以科杰衡器厂的为例 数字式地磅的特点: 数字式地磅解决传输信号弱及干扰问题--数字化通讯 1.模拟式传感器的输出信号最大一般在数十毫伏,在电缆传输这些弱信号过程中,很容易受到干扰,从而造成系统工作不稳定或计量 准确性降低。而数字式传感器的输出信号均在3-4V左右,其抗干扰能力远大于模拟信号数百倍,解决传输信号弱及干扰问题; 2.采用RS485总线技术,实现信号的远距离传输,传输距离不小于1000米; 3.总线结构便于多个称重传感器的应用,在同一个系统中最多可接

电子秤常见故障维修

电子秤常见故障维修 一,开不了机 1.电子秤接电池可以开机,只接适配器不可以开机时,为秤的电源异常 2.开机后蜂呜器有正常提示音,只是LCD没有任何显示,为显示异常 3.检查电池是否是没电了 二,显示异常 1.开机后蜂鸣器是有正常提示音,可能是LCD的管脚不导通,也有肯能是LCD坏掉了 2.有显示只是显示模糊或是短笔,可能是LCD的管脚出现短路或者短路 三,秤重异常 1.打开内码值,如果为没有内码值或有一个数值但手压电子秤的秤盘数值也不会变化,这种称为无内码或死码,均会造成不校正或不秤重;这种情况请检查,称重传感器的焊线是否有掉 2.如果出现不稳或内码太高或太低,一般是主板的阻波器以及电容不良,或者是AD坏了,需要送到专业的电子秤维修店去处理。 四,声音异常 1.开机后没有任何的声音,可能是蜂鸣器坏掉了,但是有的电子秤制造商为了省电,设定了蜂鸣器开关参数,不妨查看下说明书,看看是否是自己不小心进入参数设定后关闭了蜂鸣器,这种事可是常有的哦! 2.开机后有声音,但出现声音很大或很小,或有沙哑等不良,这种基本上是电子秤的蜂呜器本身不良所至。五,按键功能异常 如果电子秤只是按键接触不好或按键难按,只需更换按键即可,如果更换按键后还是无效,则为电子秤主板CPU不良,需要更换CPU。 六,存储异常 存储异常主要表现为校正后还是不准(以及说校正值无法存储),还有是所设定的一些参数也无法存储,甚至校正后或参数设定后,重新开机依旧出现错误信息;先进行开机运行测试,如任一设定其中的一个参数,设定完后存储,再重新开机,检查是否与刚才所预设的值是否一致,如果不一致,则为存储出了问题。需要送到专业的电子秤维修店去更换存储器。 七,背光异常 首先检查参数设置里背光参数是否有开启,其次可能是背光片脏,更换背光片即可 八,打印异常 1.如果为不输出,请检查参数设定是否有误,主要设定外设、波特率、传送方式 2.如果接上后,以及相应设定后没有任何反应,请先更换RS232-POWER 3.请检查电子秤与打印机的信号连接线是否正确,如果连接线确定没问题,可列印功能还是不行,可能为外设本身有问题

托利多称重传感器

托利多称重传感器 托利多称重传感器是梅特勒-托利多集团的主要产品之一,梅特勒-托利多 集团总部设在瑞士苏黎士,是世界上最大的称重设备及实验室仪器制造商和销 售商;。产品覆盖了工业衡器、商用衡器、称重系统、天平和实验室分析仪器 等整个称重领域,从高精度微量分析到千吨以上的称重应用,是业内公认的将电子技术、信息技术、自动化技术、应用软件完美结合的佼佼者及标杆企业;在 全球37个国家及地区从事销售及服务工作,并在瑞士、德国、美国、英国、中国等国家拥有生产制造基地,全球销售额在14亿美金以上;产品应用的行业有:交通运输、石油化工、医药研发、食品饮料、超市零售、港口码头、冶金机 械… 在工业称重过程控制中,由于生产的连续运转,对设备的可靠性有着较高 的要求,采用了很多冗余技术来保证测量和控制的可靠.除了DCS系统的冗余外,对现场的称重传感器也提出了冗余的要求,DCS系统希望能及时了解各个传感 器工作状态,并及时发现故障。这样,传统的称重方式由于多个模拟传感器的 信号经过接线盒并接后成为一路信号,每个传感器的信号就不再是可独立辨别的,仪表无法在线发现问题,进行故障定位,就很难满足连续生产中高可靠性 的要求。 托利多生产的数字传感器内部有微处理器,可以对自身进行诊断,每个都 有自己的地址,仪表能够在线监测各个传感器输出并进行智能处理,不但大大 提高了称重系统的可靠性,而且托利多称重传感可以轻松解决一些模拟传感器 很难实现的如大皮重小秤量、偏载检测等要求。 再加上自己独特的高精度高速A/D转换技术、全面的传感器数字补偿技术 以及远程高速防爆通信能力,使得性能超越了模拟传感器的极限,达到了 OIMLC6的精度,通过了多项国际认证,是真正的数字称重传感器。十多年来, 梅特勒-托利多的数字称重传感器在全球各地广泛应用达到50万只以上。与模 拟传感器相比,数字称重传感器的如下特点更好地满足了过程控制的要求:

称重传感器的原理(一)

称重传感器的原理(一) 电阻应变式称重传感器[3]是基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在它表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。 由此可见,电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。 电阻应变片 电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。他的一个重要参数是灵敏系数K。我们来介绍一下它的意义。 设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R: R=ρL/S(Ω)(2—1) 当他的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。

对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有: ΔR=ΔρL/S+ΔLρ/S–ΔSρL/S2(2—2) 用式(2--1)去除式(2--2)得到 ΔR/R=Δρ/ρ+ΔL/L–ΔS/S(2—3) 另外,我们知道导线的横截面积S=πr2,则Δs=2πr*Δr,所以 ΔS/S=2Δr/r(2—4) 从材料力学我们知道 Δr/r=-μΔL/L(2—5) 其中,负号表示伸长时,半径方向是缩小的。μ是表示材料横向效应泊松系数。把式(2—4)(2—5)代入(2--3),有 ΔR/R=Δρ/ρ+ΔL/L+2μΔL/L

AMI称重传感器

AMI称重传感器 AMI称重传感器 优质铝合金材质;高精度;高稳定性;安装简便、快速;表层镀镍防腐处理;适用于各种台秤、案秤等,推荐安装台面240*300mm(5~35kg);400*500mm(50~200kg) 主要特点Features: 高精度High accuracy 高稳定性High stability 安装简便、快速Easy to install 表层镀镍防腐处理Protected against corrosion nickelplated treatment 量程Capacities: AMI-5kg,AMI-6kg,AMI-8kg,AMI-10kg,AMI-15kg,AMI-20kg,AMI-30kg,AMI-35kg,AMI-50kg,AMI-10 0kg,AMI-150kg,AMI-200kg,AMI-250kg,AMI-300kg,AMI-500kg AMI称重传感器产品图片: AMI称重传感器型号 铝合金结构传感器 AMIC称重传感器(适用于各种台秤、案秤) 型号:AMIC-60kg AMIC-100kg AMIC-150kg AMIC-250kg BMI称重传感器(适用于各种超低、超大平面台秤) 型号:BMI-50kg BMI-100kg BMI-150kg BMI-300kg BMI-500kg BMI-1000kg BMI-2000kg BMI-0.5t BMI-1t BMI-2t AMI称重传感器(适用于各种台秤、案秤) 型号:AMI-5kg AMI-6kg AMI-8kg AMI-10kg AMI-15kg AMI-20kg AMI-30kg AMI-35kg AMI-40kg AMI-50kg AMI-60kg AMI-100kg AMI-150kg AMI-200kg AMI-250kg AMI-300kg AMI-500kg AMIB称重传感器(适用于各种台秤、案秤) 型号:AMIB-8kg AMIB-10kg AMIB-15kg AMIB-20kg AMIB-30kg AMIB-50kg AMIB-60kg AMIB-75kg AMIB-100kg AMIB-200kg UDB称重传感器(适用于台秤、各种压式测力装置)

