当前位置:文档之家› 第六章粒子系统第一节喷射粒子

第六章粒子系统第一节喷射粒子

第六章粒子系统第一节喷射粒子
第六章粒子系统第一节喷射粒子

第六章粒子系统篇

第一节喷射粒子系统

粒子系统技术

3D粒子系统可以产生各种各样的自然效果,像烟、火、闪光灯,也可以产生随机的和高科技风格的图形效果。可以说,粒子系统是一类令人激动又十分有趣的动画程序。它的实现方式主要需要用基于粒子系统构建的图形学、动力学以及数字艺术等多方面的知识。

粒子系统简介

粒子系统主要用来实现物理模拟,比如自由落体、星空、爆炸等,或某些自然效果,比如烟雨、瀑布等。粒子系统是一些粒子的集合。它通过指定发射源,在发射粒子流的同时创建各种动画效果。

在本章的代码中,粒子系统是一个对象,而发射的粒子是粒子对象,并且随时间调整粒子的属性,以控制粒子行为,然后将粒子系统作为一个整体进行绘制。

粒子系统是一个相对独立的造型系统,用来创建粒子物体模拟雨、雪、灰尘、泡沫、火花和气流等。采用纹理的粒子系统可以将任何造型作为粒子,所以其表现能力也大大增强,例如可以制作成群的蚂蚁、游动的热带鱼群、吹散飞舞的蒲公英等。

粒子系统主要用于表现动态的效果,与时间、速度的关系非常紧密,一般用于动画制作。

粒子系统运用

经过初步总结,粒子系统常常用来表现下面的特殊效果。

1.雨雪:使用喷射和暴风雪粒子系统,可以创建各种雨景和雪景,在加入Wind

风力的影响后可制作斜风细雨和狂风暴雪的景象。

2.泡沫:可以创建各种气泡、水泡效果。

3.爆炸和礼花:如果将一个3D造型作为发散器,粒子系统可以将它炸成碎片,

加入特殊的材质和合成特技就可以制作成美丽的礼花。

4.群体效果:Blizzard(暴风雪)、PArray(粒子阵列)、PCloud(粒子云)和Super

Spray(超级喷射)这4种粒子系统都可以用3D造型作为粒子,因此可以表现

出群体效果,如人群、马队、飞蝗和乱箭等。

粒子系统属性

粒子系统除自身特性外,还有一些共同的属性,这些属性并不一定要划分明确,有时是在同一个类中设定的。

1.Emitter(发射属性):用于发射粒子。所有的粒子都由它喷出,它的设置决定了

粒子发射时的位置、面积和方向。Emitter在视图中显示为黄色,不可以被渲染。

2.Timing(衰减属性):控制粒子的时间参数,包括粒子产生和消失的时间、粒子

存在的时间或寿命、粒子的流动速度以及加速度。

3.Particle-Specific Parameters(指定粒子参数):控制粒子的尺寸、速度,不同的粒

子系统,其设置也不相同。

4.Rendering Properties(渲染特性):控制粒子在视图中、渲染时和动画中分别表

现出的形态。由于粒子显示不易,所以通常以简单的点、线或交叉点来显示,

而且数目也只用于操作观察之用,不用设置过多。对于渲染效果,它会按真实

指定的粒子类型和数目进行着色计算。

1.5.1 制作下雨效果

在本范例中,我们利用粒子系统中的暴风雪粒子来实现下雨这一效果。熟悉暴风雪粒子的基本运用和其中的一些参数所能影响的效果等等。这其中涉及到的知识点包括如下:喷射粒子的创建和参数修改,实例几何体的使用、空间扭曲中的力场和导向器的适用等。

【制作步骤】

(1) 创建【喷射粒子01】。在创建命令面板下拉的菜单中选择【粒子系统】,单击【喷射】按钮,如图1-1-1和1-1-2所示,顶视图】窗口中按下鼠标左键并拖动,这时一个喷射粒子发射器已初步建立好了,拖拉时间滑块,可以看到粒子呈下落状态,如图1-1-3所示。

图1-1-1 图 1-1-2

图1-1-3

(2)我们选择【喷射粒子01】,进入【修改器】面板下拉菜单中的【粒子类型】,选我们选择【雪粒子01】,进入【修改器】面板展开菜单中的【参数】调整粒子的基本参数,,将粒子的【视口计数】为:555;【渲染计数】为:555;【水滴大小】为:【速度】为:0

【变化】值为默认:0 ,喷射粒子的形状为【水滴】,【渲染】显示为【四面体】,【计时】中【开始】为默认值0;延长【寿命】值,设置为:65,【发射器】的【宽和长】分别为:419和368 ,如图1-1-4所示,基本上所有的参数设置完成了。

图1-1-4

(3)我们进入创建命令面板的【几何体】中【标准基本体】的创建面板,点击【长方体】在【顶视图】创建【Box01】如图1-1-5所示;【Box02】如图1-1-6所示;【Box03】和【Box04】如图1-1-7所示,适当调节参数和位置即可,模拟的一的场景就做好了,如图1-1-8所示。

图1-1-5 图1-1-7

图1-1-6 图1-1-8

(4)点击创建面板中【空间扭曲】,选择【力】场中的【重力】如图1-1-9所示;在

【顶视图】拖动鼠标这样就创建了一个【重力】场,【重力】的参数设置保持默认,不做改变,如图1-1-10所示。

图1-1-9 图1-1-10

再一次点击创建面板中【空间扭曲】展开窗口栏目选择【导向器】如图1-1-11所示;选择【导向板】如图1-1-12所示;在【顶视图】拖动鼠标创建了一个【导向板】如图1-1-13所示

图1-1-11 图1-1-12 图1-1-13

再在创建面板中【空间扭曲】中【导向器】选中【全导向器UdeflectorBinding】,创建一个【全导向器UdeflectorBinding】如图1-1-14所示;

图1-1-14

(5)下面我们要把【喷射】粒子和【重力】、【导向器】、【全导向器UdeflectorBinding】进行绑定;单击【绑定到空间扭曲】按钮,选中【重力】场移动鼠标就会发现白色的虚线,

