当前位置:文档之家› 里氏木霉原生质体的制备及转化

里氏木霉原生质体的制备及转化

里氏木霉原生质体的制备及转化
里氏木霉原生质体的制备及转化

里氏木霉原生质体的制备及转化

摘要本实验通过将含潮霉素B抗性标记的质粒pAN7-1转化至里氏木酶原生质体中,在含100ug/ml潮霉素B的PDA平板上筛选转化子。并予以验证,结果表明,在1kb处有潮霉素抗性基因组,其中浓度为107个/ml的转化子效果最好。

关键词里氏木酶原生质制备转化

前言纤维素是自然界提供给人类的最宝贵的财富,植物每年通过光合作用产生数千亿吨的纤维素,但目前只有一小部分用于纺织、造纸、建筑和饲料等方面。木霉属是迄今被认为纤维素酶成分最全面,分解天然纤维素活力最高的一类菌。在育种方面利用高能电子、紫外线、亚硝基胍处理和原生质体融合等方法,使酶的活力得到很大的提高。本试验对里氏木霉原生质体的制备及转化进行了研究,为进一步的育种工作奠定基础。

1 材料与方法

1.1 材料

1.1.1 菌株及质粒来源

里氏木霉QM9414和质粒pAN7-1由深圳大学生命科学学院S402实验室刘刚老师提供。

1.1.2试剂及培养基的配制

1.1.

2.1 Mandels 营养盐浓缩液配制(NH4)2SO4 14 g,尿素 3 g,KH2PO420 g,CaCl2?2H2O 4 g,MgSO4?7H2O 3 g,ddH2O 定容至1L

1.1.

2.2 Mandels 微量元素浓缩液配制

FeSO4?7H2O 5 g,ZnSO4?7H2O 1.7 g,CoCl2?6H2O 23.7 g,MnSO4?H2O 1.6 g,ddH2O 定容至1L

1.1.

2.3 1 M柠檬酸缓冲液配制

柠檬酸210 g,NaOH(纯度96 %)78 g,ddH2O 750 ml,冷却后定容至1L

1.1.

2.4 60%的PEG4000

50 mM CaCl2,10 mM Tris·Cl(pH 7.5),60 g PEG4000加水定容到100 ml

1M CaCl25ml,1M Tris·Cl(pH 7.5)1ml,PEG4000 60g,ddH2O定容至100 ml

1.1.

2.5 STC

山梨醇218.6g(所需浓度为1.2 M),1M Tris·Cl(pH 7.5)10ml(所需浓度为10 mM),1M CaCl2 50ml(所需浓度为50 mM),ddH2O 定容至1L

1.1.

2.6 PDA培养基

去皮土豆200g,葡萄糖20g,琼脂(Agar) 15g,ddH2O定容至1L

其中20 %土豆浸出液制作方法如下:将土豆去皮切碎,每20 g土豆加水100 ml,置电炉上煮20分钟,用纱布过滤,定容。筛选里氏木霉转化子时加入终浓度为100 μg/ml潮霉素。

1.1.

2.7 里氏木霉种子培养基

培养里氏木霉转化子时加入终浓度为100 μg/ml潮霉素。Mandels营养液浓缩液100 ml,Mandels微量元素浓缩液1 ml,1 M 的柠檬酸缓冲液(pH 4.5)50 ml,吐温80 2 ml,蛋白胨1g,ddH2O定容至900 ml,D-葡萄糖(单灭后加入)20g溶于100 ml ddH2O 1.1.2.8 原生质体再生培养基

用于里氏木霉原生质体再生培养,为含

有STC的里氏木霉种子培养基。

1.2M STC 500 ml,Mandels营养液浓缩液100 ml,Mandels微量元素浓缩液 1 ml,1 M的柠檬酸缓冲液(pH 4.5)50 ml,吐温80 2 ml,蛋白胨1g,ddH2O定容至900 ml,D-葡萄糖(单灭后加入)20g溶于100 ml ddH2O

1.1.

2.9 酶解液

称取100mg溶壁酶(Sigma)溶于已灭

菌10ml 1M MgSO4后,用注射器过滤除菌,以上步骤于无菌操作台中进行。

1.1.3 实验仪器

高压灭菌锅、恒温培养箱、恒温摇床、普通光学显微镜、高速台式冷冻离心机、无菌操作台、血球计数板、电子天平、磁力搅拌器、电泳槽、电泳仪、胶成像设备。

1.1.4 实验用具

25ml离心管、量筒、烧杯、三角瓶、螺口玻璃瓶、培养皿、移液枪、枪头、注射器、滤膜、纱布、酒精灯、接种环、玻璃棒盖玻片。

1.2 方法

1.2.1 里氏木霉原生质体的制备

将里氏木霉QM9414菌种接到PDA平板上,在28 ℃恒温培养箱中培养7~10天,待孢子长满整个平板后,用3 ml无菌水洗脱孢子,利用血球计数板计对洗脱液中的孢子进行计数,吸取含0.8-1.0×108个孢子的洗脱液,加到孢子的50 ml里氏木霉种子培养基中,28 ℃,220 r/min振荡培养8.5 h。

等大部分孢子萌发后,镜检孢子的萌发情况,将菌液转到2个25 ml的离心管中,4 ℃,8000 r/min离心5min。去除上清,菌丝用40ml 1 M MgSO4 各洗2遍8000 r/min 离心5min。加10 ml酶解液于上述菌丝中,重悬菌丝并置于250ml三角瓶中,28 ℃,70 r/min,温育2h,镜检原生质体的情况。往酶解中加入40ml的STC, 4 ℃,8000 r/min离心15 min,沉淀原生质体。去上清,用STC溶液洗涤二次,4 ℃,8000 r/min,离心15 min。将原生质体悬浮于1ml STC溶液。

1.2.2 原生质体的转化

调整原生质体的浓度为108个/ml、107个/ml和106个/ml,分别加入10μg、8μg 和6μg pAn7-1,轻轻混匀;48℃热激2 min;加入50 μl 60 %的PEG4000,于室温静置20 min。溶液先转移到50ml离心管中,再加入2 ml 60 %的PEG4000,混匀后于室温静置5 min;加入40 ml STC,4 ℃,11000 r/min离心25 min。用1mlSTC溶液重悬原生质体沉淀后加入到10 ml原生质体再生培养基中,于28 ℃,70 r/min的条件下培养20 h。

培养后,4 ℃,8000 r/min离心10 min 去上清,用1 ml STC溶液悬浮沉淀,将悬浮液涂布到5个含100 μg/ml潮霉素B的PDA 筛选平板上,28 ℃恒温培养2天。