衡器基本知识

衡器基本知识 一、智能化仪表(Intelligence Instruments)概述 当今世界技术发展的主流趋势表现在:测量信息数字化,检测控制仪表智能化,控制管理集成化。 “智能化”是自动化技术当前和今后的发展动向之一,它已经成为工业控制和自动化领域的各种新技术,新方法、新产品的发展趋势和显著标志。智能化应当有两方面的含义:(1)采用‘人工智能’的理论、方法和技术;(2)具有‘拟人智能’的特性或功能,例如自适应、自学习、自校正、自协调、自组织、自诊断、自修复等。这可作为衡量是不是智能化装置、设备、系统的性能标准。由此可得到关于智能化的定义:是‘采用人工智能理论、方法、技术’并‘具有某种拟人智能特性和功能’。也就是说:利用计算机来代替人的一部分脑力劳动,具有运用知识进行推理、学习、联想解决问题的能力。就智能化仪表和装置来说,则应该具有以下特征:(1)能自动完成某些测量任务或在程序指导下完成预定动作;(2)具有进行各种复杂计算和修正误差的数据处理能力;(3)具有自校准、自检测、自诊断功能;(4)便于通过标准总线组成个多种仪表的复杂系统,实现复杂的控制功能,并能灵活地改变和扩展功能”。“现有的测控系统通常具有刚性体系结构,缺乏自组织、自维修、自适应等方面的柔性,智能水平不高。现在一些新型智能仪表虽冠以智能化的名称,实际上是电脑化,名不副实,只是采用了计算机,电脑化并不等于智能化,应该向智能化方向努力”。目前比较受推崇的是柔性智能测控仪表的研究思路,就是在现有电脑化仪表的基础上,采用硬件软化、软件集成,虚拟现实、软测量等人工智能的方法和技术,实现测控仪表的柔性化,研究开发具有拟人智能特性或功能,名副其实的智能化仪表。例如,上海自动化仪表研究所研究开发的带有人工智能预估控制的多回路数字调节器(TDM-50A型),它能解决特大纯滞后(超过12min)过程的启动和稳定控制,自动检测纯滞后时间,自动寻优建立全部控制参数,实现快速无超调的控制品质。又如上海宝科自动化仪表研究所创新设计的通用流量演算器(FC-6000型),从理论分析解决了流量测量上各种复杂计算和补偿修正的工程应用问题,能有效地提高流量测量的精确度,并判断出故障产生的原因。 用来测量各种电量、磁量及电路参数的仪器、仪表,统称为电工仪表。电工仪表的种类繁多,分类方法也各异。(1)按结构和用途的不同,电工仪表主要分以下三类指示仪表。能将被测量转换为仪表可动部分的机械偏转角,并通过指示器直接显示出被测量的大小,故又称为直读式仪表。(2)按工作原理分类主要有磁电系仪表、电磁系仪表、电动系仪表和感应系仪表。此外,还有整流系仪表、铁磁电动系仪表等。(3)按使用方法分类有安装式、便携式两种。安装式仪表是固定安装在开关板或电气设备面板上的仪表,又称面板式仪表。它的准确度一般不高,广泛应用于发电厂、配电所的运行监视和测量中。便携式仪表是可以携带的仪表,其准确度较高,广泛应用于电气实验、精密测量及仪表检定中。 二、衡器(weighing machine)概述 衡器就是称量物体重量的器具,如秤、天平等。某些衡器习惯上称为秤。 衡器广泛应用于工业、农业、商业、科研、医疗卫生等部门。衡器是利用力的形变平衡原理(虎克原理)或力的杠杆平衡原理测定物体质量的。形变平衡根据被测物自身重量所引起的弹性体形变量来测定被测物质量,形变量随着重力加速度的变化而变化;杠杆平衡根据标定砝码重量与被测物重量在杠杆上的平衡来测定被测物质量。杠杆平衡与重力加速度的变化无关,但在重力加速度等于零时,衡量失效。 衡器主要由承重系统(如秤盘)、传力转换系统(如杠杆传力系统)和示值系统(如刻度盘)3部分组成。衡器按结构原理可分为机械秤、电子秤、机电结合秤三大类。机械秤又分杠杆秤和弹簧秤。按衡量方法分非自动秤和自动秤。其主要品种有天平、杆秤、案秤、台秤、地中衡、地上衡、轨道衡、皮带秤、邮政秤、吊秤、配料秤和袋装秤等。衡器发展的重点是电子衡器。程控、群控、电传打印记录、屏幕显示等现代技术的配套使用,使衡器功能齐全,效率更高。通过衡量物体的重量(所受重力的大小)来测定该物体质量的器具。 分类衡器按结构原理可分为机械秤、电子秤、机电结合秤三大类,机械秤又分为杠杆秤(包括等臂杠杆秤也即狭义的天平、不等臂杠杆秤)和弹簧秤。衡器还可按衡量方法分为非自动衡器和自动衡器。衡器的主要品种有天平、杆秤、案秤、台秤、地中衡、地上衡、轨道衡、皮带秤、邮政秤、吊秤、配料秤和装袋秤等。 结构衡器主要由承重系统、传力转换系统和示值系统3部分组成。 承重系统其结构取决于所称物体的形态。台秤、地中衡一般配用平板承重机构;专门衡量一种物体的秤,则配有能缩短衡量时间、减少操作繁重性的专用承重机构,如:衡量颗粒状物料的秤上设置簸箕式秤盘,衡量液体的秤则安装专用贮盛器。此外,承重机构的形式还有轨道衡的轨道、皮带秤的运输带,吊秤的吊钩等。承重系统的结构虽各不相同,但功能却是一致的。 传力转换系统是决定衡器计量性能的关键部件。通常采用杠杆传力系统和形变传力系统。