拖动鼠标停留在【喷射】粒子系统上,出现这个【】图像时再点击左键,之后一闪这样就把【重力】绑定到【喷射】系统上如图1-1-15所示,依次方法把【导向器】和【全导向器UdeflectorBinding】绑定到【喷射】粒子系统上,如图1-1-16和1-1-17所示;或者查看【修改器列表】上显示【重力绑定(WSM)】【导向器绑定(WSM)】和【全导向器UdeflectorBinding(WSM)】如图1-1-18所示;

图1-1-15 图1-1-18

图1-1-16

图1-1-17

(6)选择创建的【全导向器UdeflectorBinding】在【修改】命令面板点击【拾取对象】拾取【Box01】添加一个【基于对象的导向器】在【项目】窗口出现:【Box01】;把导向器的【粒子反弹】的【反弹】改为:,其他的参数不做任何修改,如图1-1-19所示。

图1-1-19

再修改【导向器】的参数,【反弹】值为:,其余的不做任何修改;如图1-1-20所示。

(7)这样我们把创建物体的设置都设置好,渲染效果如图1-1-21所

图1-1-20 图1-1-21

全同粒子体系习题解

第六章 全同粒子体系习题解 1.求在自旋态)(2 1z S χ中,x S ?和y S ?的不确定关系:?)()(2 2 =y x S S ?? 解:在z S ?表象中)(2 1z S χ、x S ?、y S ?的矩阵表示分别为 ???? ??=01)(2 1z S χ 01?102x S ??= ???h ??? ? ??-=002?i i S y η ∴ 在)(2 1z S χ态中 00101102)0 1(2 12 1 =??? ? ?????? ??== +ηχχx x S S 4 010*********)0 1(?2222 121ηηη=???? ?????? ?????? ??==+ χχx x S S 4 )(22 22 η=-=?x x x S S S 001002)0 1(?2 121=??? ? ?????? ??-==+ i i S S y y ηχχ 401002002)0 1(?2222 121ηηη=???? ?????? ??-???? ??-==+ i i i i S S y y χχ 4 )(22 22 η=-=?y y y S S S 16 )()(4 2 2 η=??y x S S 讨论:由x S ?、y S ?的对易关系 [x S ?,y S ?]z S i ?η= 要求4 )()(2 2 2 2z y x S S S η≥?? 16)()(422η=??y x S S ① 在)(2 1z S χ态中,2 η = z S ∴ 16 )()(4 2 2 η≥y x S S ??

可见①式符合上式的要求。 2.求??? ? ??--=???? ??=002?01102?i i S S y x ηη及的本征值和所属的本征函数。 解:x S ?的久期方程为 02 2=--λ λ ηη 20)2(22ηη±=?=-λλ ∴ x S ?的本征值为2 η±。 设对应于本征值的本征函数为 ??? ? ??=112/1b a χ 由本征方程 2/12 /12 ?χχη =x S ,得 ???? ??=???? ?????? ??1111201102b a b a ηη 111111 a b b a a b =???? ? ??=???? ??? 由归一化条件 12/12/1=+χχ,得 1),(11* 1*1=??? ? ??a a a a 即 122 1 =a ∴ 2 1 2 111= = b a 对应于本征值 2η的本征函数为 ??? ? ??=11212/1χ 设对应于本征值2η - 的本征函数为 ??? ? ??=-222/1b a χ 由本征方程 ???? ??- =--222/12/12?b a S x χχη 222222 a b b a a b -=???? ? ??--=???? ??? 由归一化条件,得 1),(22* 2* 2=??? ? ??--a a a a 即 122 2=a ∴ 2 1 2 122- == b a 对应于本征值2η- 的本征函数为 ??? ? ??-=-11212/1χ

Unity3D深入浅出 - 粒子系统(Particle System)

粒子系统是在三维控件渲染出来的二维图像,主要用于烟,火,水滴,落叶等效果。一个粒子系统由例子发射器、粒子动画器和粒子渲染器三个独立的部分组成。该文章出自【狗刨学习网】 Unity中自带了一些粒子效果,在Assets>ImportPackage>articles, 即可将Prticles.UnityPackage导入到项目中,这些粒子效果包括:Dust(沙尘)、Fire(火焰)、Water(水)、Smoke(烟雾)、Sparkles(闪光),还有一些粒子资源 Sources、Misc(杂项),如下图 随便拖出来几个

先创建一个Empty的GameObject,为其添加下图的五个组件

1.Ellpsoed Particle:椭球粒子发射器,可在一个星球范围内生成大量的粒子,可痛过Ellipsoid属性对其缩放和拉伸。 ?Emit:粒子发射,开启该项,发射器将发射粒子 ?Min/Max Size:生成的每颗粒子的最小/大尺寸 ?Min/Max Energy:每颗粒子的最小/大生命周期(以秒为单位) ?Min/Max Emission:每秒生成粒子的最小/大数目 ?World Velocity:粒子在世界坐标中沿xyz方向的初始速度 ?Local Velocity:局部速度,以某个对象为参照物,相对沿着xyz方向的初始速度。 ?Rnd Volocity: 随机速度 ?Emitter Velocity Scale:发射速度比例 ?Tangent Velocity:切线速度,粒子XYZ轴穿过发射器表面的初始速度。 ?Angular Velocity:角速度,新生粒子的角速度,单位(°/s) ?Rnd Angular Velocity:随机角速度 ?Rnd Rotation :随机旋转,启用后粒子会以随机的方向生成。 ?Simulate in World space:在世界坐标空间中更新粒子运动。如果关闭该项,则每一个单独粒子的位置总是随着发射器的位置变化而发生相对的运动;若开启该项,粒子不会受到发射器运动的影响。比如一个上升的火球,火焰会在产生后向上漂浮并距离火球的距离越来越远,如果关闭此项,那么这些相同的火焰是会随着火球而在屏幕上移动的。