1.2.3 转化子的筛选

当观察到筛选平板上有黄色菌丝的长出后,挑取单克隆(将菌丝连同其下方的一层薄薄的琼脂块一同挖下),菌丝朝下转接到含100 μg/ml潮霉素的PDA固体小平板上,28 ℃恒温培养7天。

1.2.4 转化子的的验证

通过Lysis Buffer for Microorganism to Direct PCR来验证转化子。取50μl Lysis Buffer for Microorganism to Direct PCR于灭菌的Microtube中,用灭菌牙签或枪头挑取单菌落,置于Microtube中搅动几下后取出,80℃热变性15min,低速离心,取2μl裂解后的上清液作为PCR反应的模板。PCR反应体系如下表9所示,反应程序如图1所示。

表9 验证转化子的PCR体系试剂体积

LATaq 0.25μl 10×LA Buffer 2μl dNTP 3.2μl 引物hph1 0.5μl 引物hph2 0.5μl 模板2μl

ddH2O 11.55μl

图1验证转化子的PCR反应程序

2 结果

2.1 原生质体转化及转化子的初步鉴定

图2 106个/ml原生质体转化平板图3 106个/ml转化后单克隆筛选平板

图4 107个/ml原生质体转化平板图5 107个/ml转化后单克隆筛选平板

图6 108个/ml原生质体转化平板图7 108个/ml转化后单克隆筛选平板2.3 转化子的PCR验证

1、2:108个/ml原生质体的转化子;3、4:107个/ml原生质体的转化子;

5、6:106个/ml原生质体的转化子;

图8 原生质体转化子的PCR验证电泳图

3.讨论

3.1 纤维素的酶促水解具有很高的应用价值。纤维素酶解在经济上的可行性主要受到纤维素成本的限制。为了降低纤维素的成本可采用:1.通过筛选的方法,选育出纤维素酶高产菌株 2.优化纤维素酶高产菌种的培养条件,进一步提高纤维素酶的发酵活力

3.2 微生物能否较好地形成原生质体与微生物的生理状态有一定的关系,酶的作用受菌龄的影响,菌龄过长,菌丝细胞壁易发生老化增厚,不易于释放原生质体;过短则菌丝体易破裂,释放原生质数量较少。幼嫩的菌丝体有利于酶的作用,但并不是菌丝体的菌龄越小,原生质体的得率越高,原因可能是随着菌的生长,菌丝体细胞壁的结构组成有所不同所致。

4.结论

成功制备里氏木酶原生质体。成功转化含潮霉素B抗性标记的质粒pAN7-1转化至里氏木酶原生质体中。并验证浓度度为107个/ml的转化子效果最好。

参考文献:

[1]李景富,王傲雪,等.里氏木酶产纤维素酶条件的优化.东北农业大学学报,2008,39(7):29-33.

[2]张继泉,王瑞明,孙玉英,等.里氏木酶生产纤维素酶的研究进展.饲料工业,2003,24(1):11-13.

[3]傅力,朱正兰,等.里氏木酶DWC原生质体制备条件的研究.新疆农业大学学报,2003,26(2):52-55.

拟南芥原生质体制备转化方法整理

溶液配制 1、纤维素酶解液:

2、PEG4000溶液(一次配置可以保存五天,但是最好现用现配,每个样品需100μl PEG4000溶液,可根据实验样品量调整溶液配置总量)

3、W5 溶液 4、MM G溶液

5、WI溶液 拟南芥原生质体制备转化方法整理 一、土培室播种种植的拟南芥。 二、生长良好情况下在未开花前用于取材叶片制备原生质体。 三、剪取中部生长良好的叶片用刀片切成0.5 -1 mm宽的叶条。 四、将切好叶条掷入预先配置好的酶解液中(每5-10 ml酶解液大约需10-20片叶子)。并用镊子帮助使叶子完全浸入酶解液。

五、用真空泵于黑暗中抽30分钟。(此时可配制PEG4000溶液,200和1000 ul 枪头去尖使操作时吸打缓和。) 六、在室温中无须摇动继续黑暗条件下酶解至少3个小时。当酶解液变绿时轻轻摇晃培养皿促使原生质体释放出来。(此时预冷一定量W5溶液) 七、显微镜下检查溶液中的原生质体,拟南芥叶肉原生质体大小大约30-50 um。 八、在过滤除去未溶解的叶片前用等量的W5溶液稀释含有原生质体的酶液。 九、先用W5溶液润湿35-75 um的尼龙膜或60-100目筛子,然后用它过滤含有原生质体的酶解液。 十、用30毫升的圆底离心管100g,1-2分钟离心沉淀原生质体。尽量去除上清然后用10ml 冰上预冷的W5溶液轻柔重悬原生质体。 十一、在冰上静至原生质体30分钟。 以下操作在室温23℃下进行

十二、100g离心八至十分钟使原生质体沉淀在管底。在不碰触原生质体沉淀的情况下尽量去除W5溶液。然后用适量MMG溶液(1m)重悬原生质体,使之最终浓度在2X105个/ml。 十三、加入10 ul DNA(10-20微克约5-10kb的质粒DNA)至2ml离心管中。 十四、加入100 ul原生质体(2x104个),轻柔混合。 十五、加入110 ul PEG溶液,轻柔拍打离心管完全混合(每次大约可以转化6-10个样品)。 十六、诱导转化混合物5-15分钟(转化时间视实验情况而定,要表达量更高也许需要更高转化时间)。 十七、室温下用400-440 ul W5溶液稀释转化混合液,然后轻柔颠倒摇动离心管使之混合完好以终止转化反应。 十八、室温下用台式离心机100g离心2分钟然后去除上清。再加入1ml W5溶液悬浮清洗一次,100g离心两分钟去上清。

食用菌木霉的危害症状及防治方法

食用菌木霉的危害症状及防治方法 木霉俗称绿霉。属于真菌门,半知菌亚门。在自然界中分布极广,对各种食用菌的致病力强,不仅危害菌丝体生长阶段,也危害食用菌子实体,它是生产中发生最普遍、危害性最严重的杂菌之一,不论制种还是栽培,也不论生料、熟料、发酵料、发菌期间均可发生,甚至在出菇阶段也有发生,个别品种如草菇的菌种在完成发菌后亦可发生该种杂菌,并且发生的温度范围也越来越广,不少地区的银耳、香菇,近年的平菇、鸡腿菇等生产中曾发生毁灭性的污染,木霉就是主要杂菌之一。 危害症状木霉的主要生物特征为其菌丝成熟期很短,往往在一周内即可达到生理成熟,然后即生出绿色霉层,即其孢子层。当基料被侵染后,菌丝阶段不易察觉,直到出现霉层时才能引起注意;起初只是点状或斑块状,当条件合适或食用菌菌丝不很健壮时,很快发展为片状,直至污染整个菌袋或料床,若不及时采取措施,菇棚内短时间即可成一片绿色,其孢子飞扬,周边棚墙上也将附着大量木霉孢子,给以后的生产留下严重隐患。 发生规律木霉主要生存在朽木、枯枝落叶、土壤、有机肥、植物残体上和空气中。许多栽培的老菇房,带菌的菇具和场所是主要的初侵染源,已发病所产生的分生孢子,可多次重复侵染更为频繁。木霉发病率的高低与环境条件的关系较大,木霉孢子在15-30`C下萌发