电子秤常见故障与处理方法

电子称电子天平是带有电子装置的以数字显示的重量测量仪表。电子称是由:称重传感器,运算放大器,A/D转换集成电路,智能单片机,显示驱动和显示电路,键盘电路,多功能接口电路,交流/直流/充电/蓄电/稳压电路组成。各种故障的现象和根源千奇百怪。 电子称常见故障及处理方法: 1. 电子称不归零(不回零,不称重) a.检查传感器输出信号值是否于标准内。(A/D的总放大码/使用内码范围/底码范围) b.未在标准内,请参考第十项目作补偿。 c.如无法补偿请检查传感器是否不良。(请依照第八项作检测) d.请依照说明书指示,做重量校正。 2. 电子称称重量不准 a. 观测内码值是否稳定,传感器各部位是否有摩擦现象,稳压电源是否稳定,运放电路是否正常,A/D电路的线路版是否有异物,反馈电阻/电容/滤波电容是否不良或漏电。 b.检查传感器输出信号值是否于标准内。 c.未在标准内,请参考第十项目作补偿。 d.使用砝码测试秤盘四脚秤量是否平均。(如不平均,请参照第九项进行磨秤) e.请依照说明书指示,做重量校正。 3. 电子称无法开机 a.请先确定非为保险丝、电源开关、电源线及电压切换开关的问题所造成。 b.检查变压器有无AC110/220输入及AC18V输出。 c.请将电池取下再以AC电源开机,以了解是否为电池电压不足所造成。(测量电池电压,要高于6V以上,低于时请充电,若低于5.5V,且充饱电不久就没电时请更换电池)。 4. 电子称显示不良 a.将正常LCD接脚用手并联在维修秤LCD上,再开机观察正常的LCD上是否也有相同不b 良情况,如没有的话就可断定为LCD不良。 b.检查CPU接脚有无氧化、冷焊或短路现象。 c. LCD之接脚与孔位是否有氧化、冷焊或短路现象。 d.检查CPU与LCD之间线路有无断路。 5. 电子称按键不良 a.请先更新K/B测试,如新K/B功能正常时,则可判定为K/B不良。 b.测量K/B与CPU之间线路有无断路、冷焊。 c.检查K/B脚座是否有接触不良现像。 d.测量K/B与CPU回路上的二极体是否有短路、断路。 6. 电子称无法秤到满载 a.检查传感器输出信号值是否于标准内。 b.未在标准内,请参考第十项目作补偿。 c.如无法补偿请检查传感器是否不良。(请依照第八项做检测) d.补偿后如有不稳或无法补偿,请更换传感器。 e.检查内部有无线材或保护装置干涉。 f.电池电压是否在6V以上。 g.更换L/C测试是否为传感器不良造成。 7. 电子称电池无法蓄电 a.请先确定非为保险丝、电源开关、电源线及电压切换开关的问题所造成。 b.检查变压器有无AC110/220输入及AC18V输出。 c.将电池于机板接PIN取下,量测机版充电电压是否为7.2V左右,如不足请检查电源相关 1