全同粒子体系

第六章全同粒子体系 6.1 全同粒子体系 之前所讨论的问题都是单粒子问题,在自然界中经常碰到由多个粒子所组成的体系,称为多粒子体系,这些体系或者由非全同粒子构成或者由全同粒子构成,而我们关注是由全同粒子构成的体系。首先研究由全同粒子组成的多粒子体系的特性。 1、全同粒子 我们称质量m,电荷q,磁矩M,自旋S等固有属性完全相同的微观粒子为全同粒子。其中,固有属性又叫内禀属性,如所有的电子,所有的质子系都是全同粒子系,在相同的物理条件下,全同粒子体系中的全同粒子的行为应该是相同的。 全同粒子体系有个重要的特点,就是我们量子力学第5个基本假设给出的。 2、量子力学基本假设 全同性原理假设(不能由量子力学中的基本假设推出):全同粒子具有不可区分性,交换任何两个粒子不引起体系物理状态的改变。(不可区分性与交换不变性) 量子力学中,粒子的状态是用波函数来描述的,如果描述两个粒子的波没有重叠,例如:把两个粒子分别置于两个不同的容器中,自然可以区分哪个是1粒子,哪个是2粒子;但如果描述两个粒子的波发生重叠,例如:氢原子中的两个电子,这两个全同电子就无法区分了,因为一切测量结果都不会因为交换而有所改变。由于全同粒子的不可区分性,每个粒子都是处于完全相同的状态,所以交换任何两个全同粒子并不形成新的状态。在自然界中,实际出现的状态,只是那些交换不变的态,其余的态实际都不存在,由全同性原理假设出发,可以得到全同粒子体系的一些重要性。 3、全同粒子体系?H算符的交换不变性 粒子不可区分,单体算符形式一样。在量子力学情况下,微观粒子不存在严

格意义的轨道,对于粒子的坐标,我们仅知道粒子在某处出现的几率,设有两个全同粒子在不同时刻给它们照相,根据照片上的位置,在某一时刻把它两个粒子编号,则在后一时刻的照片上没有任何根据能指出哪个是第一号,哪个是第二号,即使两次的照片时间间隔再短,也无法分辨。但我们又必须给粒子的“坐标”i q 编上号码(1,2, i N =),因为不可能把各个粒子的不同坐标的哦要用一个变量q 来表示,这样,12,N q q q 代表第一个位置(含自旋) ,第二个位置,……各有一个粒子,不能规定是哪一个粒子;于是,12 ,N q q q 表示粒子的坐标(含自旋) ,但每一个坐标q 都不专属于某一个粒子,若把12,N q q q 顺序作任意置换后,也 还是在(1,2, )i q i N =各有一个粒子。假设有一由N 个全同粒子组成的体系,以 i q 表示第i 个粒子的坐标和自旋的(),i i i q r S =,(),i U q t 表示第i 个粒子在外场中的能量,(),i j W q q 表示第i 个粒子与第j 个粒子之间的相互作用能量,则体系的Hamilton 量算符可写为: () ()()12 2211 ??,,,1,,22i j N N N i i i j i i j H H q q q q q t U q t W q q μ=≠==??=-?++????∑∑ (6.1.1) 显然交换两个粒子,全同体系的?H 不变,即交换对称性。这里我们引入:交换算符?ij P :它表示交换第i 个粒子与第j 个粒子的运算 ()()1 2 12 ?,,,,i j N i j N q q q q q H q q q q q ≡ (6.1.2) 全同性原理中,全同粒子的不可区分性使得体系?H 具有交换不变性,同样全同性原理要求体系具有交换不变性,即交换任意两粒子,体系物理状态不变。 而量子力学中状态用波函数来描述,所以全同性原理对多粒子体系的波函数提出了新的限制,除了满足其它条件外(单位、连续、有限),还必须具有交换对称性。 4、全同粒子体系波函数的交换对称性 考虑由N 个全同粒子组成的多体系,其状态用波函数 ()12 ,,i j N q q q q q ψ

全同粒子体系习题解

全同粒子体系习题解-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第六章 全同粒子体系习题解 1.求在自旋态)(2 1z S χ中,x S ?和y S ?的不确定关系:?)()(22=y x S S ?? 解:在z S ?表象中)(2 1z S χ、x S ?、y S ?的矩阵表示分别为 ???? ??=01)(21z S χ 01?102x S ??= ??? ???? ??-=002?i i S y ∴ 在)(2 1z S χ态中 00101102)0 1(2121=??? ? ?????? ??==+ χχx x S S 4 010*********)0 1(?2222 121 =???? ?????? ?????? ??==+ χχx x S S 4 )(22 22 =-=?x x x S S S 001002)0 1(?212 1=??? ? ?????? ??-==+i i S S y y χχ 401002002)0 1(?2 222 121 =???? ?????? ??-???? ??-==+ i i i i S S y y χχ 4 )(22 22 =-=?y y y S S S 16 )()(4 2 2 =??y x S S 讨论:由x S ?、y S ?的对易关系 [x S ?,y S ?]z S i ? = 要求4)()(2 22 2z y x S S S ≥?? 16)()(422 =??y x S S ① 在)(2 1z S χ态中,2 = z S ∴ 16 )()(4 2 2 ≥y x S S ??