率较高,菌丝体在4-42`C的温度下均能生长,在25-30`C生长最快。孢子在空气相对湿度95%的条件下,萌发最快,相对湿度低于85%较难萌发。因此,在高温、高湿、通气不良和培养料呈偏酸性时,很容易滋生木霉。木霉侵染寄主后,与寄主争夺养分和空间,同时还分泌毒素杀伤、杀死寄主,把寄主的菌丝缠绕、切断。 防治措施(1)制种或熟料栽培拌料时按比例加入1:1000倍疣霉净,并严格灭菌,以彻底杀死其孢子。 (2)科学调配基料组分,使营养全面、均衡,以保证食用菌菌丝的健康和抗性,可对霉菌形成拮抗或抑制。实践证明,生产中按比例加入天天菇耳壮即可。 (3)发酵栽培时,加入疣霉净后,基料仍要发酵均匀,尽可能多的杀死或抑制其孢子。 (4)接种操作要严格、规范,不使霉菌孢子落于料中。研究发现,接种时,开启食用菌接种净化机5min后再进行操作,生产效果与常规甲醛熏蒸相仿,并且,杜绝了甲醛对人体的刺激,避免了甲醛残留的可能。 (5)菌种或菌袋发菌以及出菇期间,每5天左右对菇棚空闲处

农杆菌感受态细胞的制备原理和实验步骤及验证

农杆菌电击感受态的制备及电击转化 表达载体pB-2mb-FRO-1.7A和pB-2mb-1.7A空载体的农杆菌(EHA105)电击转化 (1)抽提纯化pB-2mb-FRO-1.7A和pB-2mb-1.7A空载体的重组质粒 pB-2mb-FRO-1.7A重组载体和pB-2mβ-1.7A空载体的(DH5α)菌种接种于5ml LB(含卡那霉素50mg/L)液体培养基中,37℃,200rpm震荡培养过夜。按V-GENE公司的质粒提取试剂盒提取pB-2mb-FRO-1.7A重组质粒。 (2)取200ml型号的电击杯用无水乙醇浸泡,晾干。 (3)农杆菌EHA105电击预备处理。 I. 接种于5ml YEP(含链霉素Sm50mg/L)液体培养基中,28℃,200rpm震荡培养过夜至OD600值为0.4。EHA105 II. 离心管中收集1ml菌液,4℃,8000rpm,离心30s。1.5ml III. 去残液,沉淀用200μl ddH2O充分悬浮,4℃,8000rpm,离心30s。 IV. 重复步骤ⅲ三次。 V. 去残液,沉淀用200ml ddH2O充分悬浮,即为电击用农杆菌EHA105感受态。加入200μl灭菌甘油混匀后置于-80℃备用。 (4)电击 I. 分别取10ml pB-2mb-FRO1-1.7A和pB-2mb-1.7A重组质粒至200μl EHA105感受态中,轻打混匀,然后转移至电击杯中,置冰上。 II. 准备好电击装置(BioRad),电压为2.5V,用手按住电击按钮,直到啪的一声电击完毕。 III. 室温静置2min后加入800ml YEP培养液,28℃静置1h,然后28℃,200rpm培养2h。IV. 离心30s,收集菌液,沉淀用200ml ddH2O悬浮,用玻璃棒涂布含含卡那霉素50mg/L 和含链霉素Sm50mg/L的YEP固体培养基平板,28℃培养48h。8000rpm 1.制备农杆菌电转感受态 (1)挑取根癌农杆菌EHA 105单菌落,接种于5mlLB〔含利福平(Rif) 50mg/L,;链霉素 100mg/L)液体培养基中,28'C, 220rpm震荡培养过夜。 (2)将2m1过夜培养的菌液加到50ml含同样抗生素的LB培养基中,28'C, 220rpm震荡 3-4小时,至OD560=0.5左右。 (3) 5000rpm离心5分钟,去上清。 (4) 加入40m1 10%甘油悬浮菌体,冰浴30min. (5) 4'C, 5000rpm离心5分钟,去上清。 (6 加入30mL10%甘油重悬浮菌体,4'C, 5000rpm离心5分钟, (7)重复步骤6一次,去上清,加入2ml10%甘油悬浮,分装于1.5ml的离心管中(200 p 1/ 管)备用。 2 农杆菌感受态的电转化 〔I)取2 ul质粒加到200 u I EHA 105感受态细胞中,轻轻混匀,冰浴 30分钟。 (2)把质粒和感受态混合液吸入电极杯,电击转化。 (3)马上加入lml新鲜的LB液体培养基,28'C, 150rpm轻摇4-6小时。 (4)收集菌体涂布于含有链霉素100mg/L),利福平(50mg/L)及质粒所含的抗性的LB固体培