FLINTEC称重传感器

FLINTEC称重传感器 广州南创陈工 德国富林泰克Flintec公司的历史可追溯到1960,它始于为称重市场设计高精度的传感器,其中包括各种重工业,它常自豪于解决其他传感器厂商无法解决的技术问题。随着公司的不断发展,生产线不断扩展,销售中心和设计中心不断增加。富林泰克Flintec公司通过9个销售中心和区域代理的网络为客户提供创新产品和解决力测量问题。Flintec称重传感器的产品远销38个国家,在多个国家设立了分支机构或办事处,生产基地遍布美洲、东欧、中国等地;并在中国设立了广州南创传感器事业部,可为用户的实验和生产提供最佳的服务与解决方案。 主要市场包括:工业称重、自动化、医疗、测试&测量、建筑、运输、农业、船舶。 富林泰克Flintec公司由两大部分组成:制造部门和设计部门。制造部门位于斯里兰卡,设计部门位于美国、英国、瑞典和斯里兰卡。销售中心遍布世界各个地区:美国、德国、英国、瑞典、中国、印度、法国、巴西和斯里兰卡。 德国富林泰克FLINTEC称重传感器SLB、PC2、PC6、PCB及相关德国HBM称重传感器产 1单点式称重传感器2面板式称重传感器3悬臂梁式称重传感器 4S型称重传感器5柱式称重传感器 FLINTEC称重传感器产品参数信息

以上关于FLINTEC称重传感器技术参数以《OIML60号国际建议》92年版为基础,最新具体变化可查看《JJG669—12Bongshin广州南创传感器事业部检定规程》 关于FLINTEC称重传感器数量和量程的选择。

传感器数量的选择是根据电子衡器的用途、秤体需要支撑的点数(支撑点数应根据使秤体几何重心和实际重心重合的原则而确定)而定。一般来说,秤体有几个支撑点就选用几只传感器,但是对于一些特殊的秤体如电子吊钩秤就只能采用一个传感器,一些机电结合秤就应根据实际情况来确定选用传感器的个数。 传感器量程的选择可依据秤的最大称量值、选用传感器的个数、秤体的自重、可能产生的最大偏载及动载等因素综合评价来确定。一般来说,传感器的量程越接近分配到每个传感器的载荷,其称量的准确度就越高。但在实际使用时,由于加在传感器上的载荷除被称物体外,还存在秤体自重、皮重、偏载及振动冲击等载荷,因此选用传感器量程时,要考虑诸多方面的因素,保证传感器的安全和寿命。 FLINTEC称重传感器量程的计算公式是在充分考虑到影响秤体的各个因素后,经过大量的实验而确定的。

称重传感器的选型与应用

称重传感器的样式与应用 称重传感器是一种将质量信号转换成可测量的电信号输出的装置。简单的理解是,当力施加到称重传感器上时,质量信号将被转换成可测量的电信号,该电信号将通过电路输出到主板,以便由芯片进行处理和分析。然而,在使用传感器时,需要首先考虑传感器所处的工作环境,这对于正确选择称重传感器至关重要。它关系到传感器的正常运行、安全和使用寿命,甚至整个称重仪器的可靠性和安全性。 。 称重传感器运用于多个行业,为了满足各个行业的需求所以会有各种形状的传感器:S型称重传感器,单点式称重传感器,悬臂梁称重传感器,轮辐式称重传感器,双剪切梁式称重传感器,圆板式称重传感器,柱式称重传感器。 S型传感器上下平行梁和等应力工作梁组成,通过上下及对称辅助梁(8型)来进行力的传递。上下平行梁的根部尺寸较小,使之成为两平行柔性梁构成一框架,使它对垂直方向的力影响很小,使工作载荷垂直上下运动,准确地将力传递到工作梁上,使工作梁只感受垂直载荷,而对非工作力,力矩不敏感,这样就能有效地消除非工作力的影响。在两柔性梁之间为一等应力工作梁,测试应变计贴在中心梁平面的两边。由于等应力梁使应变计感受同一应变,桥路的输出为平均应力值的4倍,这样输出灵敏度较高,同时对贴片位置