空间和粒子动力学基本原理

空间和粒子动力学基本原理 黄国有 广西北海剑桥研究中心 电子邮件:hgyphysics@https://www.doczj.com/doc/9b10271527.html, 摘要 本文通过总结现在流行的空间和粒子的流行模型的优缺点,介绍宇观系统论中的空间和粒子的质磁模型,主张自旋是粒子和相互作用形成的关键。同时对历史上出现过的主要宇宙模型进行评述。 关键词:空间,粒子,波动,宇宙模型 1 宇宙空间组成的流行模型 空间的本质历来是哲学和科学中争论的重要问题。古希腊德谟克利特的原子论认为,所有的物质都是由原子组成的,原子之外则是虚空,这是牛顿绝对空间概念的始祖。中国古代王夫之的元气学说则认为世上万物都是由阴阳两种元气形成的,宇宙空间充满着这种元气,除了这种元气之外宇宙再也没有其它成分。这种朴素的宇宙一元论思想可认为是以太模型的始祖。现在流行于物理学中的空间模型主要是牛顿的绝对空间(虚空)模型和以太模型。牛顿认为空间是独立于物质而存在的客观实体,这种绝对空间模型直到现在也还没有足够的理由加以彻底否定。以太模型则是法国数学家和哲学家雷内-笛卡尔(Rene Descartes)首先提出来的,他认为空间充满了一种叫做“以太”的特殊物质,普通的物质就是在这种特殊的以太中存在和运动的。另一种流派是把空间与物质联系起来,认为没有物质存在的虚空是不存在的。首先提出这一观念的是爱因斯坦,他设想空间是引力场的一种特殊状态。现代物理学则趋于认为空间是量子场的基态,即能量最低的状态,量子场的激发态形成各种物质粒子和物体,量子场的退激导致物质的消失。 绝对空间模型认为物质独立于空间而存在和运动。以太模型的观点比较多,最早的模型认为宇宙中充满巨大的以太旋涡,是这种旋涡携带行星绕太阳运动,无数旋涡聚合成各种大小的物质充满整个宇宙空间。引力一般被认为是以太对物体的压力和作用。当时已知的磁力以及地球与物体之间的引力以实物则用物质与以太的直接接触作用来解释。现在以太说仍然是宇宙空间和基本粒子学说的一个重要的流派。法拉第引入电场和磁场的概念后,人们开始认为空间应该是由连续的场组成的。基于法拉第场的概念,麦克斯韦假设以太是一种不可压缩流体,他用流体动力学模型写了一个方程组。汤姆森和其它一些人设想原子结构是一种涡旋运动,电子发现后,拉莫尔也认为电子是一种以太结构。以太流体中的原子或电子涡旋观念在1905年遇到了一些严峻的问题,其中之一是涡旋运动的消散问题,另一个困难是电磁场以极大的速度(光速)在这种流体中传播,如果以太流体的属性与物质类似的话,以太对电磁波的弹力接近钢的弹力,所以这样高的速度是不可能的。在以太说的这些问题还没有克服的时候,爱因斯坦在相对论中用速度矢量描述空间,这样,作为空虚概念的空间在相对论中没有了地位,相对论的建立和流行使以太说逐渐沉寂。 纵观当今物理学流行的空间模型,我认为牛顿的绝对空间的地位并没有受到彻底的动摇,因为空间广延性几乎是一种共识,“物质之外是什么”这一问题我们显然无法简单地回答说“什么也没有”,如果这样的话等于我们承认了虚空,也即是承认了牛顿的绝对空间的存在。量子理论认为空间是量子场的基态的观点更不明确。首先,量子场本质是什么?真空激发产生粒子,粒子的质量从哪里来?要么质量守恒定律失效了,要么它再假设一种具有负质量的虚粒子,使质量守恒定律在数学形式上成立。这样,空间本质的问题不但没有解决,反而增加了许多主观臆想的如虚物质一样的新概念,使空间的本质问题的解决更加遥远

第七章-自和全同粒子

第七章自旋和全同粒子 §7 - 1 电子自旋 一电子自旋的概念 在非相对论量子力学中,电子自旋的概念是在原子光谱的研究中提出来的。实验研究表明,电子不是点电荷,它除了轨道运动外还有自旋运动。 描述电子自旋运动的两个物理量: 1 、自旋角动量(内禀角动量)S

它在空间任一方向上的投影s z 只能取两个值 s z =± 12 η; (7. 1) 2、 自旋磁矩(内禀磁矩)μs 它与自旋角动量S 间的关系是: μs e =- e m S , (7. 2) μμs e B z e m =± =±η 2, (7. 3) 式中(- e ):电子的电荷,m e :电

子的质量,μB :玻尔磁子。 3、电子自旋的磁旋比(电子的自旋磁矩/自旋角动量) μs e s e z z s e m g e m =- =2, (7. 4) g s = – 2是相应于电子自旋的g 因数, 是对于轨道运动的g 因数的两倍。 强调两点: ● 相对论量子力学中,按照电子的 相对论性波动方程??狄拉克方程,运动的粒子必有量子数为

1/2的自旋,电子自旋本质上是 一种相对论效应。 ●自旋的存在标志着电子有了一个 新的自由度。实际上,除了静质 量和电荷外,自旋和内禀磁矩已 经成为标志各种粒子的重要的 物理量。特别是,自旋是半奇数 还是整数(包括零),决定了粒子 是遵从费米统计还是玻色统计。二电子自旋态的描述

ψ( r, s z ):包含连续变量r和自旋投影这 两个变量,s z只能取 ±η/2这两个离散值。 电子波函数(两个分量排成一个二行一列的矩阵) ψ ψ ψ (,) (,/) (,/) r r r s z= - ? ? ? ? ? η η 2 2, (7. 5) 讨论: ●若已知电子处于s z=η/)2,波函数写为 ψ ψ ψ (,) (,/) (,/) r r r s z= - ? ? ? ? ? η η 2 2 ●若已知电子处于s z=η/)2,波函数写为 ψ ψ ψ (,) (,/) (,/) r r r s z= - ? ? ? ? ? η η 2 2

复习大纲_量子力学

第二章薛定谔方程 基本要求: 1、了解光和微观粒子的波粒二象性,熟悉德布罗意关系; 2、理解波函数的表达形式及其物理意义; 3、掌握薛定谔方程的基本公式 4、理解波函数的标准条件和态叠加原理,并能应用到薛定谔方程的求解中; 5、什么是定态薛定谔方程,它的解有什么特点? 6、熟练应用定态薛定谔方程求解一维无限深势阱中的粒子; 7、理解一维线性谐振子波函数的形式及能量的量子化,并能进行简单计算; 8、了解微观粒子遇到方势垒的反射与透射。为什么在粒子能量小于势垒时,仍可以部分透射? 第三章力学量的算符 基本要求: 1、什么是力学量的算符,掌握常见物理量的算符表达式; 2、什么是本征方程,算符的本征值和本征函数指的是什么?能够通过本征 方程求解算符的本征值; 3、熟悉算符的基本运算规则; 4、什么是线性厄米算符,它有哪些性质?会判断哪些算符是厄米算符; 5、厄米算符本征函数的正交性和完全性指的是什么? 6、不同力学量同时有确定值的条件是什么? 7、熟悉量子力学的不确定关系。 第四章氢原子和类氢离子的波函数和能级 基本要求: 1、了解有心力场中电子的特征; 2、理解库仑有心力场中电子波函数的描述方法,理解量子数的概念; 3、理解库仑有心力场中电子能级的量子化,理解简并度的概念; 4、理解轨道角动量的概念,能够证明轨道角动量各分量以及L2与各分量间 的相互关系; 5、理解核外电子的径向几率分布和角几率分布,会求简单系统的径向几率 分布和角几率分布。 第五章定态微扰论原子的能级 基本要求:

1、什么是微扰,采用定态微扰论近似求解能量本征算符H ∧ 本征方程的基本要求是什么? 2、熟悉无简并定态微扰论中能量和波函数的一级修正,会求简单系统的一级近似; 3、了解有简并定态微扰论中波函数的零级近似和能量的一级近似; 第六章 电子自旋 全同粒子 原子中电子的能级排列 基本要求: 1、什么是全同粒子? 2、电子的自旋指的是什么? 3、自旋角动量算符有哪些性质,其本征值是多少?若计入电子自旋,氢原子波函数需要哪些量子数描述,才能完整描述其电子的运动状态? 4、全同粒子的不可区分性指的是什么?全同粒子体系的H ∧ 交换不变性是什么意思? 5、由全同粒子组成的体系,若全同粒子是自旋为半整数的费米子,其波函数为反对称波函数;若全同粒子是自旋为零或整数的波色子,则波函数为对称波函数。全同粒子体系的波函数,除了满足标准条件外,还须满足对称或反对称。 6、泡利不相容原理指的是什么? 7、对于具有多个电子的原子,受泡利不相容原理的限制,原子中的电子如何排列? 第六章 电子自旋 全同粒子 原子中电子的能级排列 基本要求: 1、了解电子在周期性微扰下的跃迁几率,在什么条件下,跃迁几率最大? 2、原子与光子的相互作用有哪几种?其跃迁几率主要受那些因素影响? 3、在有心力场情况下,状态间允许跃迁的选择定则是什么?

第七章-自旋和全同粒子

第七章 自旋和全同粒子 §7 - 1 电子自旋 一 电子自旋的概念 在非相对论量子力学中,电子自旋的概念是在原子光谱的研究中提出来的。实验研究表明,电子不是点电荷,它除了轨道运动外还有自旋运动。 描述电子自旋运动的两个物理量: 1 、 自旋角动量(内禀角动量)S 它在空间任一方向上的投影s z 只能取两个值 21±=z s ;

(7. 1) 2、 自旋磁矩(内禀磁矩)μs 它与自旋角动量S 间的关系是: S e s m e -=μ, (7. 2) B e s 2μμ±=±=m e z , (7. 3) 式中(- e ):电子的电荷,m e :电 子的质量,B μ:玻尔磁子。 3、电子自旋的磁旋比(电子的自旋磁 矩/自旋角动量) e s e s 2m e g m e s z z =-=μ, (7. 4)

g s = –2是相应于电子自旋的g因数,是对于轨道运动的g因数的两倍。 强调两点: ●相对论量子力学中,按照电子的 相对论性波动方程 狄拉克 方程,运动的粒子必有量子数为 1/2的自旋,电子自旋本质上是 一种相对论效应。 ●自旋的存在标志着电子有了一个 新的自由度。实际上,除了静质 量和电荷外,自旋和内禀磁矩已 经成为标志各种粒子的重要的 物理量。特别是,自旋是半奇数 还是整数(包括零),决定了粒子 是遵从费米统计还是玻色统计。

二 电子自旋态的描述 ψ ( r , s z ):包含连续变量r 和自旋投 影这两个变量, s z 只能取 ±2/ 这两个离散值。 电子波函数(两个分量排成一个二行一列的矩阵) ?? ? ??-=)2/,()2/,(),( r r r ψψψz s , (7. 5) 讨论: ● 若已知电子处于/2z s = ,波函数 写为 (,/2)(,) 0z s ψψ??= ??? r r ● 若已知电子处于/2z s =- ,波函数

全同粒子体系

第六章 全同粒子体系 6.1 全同粒子体系 之前所讨论的问题都是单粒子问题,在自然界中经常碰到由多个粒子所组成的体系,称为多粒子体系,这些体系或者由非全同粒子构成或者由全同粒子构成,而我们关注是由全同粒子构成的体系。首先研究由全同粒子组成的多粒子体系的特性。 1、全同粒子 我们称质量m ,电荷q ,磁矩M ,自旋S 等固有属性完全相同的微观粒子为 全同粒子。其中,固有属性又叫内禀属性,如所有的电子,所有的质子系都是全同粒子系,在相同的物理条件下,全同粒子体系中的全同粒子的行为应该是相同的。 全同粒子体系有个重要的特点,就是我们量子力学第5个基本假设给出的。 2、量子力学基本假设 全同性原理假设(不能由量子力学中的基本假设推出):全同粒子具有不可区分性,交换任何两个粒子不引起体系物理状态的改变。(不可区分性与交换不变性) 量子力学中,粒子的状态是用波函数来描述的,如果描述两个粒子的波没有重叠,例如:把两个粒子分别置于两个不同的容器中,自然可以区分哪个是1粒子,哪个是2粒子;但如果描述两个粒子的波发生重叠,例如:氢原子中的两个电子,这两个全同电子就无法区分了,因为一切测量结果都不会因为交换而有所改变。由于全同粒子的不可区分性,每个粒子都是处于完全相同的状态,所以交换任何两个全同粒子并不形成新的状态。在自然界中,实际出现的状态,只是那些交换不变的态,其余的态实际都不存在,由全同性原理假设出发,可以得到全同粒子体系的一些重要性。 3、全同粒子体系?H 算符的交换不变性 粒子不可区分,单体算符形式一样。在量子力学情况下,微观粒子不存在严

格意义的轨道,对于粒子的坐标,我们仅知道粒子在某处出现的几率,设有两个全同粒子在不同时刻给它们照相,根据照片上的位置,在某一时刻把它两个粒子编号,则在后一时刻的照片上没有任何根据能指出哪个是第一号,哪个是第二号,即使两次的照片时间间隔再短,也无法分辨。但我们又必须给粒子的“坐标”i q 编上号码(1,2,i N = ),因为不可能把各个粒子的不同坐标的哦要用一个变量q 来表示,这样,12,N q q q 代表第一个位置(含自旋),第二个位置,……各有一个粒子,不能规定是哪一个粒子;于是,12,N q q q 表示粒子的坐标(含自旋),但每一个坐标q 都不专属于某一个粒子,若把12,N q q q 顺序作任意置换后,也还是在(1,2,)i q i N = 各有一个粒子。假设有一由N 个全同粒子组成的体系,以 i q 表示第i 个粒子的坐标和自旋的(),i i i q r S = ,(),i U q t 表示第i 个粒子在外场中的能量,(),i j W q q 表示第i 个粒子与第j 个粒子之间的相互作用能量,则体系的Hamilton 量算符可写为: ()()()122211 ??,,,1,,22i j N N N i i i j i i j H H q q q q q t U q t W q q μ=≠==??=-?++????∑∑ (6.1.1) 显然交换两个粒子,全同体系的?H 不变,即交换对称性。这里我们引入:交换算符?ij P :它表示交换第i 个粒子与第j 个粒子的运算 ()()1 2 1 2 ?,,,,i j N i j N q q q q q H q q q q q ≡ (6.1.2) 全同性原理中,全同粒子的不可区分性使得体系?H 具有交换不变性,同样全同性原理要求体系具有交换不变性,即交换任意两粒子,体系物理状态不变。 而量子力学中状态用波函数来描述,所以全同性原理对多粒子体系的波函数提出了新的限制,除了满足其它条件外(单位、连续、有限),还必须具有交换对称性。 4、全同粒子体系波函数的交换对称性 考虑由N 个全同粒子组成的多体系,其状态用波函数 ()12,,i j N q q q q q ψ