里氏木霉及其纤维素酶高产菌株的研究进展_覃玲灵

综述与专论 生物技术通报 BI OTEC HNOLOG Y BULLETI N 2011年第5期 里氏木霉及其纤维素酶高产菌株的研究进展 覃玲灵 何钢 陈介南 (中南林业科技大学生物环境科学与技术研究所,长沙410004) 摘 要: 随着纤维素在能源、材料及化工等领域的广泛开发和应用,里氏木霉作为一种重要的产纤维素酶工业用菌种,越来越受到人们的广泛关注。为了提高其酶活,人们做了大量的工作,获得了一些相当好的突变株。对里氏木霉及其突变株的基因组进行研究,有助于人们理解其高效产酶的机制,同时也有利于构建其基因工程菌。介绍里氏木霉T r ichoderma reesei 的背景及其部分高产纤维素酶突变株,并阐述近些年来对其突变株的基因组的研究进展。 关键词: 里氏木霉 纤维素酶 突变株 基因组 SNV Research Develop m ent of Trichoder ma reesei and Its Cell ulase Hyperproduction Strai ns Q in L i ng ling H e G ang Chen Jienan (Instit ute of B i o l og ic al an d Environ ment al Science&T echnology,Ce ntral South University of Forest ry and Tec hnology,Changsha 410004) Abstrac:t A s w i de l y deve lop m ent and utilization of ce llulose i n the fi e l d of energy ,m ate rials and chem istry i ndustry,T r ichoderma reesei has been caught m ore and m ore attenti on for its be i ng a k i nd of i m portant ce ll u l ase stra i n for i ndustry .Fo r enhanc i ng i ts cell u l ase product ,peop l e hav e done a lot of work on it ,and ob tained seve ra l cons i derably good mutant strai ns .T o learn the genom e o f T r ichoderma reesei and its mu tant strains is he l p f u l to us understand its syste m o f ce llulase hype rproduction ,also he l p f u l to people construct its g enet ic eng i neering stra i n i n the f uture .T h i s article i ntroduced t he background o f T richoderma reesei and part of its hyperce llulase product stra i ns ,a l so elabo rated the research deve l op m ent of its m utan t strains geno m e i n t he recent yea rs . K ey words : T richoderma reesei Cell u l ase M u tant stra i n G enom e SNV 收稿日期:2010 11 24 基金项目:国家林业局 948 项目(2006 4 123) 作者简介:覃玲灵,女,硕士研究生,研究方向:生物质能源;E m ai:l canaceili ng @163.co m 通讯作者:何钢,男,教授,从事生物技术教学和科研;E m a i :l hegong262@yahoo .co https://www.doczj.com/doc/9a3228270.html, 1 背景 随着人口不断增长,以及现有的煤、天然气和石 油存储量的减少,发展新能源成为实现经济社会可持续发展的必经之路。以纤维素、半纤维素和木质素形式存在的生物质收集并且存储了大量太阳能,是一种重要的能源和物质资源[1] 。地球上最主要的生物质来自绿色植物,每年光合作用的生物质净产量约为1800亿t [2] 。生物质中含量最多的是纤维素,其由成百上千个葡萄糖分子聚合而成,是地球上存在最丰富的有机大分子,储量约为850亿t [3] ;其次是半纤维素,储量约为500亿;t 第三类是木质素,由结构复杂的含芳香环的有机分子聚合而成,约 占20%,即350亿t [4] 。这些生物质大多以农业和林业废弃物的形式存在,并且每年都在大量积累,这不仅会导致环境的恶化,而且会导致这种可利用资源的流失[1] 。因此如何充分利用这些资源成为迫 在眉睫的问题,在对生物质的开发利用中,一个重要瓶颈就是如何高效利用微生物进行酶催化水解将生物质降解为单糖[5] 。 自然界中能降解和利用纤维素的微生物种类很多,许多细菌可分解纤维素,而且产生的纤维素酶具有高度专一性,但是它们生长速度慢,需要厌氧的生长条件[6],这些都限制了其应用。真菌所产生的纤维素酶多是胞外酶,便于分离和提取,且

细胞原生质体的制备

细胞原生质体的制备 —植物原生质体分离和活性鉴定 一、实验目的 1.学习植物细胞原生质体分离纯化的方法。 2.了解原生质体活性鉴定的原理。 3.了解植物原生质体分离、融合和培养的基本原理及其过程 二、实验原理 去掉植物细胞壁的方法可以是机械的人工操作,也可以利用酶解法。较早利用机械法制备原生质体的 酶解法分离原生质体是一个常用的技术,其原理是植物细胞壁主要由纤维素、半纤维素和果胶质组成,因而使用纤维素酶、半纤维素酶和果胶酶能降解细胞壁成分,除去细胞壁,即可得到原生质体。由于原生质体内部与外界环境之间仅隔一层薄薄的细胞膜,必须保持在渗透压平衡的溶液中才能保持其完整性。其次,还应当考虑取材、酶的种类和纯度、酶液的渗透压、酶解时间及温度等因素对分离原生质体的影响。 测定原生质体的活性有多种方法。荧光素双醋酸酯(FDA)染色是常用的一种方法,FAD 本身无荧光,无极性,可透过完整的原生质膜。一旦进入原生质体后,由于受到酯酶分解而产生具有荧光的极性物质荧光素。它不能自由出入原生质膜,因此有活力的细胞能产生荧光,无活力的原生质体不能分解FAD无荧光产生。 PEG作为一种高分子化合物,20~50%的浓度能对原生质体产生瞬间

冲击效应,原生质体很快发生收缩与粘连,随后用高Ca高pH法进行清洗.使原生质体融合得以完成。 PEG诱导融合的机理:PEG由于含有醚键而具负极性,与水、蛋白质和碳水化合物等一些正极化基团能形成氢键,当PEG分子足够长时,可阼为邻近原生质表面之间的分子桥而使之粘连。PEG也能连接Ca2+等阳离子,Ca2+可在一些负极化基团和PEG之间形成桥,因而促进粘连。在洗涤过程中,连接在原生质体膜上的PEG分子可被洗脱.这样将引起电荷的紊乱和再分布.从而引起原生质体融合:高Ca高pH由于增加了质膜的流动性,因而也大大提高了融合频率,洗涤时的渗透压冲击对融合也可能起作用。 原生质体分离纯化或融合后,在适当的培养基上应用合适的培养方法,能够再生细胞壁,并启动细胞持续分裂,直至形成细胞团,长成愈伤组织或胚状体,再分化发育成苗。其中,选择合适的培养基及培养方法是原生质体培养中最基础也是最关键的环节。 三、实验用品 1.材料:绿豆,烟草幼苗叶片,油菜或菠菜或烟草等。 2.试剂: 酶解液(绿豆):1%(W/V) 纤维素酶,1% (W/V)果胶酶,0.7mol/L 甘露醇;10mmol/L CaCl,2.2H2O,0.7mmol/L KH2PO4,pH 6.8~ 7.0。 13%CPW洗涤液(绿豆):27.2mg/L KH2PO4,101.0 mg/L KNO3,