要求 不高,贴片方便。 适用于吊钩秤、机电结合秤、料斗秤、料罐秤、包装秤、配料称重控制、试验机、力的监控及测量 单点传感器是基于平行四边形的原理,但是应该为应变仪的位置提供一个附加的中心横梁。从而完成测量平行四边形顶部和底部的梁和挠曲的任务。它的优点是应变仪离开位置时会受到偏心载荷的扭转作用。同时增加了结构的刚性。适用于自动轴重秤、无人零售柜、电子计价秤、小型平台秤等工业称重和生产过程称重。

电工基础知识培训(理论)

电工基础知识 一,通用部分 1,什麽叫电路? 电流所经过的路径叫电路。电路的组成一般由电源,负载和连接部分(导线,开关,熔断器)等组成。 2,什麽叫电源? 电源是一种将非电能转换成电能的装置。 3,什麽叫负载? 负载是取用电能的装置,也就是用电设备。 连接部分是用来连接电源与负载,构成电流通路的中间环节,是用来输送,分配和控制电能的。 4,电流的基本概念是什麽? 电荷有规则的定向流动,就形成电流,习惯上规定正电荷移动的方向为电流的实际方向。 电流方向不变的电路称为直流电路。 单位时间内通过导体任一横截面的电量叫电流(强度),用符号I表示。 电流(强度)的单位是安培(A),大电流单位常用千安(KA)表示,小电流单位常用毫安(mA),微安(μA)表示。 1KA=1000A 1A=1000 mA 1 mA=1000μA 5,电压的基本性质? 1)两点间的电压具有惟一确定的数值。 2)两点间的电压只与这两点的位置有关,与电荷移动的路径无关。 3)电压有正,负之分,它与标志的参考电压方向有关。 4)沿电路中任一闭合回路行走一圈,各段电压的和恒为零。 电压的单位是伏特(V),根据不同的需要,也用千伏(KV),毫伏(mV)和微伏(μV)为单位。 1KV=1000V 1V=1000 mV 1mV=1000μV 6,电阻的概念是什麽? 导体对电流起阻碍作用的能力称为电阻,用符号R表示,当电压为1伏,电流为1安时,导体的电阻即为1欧姆(Ω),常用的单位千欧(KΩ),兆欧(MΩ)。 1 MΩ=1000 KΩ 1 KΩ=1000Ω 7,什麽是部分电路的欧姆定律? 流过电路的电流与电路两端的电压成正比,而与该电路的电阻成反比,这个关系叫做欧姆定律。用公式表示为I=U/R 式中:I——电流(A);U——电压(V);R——电阻(Ω)。 部分电路的欧姆定律反映了部分电路中电压,电流和电阻的相互关系,它是分析和计算部分电路的主要依据。 8,什麽是全电路的欧姆定律?

电子秤称重传感器好坏的判断方法

电子秤称重传感器好坏的判断方法电子秤的三大组成一个重要的部件就是是传感器了,传感器也是衡器一个最核心的感应部件了,它的小小变化可决定着衡器的性能和仪表显示的数值,同时,传感器也是电子衡器中一个比较容易损坏的部件。 一个没有很好的保护措施的传感器是很容易被撞击,超载,电击,老化,高温,腐蚀等原因导致损坏的,而传感器的损坏就会引起不同的称重显示仪表做出不同的错误提示。比如传感器受到重压超载损坏后,耀华的XK3190-D2仪表就可能会提示“Err06”,而英展的SB530仪表可能会提示“E1”,等等。 传感器不良的几种故障现象: * 称重后仪表显示数据有残留,不归零 * 数字乱跳,不稳定 * 传感器线断 * 传感器和仪表的插头连接不良 * 传感器的屏蔽线不良,和传感器信号线或电源线短路 * 传感器的信号线短路 * 线性不好,滞后差 传感器好坏的判断方法: 一、电阻测量方法: 相应的,我们要判断传感器的好坏,就需要进行测量,首先我们要了解传感器的基本原理核计术参数。如图(省略啦)。 只要是应变片电桥式的传感器大部分都是4线制的,有输入电压Ui和输出