粒子系统

粒子系统 3DS MAX系统提供了六种微粒特技系统,分别是:Spray(喷射或飞沫)、Snow(下雪)、Blizzard(暴风雪)、Parray(粒子阵列)、Pcloud(粒子云)和SyperSpary(超级粒子或超级喷射),使用粒子系统可以模仿自然界效果,包括雨雪、泡沫、流水、爆炸、烟花等。 粒子系统在MAX中是一个相对独立的造型系统,在应用粒子系统时,需要结合使用的功能有: (1)在材质方面:一般的材质对粒子系统都适用,在系统中还包括了专用的贴图: A:Particle Age(粒子年龄):这种贴图类型要和粒子系统一起使用,他可以使粒子在产生时就具有一种颜色,在特定的年龄时会转变为第二种颜色,粒子在消亡之前又转变为第三种颜色,通常用于表现金属火花的颜色逐渐消逝的过程。 B:Particle Mblur(粒子运动模糊):这种贴图类型也要和粒子系统一起使用,可以使粒子根据速度来改变颜色,常作为Opacity(不透明)贴图使用。 (2)粒子空间扭曲工具:重力、爆炸、风、马达、推进器、路径追随、导向球、导向物体、导向板、等等; (3)模糊处理:运动的粒子系统常常需要进行模糊处理,可以对粒子使用Object Blur(对象模糊)和Scene Blur(场景模糊)。 (4)可以Video Post特技效果指定给粒子系统,使粒子产生发光、闪烁等效果。 第一节Snow(下雪) “雪花“粒子能够翻转地穿过空间,使用雪花粒子来创建雪花、五彩碎纸、气泡等效果。其各项参数的意义为: (1)Particles(粒子控制)栏: Viewport Count(视图显示数量):设置在视图中显示粒子的数量; Render Count(渲染数量):设置最后渲染时,可以同时出现在一帧中的粒子的最大数量; Flake Size(雪片大小):设置每个粒子颗粒的大小; Speed(速度):设置粒子流发射的速度,如果没有应用粒子空间扭曲,发射速度将保持匀速不变; Variation(变化):影响粒子颗粒的初速度和方向,值越大,粒子喷射得越猛烈,喷洒范围也越大; Tumble(翻滚):雪片随即旋转的数量,数值范围从0到1,值为0时,雪

全同粒子体系

全同粒子 本讲介绍多粒子体系的量子力学基本原理。首先从全同粒子的基本概念出发,根据全同性原理,给出描述全同粒子体系的波函数;最后以氦原子为例讨论多粒子体系问题。 1. 全同粒子的基本概念 1.1 全同粒子:静质量、电荷、自旋等固有性质完全相同的微观粒子。例如,电子、 质子,中子等。 在经典力学中,粒子是用坐标和动量来描述,可以根据各自的运动轨迹来区分。而在 量子力学中,微观全同粒子的状态是用波函数来描述,每个粒子的波函数弥散于整个空 间,即处于同一区域各粒子波函数重迭,对粒子无法加以区分;另外,对全同粒子体系进 行测量时,关心的是在空间某点附近粒子出现的概率(或数目),而这个概率(或数目) 究竟属于体系中的哪几个,是无法确定的。即全同粒子具有不可区分性,这是微观粒子的 基本性质之一。 1.2 全同性原理: 由于全同粒子具有不可区分性,则在全同粒子体系中,任意两个全同粒子相互交换后并不会引起整个体系物理状态的改变,即不会出现任何可观测的物理效应,该论断称为量子力学中的全同性原理。这是量子力学基本原理之一。 1.3哈密顿算符∧ H 的交换对称性 考虑N 个全同粒子组成的体系,i q 表示第i 个粒子的空间坐标i r 与自旋变量i S ,) ,(t q u i 表示 第i 个粒子在外场中的能量,),(j i q q w 表示第i 、j 粒子的相互作用能量,则体系的哈密顿算符∧ H 写为 ∑∑<++?-=j i j i i i i N j i q q w t q u t q q q q q H ),()],(2[),,,(?2221μ (1) 任何两个粒子(如第i 个与第j 个)相互交换后,∧ H 显然是不变的,记为 ),,,(?21t q q q q q H P N j i ij ∧ ),,,(?21t q q q q q H N i j = ),,,(?2 1 t q q q q q H N j i = (2) ij P ∧ 称为交换算符,它同时交换两个粒子的坐标和自旋,哈密顿算符的这种交换对称性又可记为 0,=?? ? ???∧∧H P ij (3)

游戏特效之三维粒子

游戏特效之三维粒子(游戏特效教程05) 相关搜索: 三维, 特效, 粒子, 教程, 游戏 本帖最后由 hwcg 于 2009-12-18 17:57 编辑 今天我们来学习游戏特效中常用的攻击特效-------冲击波,如图 000.jpg (25.92 KB) 下 载 次 数 :02009-12-18 17:57 收藏 分享 评分 回复 引用 订阅 报告 道具 TOP hwcg 发短消息 2# 发表于 2009-12-18 18:01 | 只看该作者 踩窝 窝 送礼物 问候Ta

hwcg 当前离线 金牌会员UID 490 帖子603 精华0 积分2628 威望2628 金钱1875 金币 1、喷射粒子(Spray)的创建 打开3DMAX软件,在前视图创建Spray粒子,如图 1.jpg (77.54 KB)下载次数:02009-12-18 18:01 回复引用 报告道具TOP hwcg 发短消息 加为好友 hwcg 当前离线 金牌会员UID 490 3# 发表于2009-12-18 18:07| 只看该作者 踩窝窝 送礼物 问候Ta 2、粒子爆炸(PBomb)空间扭的创建,如图 2.jpg (65.68 KB)下载次数:02009-12-18 18:07