灵芝栽培中木霉的预防和治疗

灵芝栽培中木霉的预防和治疗 灵芝是一种名贵的中药材,近年来灵芝的生产发展很快,但在灵芝栽培中常因杂菌的污染造成不同程度的损失,其中绿色木霉是发生频率和危害程度最高的,在灵芝栽培的各个阶段均可发生。 灵芝是一种名贵的中药材,近年来灵芝的生产发展很快,但在灵芝栽培中常因杂菌的污染造成不同程度的损失,其中绿色木霉是发生频率和危害程度最高的,在灵芝栽培的各个阶段均可发生。绿色木霉广泛存在于自然界的各种有机物质和土壤中,还常以分生孢子的形式漂浮在空气中,它适应性强,特别是在营养丰富的基质上生长迅速,传播蔓延快,既可以和栽培的灵芝菌丝竞争养料,消耗养分,也可以分泌毒素破坏灵芝菌丝的细胞质,抑制灵芝菌丝的生长,严重影响着灵芝的产量和质量,是灵芝栽培中病害防治的重点。在近几年的栽培中我们采取了以预防为主、并辅助治疗的措施,取得了较好的效果。 1、选用抗杂性好、菌丝生长势强的灵芝品种。选用优质的灵芝品种是栽培成功的关键。抗病能力好、生长势强的品种不易被绿色木霉菌感染。 2、严格挑选栽培用种。所选菌种要求种性纯正,菌丝生活力强,菌丝洁白、浓密、健壮、菌龄适宜,防止菌种带入绿色木霉。 3、搞好栽培环境的清洁卫生。菇房内要清除菌渣、垃圾,彻底清洗栽培用架,并进行空间消毒,消灭杂菌隐匿场所,以减少传播媒介。搞好环境卫生对防止污染能起到事半功倍的效果。 4、严格选料。培养料要求新鲜、无霉变,用前要曝晒数天,培

养料配方要求合理,主料和辅料要充分拌匀,含水量控制在60%-70%左右,装量合适、松紧适度,装好后立即进行高压或常压灭菌,以防培养基的酸化。灭菌要求彻底。 5、接种中树立严格的无菌观念。由于空气中到处漂浮有绿色木霉的孢子,操作时不能因为肉眼看不见而麻痹大意,操作人员的双手、衣物和所用接种工具、材料须严格消毒,如选用接种室接种的操作人员应戴上帽子,以防头发上落有绿色木霉的孢子。接种动作要尽量快捷、熟练,防止接种过程中带入杂菌、杂菌孢子,对灭菌过程中破损的袋子用胶布封好,并在封口处用75%酒精消毒。 6、适当加大接种量,可使灵芝菌丝以绝对优势迅速占领地盘,减少杂菌的污染,起到以菇抑菌的作用。 7、保证培养室内具有适宜的小气候,把好菌丝培养关。控制25℃左右的温度、60%-70%的湿度,注意通风换气,严防高温高湿,创造灵芝菌丝生长的最适宜环境条件,促进灵芝菌丝快速生长,迅速占领整个料面。 8、认真抓好出芝阶段的培养管理工作。浙江一带灵芝栽培一般选在春季进行,出芝时正好是6、7月份的高温季节,子实体生长阶段由于需要较高的湿度,因此是防治绿色木霉污染的重要时期。灵芝原基长出后,要及时拔去棉塞或开袋,以免原基损坏而感染绿色木霉菌。做好保温保湿工作,同时加强通风和给予一定的光照,促使原基健康地长成子实体,子实体成熟后及时采摘。 9、加强早期防治。定期检查生长情况,一旦发现污染,应采取

原生质体制备

1.影响原生质体数量和活力的因素 (1)细胞壁降解酶的种类和组合 不同植物种类或同一植物种的不同器官以及它们的培养细胞,由于它们的细胞壁结构组成不同,分解细胞壁所需的酶类也不同。例如,叶片及其培养细胞用纤维素酶和果胶酶,根尖细胞以果胶酶为主附加纤维素酶或粗制纤维素酶(Driselase酶),花粉母细胞和四分体期小孢子用蜗牛酶和胼胝质酶,成熟花粉用果胶酶和纤维素醇。 (2)渗造压稳定剂 用酶法降解细胞壁前,为防止原生质体的破坏,一般需先用高渗液处理细胞,使细胞处于微弱的质壁分离状态,有利于完整原生质体的释放。这种高渗液称为渗透压稳定剂。常用的滲透压稳定剂有甘露醇、山梨醇、蔗糖、葡萄糖、盐类(KCI、MgSO4.7H2O)等。在降解细胞壁时,渗透压稳定剂往往和酶制剂混合使用。滲透压稳定剂中,用得最多的是甘露醇,常用于烟草、胡萝ト、柑橘、蚕豆原生质体制备;蔗糖常用于烟草、月季等;山梨醇常用于油菜原生质体制备。滲透压稳定剂种类及浓度的选择应根据植物种类而异,例如胡萝ト用0.56mol /L甘露醇,月季用14%蔗糖,柑橘用0.8mol/L甘露醇,蚕豆用0.7mol/L甘露醇,烟草的四分体用7%熊糖,烟草的成熟花粉用13%甘露醇。 (3)质膜稳定剂 质膜稳定剂可以增加完整原生质体数量、防止质膜破坏,促进原生质体胞壁再生和细胞分裂形成细胞团。如在分离烟草原生质体时,在酶液中加人入葡聚糖硫酸钾,一旦洗净确液进行培养,原生质体很快长壁并持续细胞分裂形成细胞团。而未加葡聚糖硫酸钾的对照,原生质体经一周培养即解体。常用的原生质膜稳定剂有葡聚糖硫酸钾、MES、氯化钙、磷酸二氢钾等。 (4)pH的影响 分离原生质体时,酶液的pH是值得注意的问题。因为降解酶的活力和细胞活力最适pH是不一致的低pH时(<4.5),酶的活力强,原生质体分离速度快,但细胞活力差,破坏的细胞较多;pH偏高时,酶活力差,原生质体分离速度慢,完整的原生质体数目较多。分离原生质体时,酶液的pH因植物种类不同而有差异,如胡萝ト为5.5、月季为5.5~6.0、烟草为5.4~5.8、柑橘为5.6、蚕豆为5.6~5.7。 (5)温度影响 制备生质体时,一般在26土1℃条件下酶解。 (6)植物材料的生理状态 一般应选择植物体细胞分裂旺盛的部分进行取材。采用那些颗粒细小、疏松易碎的胚性愈伤组织和由其建立的胚性悬浮细胞系,更容易获得高质量的原生质体。要得到良好的供体材料,必要时应对材料进行预处理及预培养。 2.植物原生质体的纯化 材料经过一段时间的酶解后,需要将酶解混合物中破碎的原生质体、未去壁的细胞、细胞器及其他碎片去除出去。纯化原生质体的常用方法有过滤、离心、飘浮法,在实际操作中一般联合运用这三种方法。 1)过滤法用滤网过滤酶解混合物,滤去未被酶解的细胞、细胞团及组织块 2)离心法利用比重原理,在具有一定渗透压的溶液中,先进行过滤然后低速离心,使纯净完整的原生质体沉积于离心管底部。 3)飘浮法采用比原生质体比重大的高渗溶液(如蔗糖、Ficoll溶液),使原生质体漂浮在溶液表面。