电压Uo,可见输出和输入都是一个电压信号。输入信号一般是一个恒压电源,一般为5V~12V,通常用E+和E-表示,而输出信号是一个mV/V的比例电压信号,这个输出信号是随着传感器所受压力的变化而变化的。仪表需要采集的就是这个输出信号,然后将其转换成我们所需要的数字。 各个厂家的传感器基本原理都是一样的,但是在传感器线的颜色和数量方面却不大相同。有的就是六线制的传感器。如图(省略)。但是两根sense(反馈)线也都是接在传感器的输入信号E+和E-上的,我们可以忽略这两根反馈线或将其合二为一(电源与输入线并联)。每根电缆线的颜色会表示线所起作用,这些会在传感器的标签或者说明书、技术手册上有标识。 宁波柯力传感器的电缆线的颜色定义为Ex+红,Ex-黑Sig+绿,Sig-白,这也是国产传感器的大部分线序。有的传感器颜色为Ex+红,Ex-黑,Sig+绿,Sig-黄。中航电测的定义是红输入(E+)蓝反馈(+)白输出(S-)黄反馈(-)黑输入(E-)绿输出(S+)传感器的输入阻抗为402+6Ω,输出阻抗为350+3Ω。我们发现这里我们常用到的传感器的输阻抗为400Ω左右,而输出阻抗为350Ω左右(我们统称这些传感器为为350Ω传感器,同时我们还看到广州电测的传感器还有输入阻抗为1066+10Ω,输出阻抗为1000+10Ω的,这一类传感器我们统称为1KΩ低功耗传感器)这样我们就总结出了一个规律,电阻为400Ω左右的两根线是传感器的激励(输入端,也就是E+和E-的电阻),这也是传感器任意测量时两根线之间最大的电阻。而两跟线输出端电阻为350Ω左右的为输出端。 那么E+和S+,E+和S-,E-和S+,E-和S-,这四个电阻有是多少呢?我们随便找几个全新的传感器来做实际的测量。 第一个传感器:E+和S+为291Ω,E+和S-为291Ω,E-和S+为291Ω,E-和S-为

微型张力或压缩高精度称重传感器

C H C 规格 激励: ≤10 lb/50 N :5 Vdc ≥25 lb/100 N :10 Vdc 输出: 2.2 lb/10 N :1.5 mV/V (标称) ≥5 lb/20 N :2 mV/V (标称)精度(综合线性度和滞后性): ≤100 lb/500 N :±0.15% FSO ≥250 lb/1000 N :±0.20% FSO 重复性: ≤2.2 lb :± 0.15% FSO ≥5 lb/10 N :0.20% FSO 5测量点校准(在张力方面): 0%、50%、100%、50%、0%零点平衡:±2% FSO 工作温度范围: -54 ~ 121°C (-65 ~ 250°F) 补偿温度范围: 16 ~ 71°C (60 ~ 160°F) 热效应: 跨距:±0.009% FSO/°C 零点:±0.009% FSO/°C 安全过载:容量的150% 极限过载:容量的300% 电桥电阻:最小350 Ω 结构:不锈钢 电气连接:1.5 m (5') 4芯屏蔽电缆 ≤10 lb/50 N :附有温度补偿板的不锈 钢多层PTFE 保护等级:IP65张力/压缩 2.2 lb 至 1000 lb 10至5000 N DPiS 仪表仅适合单向测量。订购示例:LCFD-1KG ,容量为1000克的称重传感器,配套杆端,REC-006F 。 LCFD-500,容量为500 lb 的称重传感器,配套杆端,REC-014F 。LCMFD-20N ,容量为20 N 的称重传感器,配套杆端,MREC-M5F 。 LCFD-100,图片为实际尺寸。微型张力或压缩高精度称重传感器标准及公制型号 F-39LCFD /LCMFD 微型称重传感器外形 小巧却能提供高度精确的读数,专为 精密工业应用而设计。该产品采用全 不锈钢,可测量张力及压缩负载,并 提供用于负载附件的外螺纹螺柱。其 独有的内部设计可提供超卓的长期稳 定性,并减少轻微离轴负载的影响。 LCFD /LCMFD 系列

相关主题
文本预览
相关文档 最新文档