精华0 积分2628 威望2628 金钱1875 金币 回复引用 报告道具TOP hwcg 发短消息 加为好友 hwcg 当前离线 金牌会员UID 490 帖子603 精华0 积分2628 4# 发表于2009-12-18 18:09| 只看该作者 踩窝窝 送礼物 问候Ta 3、粒子与空间扭曲对象的绑定,如图 3.jpg (39.51 KB)下载次数:02009-12-18 18:09

全同粒子体系习题解

第六章 全同粒子体系习题解 1.求在自旋态)(2 1z S χ中,x S ?与y S ?的不确定关系:?)()(2 2 =y x S S ?? 解:在z S ?表象中)(2 1z S χ、x S ?、y S ?的矩阵表示分别为 ???? ??=01)(2 1z S χ 01?102x S ??= ???h ??? ? ??-=002?i i S y η ∴ 在)(2 1z S χ态中 00101102)0 1(2 12 1 =??? ? ?????? ??== +ηχχx x S S 4 010*********)0 1(?2222 121ηηη=???? ?????? ?????? ??==+ χχx x S S 4 )(22 22 η=-=?x x x S S S 001002)0 1(?2 121=??? ? ?????? ??-==+ i i S S y y ηχχ 401002002)0 1(?2222 121ηηη=???? ?????? ??-???? ??-==+ i i i i S S y y χχ 4 )(22 22 η=-=?y y y S S S 16 )()(4 2 2 η=??y x S S 讨论:由x S ?、y S ?的对易关系 [x S ?,y S ?]z S i ?η= 要求4 )()(2 2 2 2z y x S S S η≥?? 16)()(422η=??y x S S ① 在)(2 1z S χ态中,2 η = z S ∴ 16 )()(4 2 2 η≥y x S S ??

可见①式符合上式的要求。 2.求??? ? ??--=???? ??=002?01102?i i S S y x ηη及的本征值与所属的本征函数。 解:x S ?的久期方程为 02 2=--λ λ ηη 20)2(22ηη±=?=-λλ ∴ x S ?的本征值为2 η±。 设对应于本征值 2η 的本征函数为 ??? ? ??=112/1b a χ 由本征方程 2/12 /12 ?χχη =x S ,得 ???? ??=???? ?????? ??1111201102b a b a ηη 111111 a b b a a b =???? ? ??=???? ??? 由归一化条件 12/12/1=+χχ,得 1),(11* 1*1=??? ? ??a a a a 即 122 1 =a ∴ 2 1 2 111= = b a 对应于本征值 2η的本征函数为 ??? ? ??=11212/1χ 设对应于本征值2η - 的本征函数为 ??? ? ??=-222/1b a χ 由本征方程 ???? ??- =--222/12/12?b a S x χχη 222222 a b b a a b -=???? ? ??--=???? ??? 由归一化条件,得 1),(22* 2* 2=??? ? ??--a a a a 即 122 2=a ∴ 2 1 2 122- == b a 对应于本征值2η- 的本征函数为 ??? ? ??-=-11212/1χ

第六章自旋与全同粒子

第六章:自旋与全同粒子 [1]在x σ ?表象中,求x σ?的本征态 (解) 设泡利算符2 σ,x σ,的共同本征函数组是: ()z s x 2 1 和()z s x 2 1 - (1) 或者简单地记作α和β,因为这两个波函数并不是x σ ?的本征函数,但它们构成一个完整系,所以任何自旋态都能用这两个本征函数的线性式表示(叠加原理),x σ ?的本征函数可表示: β αχ21c c += (2) 21,c c 待定常数,又设x σ ?的本征值λ,则x σ?的本征方程式是: λχχσ =x ? (3) 将(2)代入(3): ()()βαλβασ 2121?c c c c x +=+ (4) 根据本章问题6(P .264),x σ ?对z σ?表象基矢的运算法则是: βασ =x ? αβσ=x ? 此外又假设x σ?的本征矢(2)是归一花的,将(5)代入(4): βλαλαβ2111c c c c +=+ 比较βα,的系数(这二者线性不相关),再加的归一化条件,有: ) 6()6() 6(12221 1 221c b a c c c c c c ------------------------------------??? ??=+==λλ 前二式得12 =λ,即1=λ,或1-=λ 当时1=λ,代入(6a )得21c c =,再代入(6c),得: δi e c 2 11= δi e c 2 12=

δ 是任意的相位因子。 当时1-=λ,代入(6a )得 21c c -= 代入(6c),得: δi e c 2 11= δi e c 2 12- = 最后得x σ ?的本征函数: )(21βαδ+= i e x 对应本征值1 )(2 2βαδ-= i e x 对应本征值-1 以上是利用寻常的波函数表示法,但在2 ??σσ x 共同表象中,采用z s 作自变量时,既是坐标表象,同时又是角动量表象。可用矩阵表示算符和本征矢。 ??????=01α ?? ? ???=10β ??????=21c c χ (7) x σ ?的矩阵已证明是 ?? ? ???=0110?x σ 因此x σ ?的矩阵式本征方程式是: ?? ????=?????????? ??21211010c c c c λ (8) 其余步骤与坐标表象的方法相同,x σ ?本征矢的矩阵形式是: ??????=1121δi e x ?? ? ???-=1122δi e x [2]在z σ表象中,求n ?σ的本征态,)cos ,sin sin ,cos (sin θ?θ?θn 是) ,(?θ方向的单位矢。 (解) 方法类似前题,设n ?σ算符的本征矢是: βα21c c x += (1)