绿色木霉

绿色木霉 木霉菌属于半知菌亚门、丝孢纲、丝孢目,粘孢菌类,是一类普遍存在的真菌。 绿色木霉(Trichoderma viride)在自然界分布广泛,常腐生于木材、种子及植物残体上。绿色木霉能产生多种具有生物活性的酶系,如:纤维素酶、几丁质酶、木聚糖酶等。在植物病理生物防治中具有重要的作用 绿色木霉是所产纤维素酶活性最高的菌株之一,所产生的纤维素酶对作物有降解作用,效果非常好,绿色木霉又是一种资源丰富的拮抗微生物,在植物病理生物防治中具有重要的作用。具有保护和治疗双重功效,可有效防治土传性病害。 使用方法 可直接加入腐熟剂、有机肥料、生物菌剂等肥料中,在分解纤维、病理防治中有重要作用。 1.1 形态学特征木霉的菌落生长迅速,呈不定型棉絮状或致密丛束状,其表面的颜色多呈绿色。菌丝有隔分枝,厚垣孢子有或无。分生孢子梗是菌丝的短侧枝,侧枝上对称或互生分枝,形成二级和三级分枝,分枝角度为锐角或近于直角,在分枝末端形成瓶状小梗。分生孢子多为卵圆形,无色或绿色,簇生于小梗顶端。 1.2 生态学特性 1.2.1 生长发育的物理条件 1.2.1.1 温、湿度生长适温为20-28℃,在6℃或32℃仍生长良好,它是一种嗜温真菌,在37℃条件下能生长,但在48℃条件下不能生长;木霉的生长要求较高湿度,其营养生长的相对湿度要求92%以上,孢子的形成需要93%-95%,因而木霉在潮湿土壤中的生命力较干性土壤中强。 1.2.1.2 光照若光照以对数比例增强可以促进分生孢子的产生,有研究发现380nm和440nm波长的光诱导力最强,而254nm和1100nm以外波长的光不可能诱导繁殖体的产生。木霉经日光处理3min或经紫外线光处理10-30s诱导产孢的效果更好。 1.2.1.3 pH值和CO2木霉的最适生长pH值为5-5.5,在pH值为1.5或9.0的培养基上也可能生长,但酸性条件比碱性条件下的萌发率更高。CO2对木霉生长的影响取决于CO2的浓度和培养基的pH值,在碱性基质中,高浓度的CO2有利于木霉菌的生长。 1.2.2 营养条件 1.2.2.1 碳源木霉菌株能够利用多种有机物作为碳源,较理想的是单糖、双糖、多糖、嘌呤、嘧啶和氨基酸等。绿色木霉在富含碳水化合物的培养基上大量产生酸类,用葡萄糖或淀粉作为碳源,该菌产生60%-80%的柠檬酸(理论上推算)。 1.2.2.2 氮源在缓冲介质中,铵是木霉菌最易利用的氮源,其他氮源如氨基酸、尿素、硝酸盐、亚硝酸盐也能维持其正常生长。以天冬门素为氮源生长特别好,含氮量低,会促进孢子形成,对高浓度硝酸盐的负影响由于硫酸镁的存在可以得到补偿。 1.2.2.3 无机盐及微量元素无机盐对木霉的生长很重要,对绿色木霉来说,镁离子能促进其生长,铜离子能促进分生孢子色素形成,铁离子对孢子的形成也很重要。

农杆菌转化法原理

农杆菌转化法原理 This manuscript was revised on November 28, 2020

农杆菌转化法原理: 农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位(受伤处的细胞会分泌大量酚类化合物,从而使农杆菌移向这些细胞),并诱导产生冠瘿瘤或发状根。 根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中,并且可以通过减速分裂稳定的遗传给后代,这一特性成为农杆菌介导法植物转基因的理论基础。 人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。农杆菌介导法起初只被用于双子叶植物中,近年来,农杆菌介导转化在一些单子叶植物(尤其是水稻)中也得到了广泛应用。 农杆菌转化植物细胞涉及一系列复杂的反应,主要包括:①受伤的植物细胞为修复创伤部位,释放一些糖类、酚类等信号分子。②在信号分子的诱导下,农杆菌向受伤组织集中,并吸附在细胞表面。③转移DNA上的毒粒基因被激活并表达,同时形成转移DNA的中间体。④转移DNA进入植物细胞,并整合到植物细胞基因组中。 方法:(根据不同受体环境基因要求而不同) 1.农杆菌准备 2.外植体的准备(愈伤组织、悬浮细胞系、幼嫩茎段或叶片); 3.用 MS-AS液体培养基稀释原菌液15倍(1.5ml / 20ml)或离心后稀释3倍; 4.外植体与菌液共培养20 分钟; 5.放置在带滤纸的培养皿上(注意充分吸干多余的菌液); 6.将外植体接种到MS-AS固体诱导培养基,培养2-3天 ; 7.移至含卡那霉素(Kan)300mg/L和羧苄青霉素(Cb 300mg/L)的固体筛选培养基上进行Kan抗性愈伤组织的筛选; 8.隔20天,进行第二次筛选; 9.抗性愈伤组织在固体筛选培养基上分化成苗; 10 在生根培养基上生根,获得完整的再分化植株。

水稻原生质体制备及转化方法

原生质体制备及转化 1.去皮的日本晴种子在75%的酒精中消毒1 min。然后用 2.5%的次氯酸钠消毒20 min。用无菌水洗至少5次,然后在1/2 MS培养基上,12 h光照(大约150umol m-1 s-1)十二小时黑暗,26 ℃培养7-10天,提前一天烧好去尖的黄蓝枪头备用。 2.取40-60棵水稻幼苗的茎和叶鞘的绿色组织。 3.将一捆水稻植株(大概10棵幼苗)用剃刀一起切成大约0.5 mm的小段。 4.将小片段立刻放进0.6 M的甘露醇中,黑暗中放置10 min。 5.用100目钢制滤网去掉甘露醇,将小片段放在加入15mL酶液的25mL锥形瓶中, (1.5% Cellulase RS,0.75% Macerozyme R-10,0.6 M甘露醇,pH5.7的10mM MES,10mM CaCl2,0.1% BSA),28℃摇床中轻轻摇晃(50rpm),黑暗孵育4-6 h。 6.此时配置40%的PEG4000,酶消化后,分三次加入等体积15mL的W5溶液(154 mM NaCl,125mM CaCl2,5 mM KCl,pH 5.7的2mM MES)。用手充分摇晃10s。 7.用400目钢制滤网过滤得到原生质体在圆底管中。 8.80g离心(升降速度设为1档)5min,缓慢吸走上清液。 9.沿壁缓慢加入4mL W5溶液,轻轻悬浮,再离心80g,5min,弃上清 10.沿壁缓慢加入4mL Mmg溶液,离心80g,5min,弃上清 11.再加Mmg溶液,补至每个样品100μl原生质体 12.分装2mL离心管,每100μl原生质体,加入20μl质粒和120μl新鲜制备的 40%的PEG4000,混匀 13.28℃避光静置转化20--25min 14.加1.5 mL W5溶液混匀,80g离心3min,弃上清。 15.重复步骤14 16.加2mL W5溶液重悬,轻轻混匀,移到细胞培养板,锡箔纸包裹避光28℃避 光静置培养15-20小时 17.培养完成后,将培养板中沉淀的原生质体轻轻混匀,吸到2 mL离心管中,80g 离心3min,弃上清,保留100μl上清液 18.共聚焦显微镜观察拍照 配制溶液方法:

农杆菌介导转基因的原理

农杆菌介导转基因的原理? 转基因技术的飞速发展为生物定向改良和分子育种提供了一种较佳的方法,并使其成为基因工程和育种的最有效途径,目前应用较广泛的转基因技术有农杆菌介导法、花粉通道法、显微注射法、基因枪法、离子束介导法等等,其中农杆菌介导法以其费用低、拷贝数低、重复性好、基因沉默现象少、转育周期短及能转化较大片段等独特优点而备受科学工作者的青睐。农杆菌介导法主要以植物的分生组织和生殖器官作为外源基因导入的受体,通过真空渗透法、浸蘸法及注射法等方法使农杆菌与受体材料接触,以完成可遗传细胞的转化,然后利用组织培养的方法培育出转基因植株,并通过抗生素筛选和分子检测鉴定转基因植株后代。 农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤或发状根。根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中。因此,农杆菌是一种天然的植物遗传转化体系。人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。 农杆菌转化的详细机理已有大量综述, 并介绍新进展. 野生型根癌农杆菌能够将自身的一段DNA转入植物细胞. 因为转入的这一段DNA含有一些激素合成基因, 因而导致转化细胞自身激素的不平衡从而产生冠瘿瘤. 这些致瘤菌株都含有一个约200 kb的环状质粒, 被称为Ti(tumor inducing)质粒, 包括毒性区(Vir 区)、接合转移区(Con区)、复制起始区(Ori区)和T-DNA区4部分. 其中与冠瘿瘤生成有关的是Vir区和T-DNA区. 前者大小为30 kb, 分virA~J等至少10个操纵子, 决定了T-DNA的加工和转移过程. T-DNA可以将携带的任何基因整合到植物基因组中, 但这些基因本身与T-DNA的转移与整合无关, 仅左右两端各25 bp的同向重复序列为其加工所必需, 其中14 bp是完全保守的, 分10和4 bp不连续的两组. 两边界中以右边界更为重要. VirA作为受体蛋白接受损伤植物细胞分泌物的诱导, 自身磷酸化后进一步磷酸化激活VirG蛋白; 后者是一种DNA 转录活化因子, 被激活后可以特异性结合到其他vir基因启动子区上游的一个叫vir框(vir box)的序列, 启动这些基因的转录. 其中, virD基因产物对T-DNA进行剪切, 产生T-DNA单链. 然后以类似于细菌接合转移过程的方式将T-DNA与VirD2组成的复合物转入植物细胞], 在那里与许多VirE2蛋白分子(为DNA单链结合蛋白)相结合, 形成T链复合物(T-complex). 在此过程中VirE1作为VirE2的一个特殊的分子伴侣具有协助VirE2转运和阻止它与T-DNA链结合的功能. 实验表明, 转基因植物产生的VirE2蛋白分子也能在植物细胞内与VirD2-T-DNA形成T链复合物. 之后, 这一复合物在VirD2和VirE2核定位信号(NLS)引导下以VirD2为先导被转运进入细胞核. 转入细胞核的T-DNA以单或多拷贝的形式随机整合到植物染色体上. 研究表明T-DNA优先整合到转录活跃区, 而且在T-DNA的同源区与DNA的高度重复区T-DNA的整合频率也比较高. 整合进植物基因组的T-DNA也有一定程度的缺失、重复、填充和超界等现象发生, 例如在用真空渗透法转化的拟南芥中有66%出现超界现象, 甚至有整个Ti质粒整合进植物基因组的报道, T-DNA超界转移现象的机理尚不完全清楚, 可能与其左边界周边序列有关. 现在, 对农杆菌感染过程中其本身因子的转录与调控已研究得相当深入, 但

里氏木霉原生质体的制备及转化

里氏木霉原生质体的制备及转化 摘要本实验通过将含潮霉素B抗性标记的质粒pAN7-1转化至里氏木酶原生质体中,在含100ug/ml潮霉素B的PDA平板上筛选转化子。并予以验证,结果表明,在1kb处有潮霉素抗性基因组,其中浓度为107个/ml的转化子效果最好。 关键词里氏木酶原生质制备转化 前言纤维素是自然界提供给人类的最宝贵的财富,植物每年通过光合作用产生数千亿吨的纤维素,但目前只有一小部分用于纺织、造纸、建筑和饲料等方面。木霉属是迄今被认为纤维素酶成分最全面,分解天然纤维素活力最高的一类菌。在育种方面利用高能电子、紫外线、亚硝基胍处理和原生质体融合等方法,使酶的活力得到很大的提高。本试验对里氏木霉原生质体的制备及转化进行了研究,为进一步的育种工作奠定基础。 1 材料与方法 1.1 材料 1.1.1 菌株及质粒来源 里氏木霉QM9414和质粒pAN7-1由深圳大学生命科学学院S402实验室刘刚老师提供。 1.1.2试剂及培养基的配制 1.1. 2.1 Mandels 营养盐浓缩液配制(NH4)2SO4 14 g,尿素 3 g,KH2PO420 g,CaCl2?2H2O 4 g,MgSO4?7H2O 3 g,ddH2O 定容至1L 1.1. 2.2 Mandels 微量元素浓缩液配制 FeSO4?7H2O 5 g,ZnSO4?7H2O 1.7 g,CoCl2?6H2O 23.7 g,MnSO4?H2O 1.6 g,ddH2O 定容至1L 1.1. 2.3 1 M柠檬酸缓冲液配制 柠檬酸210 g,NaOH(纯度96 %)78 g,ddH2O 750 ml,冷却后定容至1L 1.1. 2.4 60%的PEG4000 50 mM CaCl2,10 mM Tris·Cl(pH 7.5),60 g PEG4000加水定容到100 ml 1M CaCl25ml,1M Tris·Cl(pH 7.5)1ml,PEG4000 60g,ddH2O定容至100 ml 1.1. 2.5 STC 山梨醇218.6g(所需浓度为1.2 M),1M Tris·Cl(pH 7.5)10ml(所需浓度为10 mM),1M CaCl2 50ml(所需浓度为50 mM),ddH2O 定容至1L 1.1. 2.6 PDA培养基 去皮土豆200g,葡萄糖20g,琼脂(Agar) 15g,ddH2O定容至1L 其中20 %土豆浸出液制作方法如下:将土豆去皮切碎,每20 g土豆加水100 ml,置电炉上煮20分钟,用纱布过滤,定容。筛选里氏木霉转化子时加入终浓度为100 μg/ml潮霉素。 1.1. 2.7 里氏木霉种子培养基 培养里氏木霉转化子时加入终浓度为100 μg/ml潮霉素。Mandels营养液浓缩液100 ml,Mandels微量元素浓缩液1 ml,1 M 的柠檬酸缓冲液(pH 4.5)50 ml,吐温80 2 ml,蛋白胨1g,ddH2O定容至900 ml,D-葡萄糖(单灭后加入)20g溶于100 ml ddH2O 1.1.2.8 原生质体再生培养基 用于里氏木霉原生质体再生培养,为含 有STC的里氏木霉种子培养基。 1.2M STC 500 ml,Mandels营养液浓缩液100 ml,Mandels微量元素浓缩液 1 ml,1 M的柠檬酸缓冲液(pH 4.5)50 ml,吐温80 2 ml,蛋白胨1g,ddH2O定容至900 ml,D-葡萄糖(单灭后加入)20g溶于100 ml ddH2O 1.1. 2.9 酶解液 称取100mg溶壁酶(Sigma)溶于已灭