第6章自旋与全同粒

第6章自旋与全同粒子 非相对论量子力学在解释许多实验现象上获得了成功,如原子的能级结构,谱线频率,谱线强度等,但进一步的实验事实发现,还有许多现象留待进一步解释,如光谱线在磁场中的分裂,光谱线的精细结构。这说明微观粒子还有一些特性有待我们去认识,即电子存在自旋角动量,在非相对论量子力学中,自旋是作为一个新的附加量子数引入的,是根据电子具有自旋的实验事实,在薛定谔方程中硬加上的。在相对论量子力学中,电子自旋像电荷一样,自然地包含在相对论的波动方程:狄拉克方程中。 §6.1 电子自旋的实验根据及自旋的特点 一.实验事实 1.斯特恩(stern)-革拉赫(Gerlach)实验: 现象:K射出的处于S态的氢原子束通过狭缝BB和不均匀磁场,最后射到照相片PP上,实验结果是照片上出现两条分立线。 解释:氢原子具有磁矩,设沿Z方向 如在空间可取任何方向,应连续变化,照片上应是一连续带,但实验结果只有两条, 说明是空间量子化的,只有两个取向,对S 态, ,没轨道角动量,所以原子所具有的磁矩是电子固有磁矩。即自旋磁矩。 2.碱原子光谱的双线结构 如钠原子光谱中一条很亮的黄线,如用分辨本领较高的光谱仪进行观测,发现它 是由很靠近的两条谱线组成 3.反常塞曼(Zeeman)效应 1912年,Passhen 和Back发现反常Zeeman效应-在弱磁场中原子光谱线的复杂分裂(分裂成偶条数)。 二.乌伦贝克(Uhlenbeck)和哥德斯密脱(Goudsmit)的自旋假设 1.每个电子具有自旋角动量S,它在空间任何方向上的投影只能取两个值 2.每个电子具有自旋磁矩,它和自旋角动量S的关系是

为玻尔磁子 这个比值称为电子自旋的回转磁比率. 轨道运动的回转磁比率是 三.电子自旋的特点 乌伦贝克最初提出的电子自旋概念具有机械的性质,认为与地球绕太阳的运动相似,电子一方面绕原子核运动;一方面又有自转。但把电子的自转看成机械的自转是错误的。设想电子为均匀分布的电荷小球,若要它的磁矩达到一个磁子,则其表面旋转速度将超过光速,这是不正确的。电子自旋及相应的磁矩是电子本身的内禀属性。 特点: 1.电子具有自旋角动量这一特点纯粹是量子特性,它不可能用经典力学来解释。它是电子的本身的内禀属性,标志了电子还有一个新自由度。 2.电子自旋与其它力学量的根本区别为,一般力学量可表示为坐标和动量的函数,自旋角动量与电子坐标和动量无关,不能表示为,它是电子内部状态的表征,是一个新的自由度。 3.电子自旋值是,而不是的整数倍。 4.,而两者在差一倍。 自旋角动量也具有其它角动量的共性,即满足同样的对易关系 §6.2 电子的自旋算符和自旋函数 一.自旋角动量算符 在空间任意方向上的投影只能取值(由实验所得假设) 本征值都是 ,

第七章-自旋与全同粒子 lt

第七章例题剖析 1求自旋角动量在任意方向n [方向余弦是(cos α,cos β,cos γ)]的投影γβαc o s c o s c o s z y x n s s s s ++=的本征值和本征矢。 [解] 自旋算符的矩阵表示为 ??? ? ??-=???? ??-=???? ??=10012;002;01102 z y x s i i s s ?????????? ??-+???? ??-+???? ??=∴γβαcos 10 01 cos 00cos 01102i i s n ???? ??-+-=γβαβ αγ c o s c o s c o s c o s c o s c o s 2i i 令s n 的本征矢为 ???? ??=ηξψ 它必然是一个两行两列的矩阵,s n 的本征方程为 λψψ2 =n s 则 ???? ??=???? ?????? ?? -+-ηξληξγβαβ αγ2cos cos cos cos cos cos 2 i i 就有 ???=+-+=-+-) 2(0)(cos )cos (cos ) 1(0)cos (cos )(cos ηλγξβαηβαξλγi i ηξ,不同时为零的条件是其系数行列式为零,即 0)(cos cos cos cos cos cos =+-+--λγβαβ αλγi i 展开得: 0)c o s (c o s )(c o s 2222=+---βαλγ 1012±==-∴λλ 因此 n S 的本征值为2 ± 下面求本征矢: (1)当2 =n S 时,即1=λ时,由①式得 ηβαξγ)cos (cos )1(cos i --=- ηγβ αξcos 1cos cos --=i ??? ? ? ??--=ηηγβαψcos 1cos cos i 利用归一化条件

量子力学[第七章自旋与全同粒子] 山东大学期末考试知识点复习

第七章自旋与全同粒子 本章的目的是将量子力学基本理论向两个方面扩展,一是将电子自旋纳入量子力学理论体系,并讨论与其相关的问题;二是由单粒子量子力学扩展到多粒子体系,建立起完整的非相对论量子力学的理论体系. 根据光谱的精细结构和施特恩一格拉赫等实验,人们发现电子还具有的一种无经典对应的新的运动自由度.通过对实验事实的分析,人们提出了电子自旋的假设,引入了自旋角动量,并进一步扩展成包括空间运动和自旋运动在内的完整的状态描述和力学量的算符表示,并将薛定谔方程扩展到包含自旋的情况,建立起非相对论的含自旋的运动方程. 真实的物理系统是多个微观粒子共存的,与经典力学不同,量子化的全同粒子具有不可分辨性,全同粒子体系的微观状态只能是对称的(对应于玻色子)或者反对称的(对应于费米子).因此,还需要将单粒子非相对论量子力学扩展到全同粒子系统. 本章的主要知识点有 1.电子自旋 (1)泡利算符 泡利算符是描写电子自旋运动力学量的矢量厄米算符,定义为 由此可以推出 ζ i ζ j =iε ijk ζ k +δ ij (7-3)

(2)电子自旋角动量 借助泡利算符,电子自旋角动量S可以表示为 (3)电子自旋状态 (4)有关力学量 (5)自旋状态的演化 在电磁场中,电子的波函数为ψ(r,s z ,t):(ψ + (r,t),ψ - (r,t))T,随 时间的演化仍然由薛定谔方程 决定,但是哈密顿算符要修正为

其中A为电磁场的矢势,φ为标势.概率流密度要修正为 2.角动量耦合 (1)角动量的一般性质 其中角量子数j为正整数或半正整数,磁量子数m=-j,…,j-1,j共2j+1个取值. (2)自旋轨道耦合

相关主题
文本预览
相关文档 最新文档