拟南芥原生质体的制备及转化

拟南芥原生质体制备转化操作流程 主要试剂 1. 纤维素酶解液: 试剂 15ml酶液体系 1.1-1.5﹪Cellulase R10 (YaKult Honsha)0.225g干粉 2.0.2-0.4﹪Mecerozyme R10 (YaKult Honsha)0.045g干粉 3.0.4M mannitol1.09g干粉 4.20mM KCl1 ml 0.3 M KCl母液 5.20mM MES,pH5.7,1 ml 0.3 M MES,pH5.7母液 6.加入10ml 水 7.55℃水浴加热10分钟(钝化酶,提高酶的可溶性),冷却至室温后加入以下试剂8.10mM CaCl,1 ml 0.15M CaCl2 9.5 mM β-Mercaptoethanol(可选用)1ml 75mM β-Mercaptoethanol母液(Sigma A-6793) 10.0.1﹪BSA,1 ml 1.5﹪BSA(4℃保存) 11.用0.45μm滤膜过滤后使用,酶液是淡棕色的澄清溶液。 2. PEG溶液(40%, v/v)(一次配置可以保存五天,但是最好现用现配,每个样品需100ul PEG4000溶液,可根据实验样品量调整溶液配置总量) PEG4000( Fluka, #81240)……………1g………………………………….4g 水…………………………………………………0.75ml…………………………..3g 0.8 M Mannitol…………………………..0.625ml…………………………2.5ml 1 M CaCl2或Ca(NO3)2………………..0.25ml………………………….1ml 约1.2ml 3. W5 溶液(1000ml) 154mM NaCl, NaCl9g 125mM CaCl2, CaCl2.H2O18.4g 5mM KCl, KCl0.37g 2mM MES(PH 5.7),MES0.39g pH to 5.8 with KOH,高温高压灭菌20分钟,室温保存。 4. MMG溶液 MaMg溶液(500ml) 15mM MgCl2,MgCl0.71g 4 mM MES(PH5.7)MES0.39g 0.4 M mannitol,Mannitol36.5g 用KOH调pH 5.7,高温高压灭菌20分钟,室温保存。 5. WI溶液 WI(200ml) 0.5M mannitol,mannitol18.217g 4mM MES,pH5.7,MES0.156g

木霉对土传病害的生防机制及其应用前景

木霉对土传病害的生防机制及其应用前景 【摘要】文章从竞争作用、重寄生作用、抗生作用、诱导抗性等四个方面对木霉防治土传病原菌的作用机制进行了概述,并对其应用前景进行了展望。 【关键词】木霉土传病害生防机制应用前景 近年来随着温室蔬菜栽培面积的不断扩大,保护地栽培已经成为设施农业发展的新特点,并产生了很好的经济效益,但由于保护地多年连作的原因,为土传病原菌提供了赖以生存的寄主和适宜的繁殖环境。枯萎病、根腐病、青枯病、根结线虫病等都是常见的土传病害,严重制约了高效农业的发展。土传病害可以通过采用喷施农药的手段进行防控,但农药的使用与当前绿色、环保的的大主题相悖,因此,生物防治则表现出了极大的优势。木霉菌就是一类普遍存在于土壤以及植物残体等环境中的生防益菌。它可以拮抗两种或两种以上的病原菌,为了使其发挥更好的效果,我们必须了解木霉拮抗真菌作用的机理[1],本文从竞争作用、重寄生作用、抗生作用、诱导抗性等多方面总结了木霉防治土传病原菌的作用机制,以求达到木霉菌的最佳生防效果,并对其应用前景进行展望。 1.木霉的生防机制 1.1 竞争作用竞争作用参与的双方是生防菌株和病原菌,他们主要是争夺营养和生长空间。木霉菌较病原菌对环境的适应性强,且生命力顽强,生长速度更快, 能够快速抢占生长的空间,将植物表面或侵入点附近低浓度营养物质作为起点,吸收营养,从而抢占病原菌的入侵位点[2],将病原菌的生长控制在很小的范围内。竞争作用机制在木霉菌拮抗植物根际的病原菌的作用较明显,对于已经有病害潜伏的植物根系,如果施用木霉的孢子悬浮液,一段时间后会发现木霉分布满根系的表面;相对地,不喷施木霉的根系,一段时间后,它的根系则布满了病原菌

农杆菌感受态细胞的制备原理和实验步骤(精)

一、目的及要求 了解和掌握农杆菌感受态细胞制备的原理和方法。 二、实验原理 在利用根癌农杆菌介导的基因转化中,首先要获得含有目的基因的农杆菌工程菌株。 在基因工程操作中,感受态细胞的制备和质粒的转化是一项基本技术。感受态是细菌细胞具有的能够接受外源DNA 的一种特殊生理状态。农杆菌的感受态可用CaCl2 处理而诱导产生。将正在生长的农杆菌细胞在加入到低渗的氯化钙溶液中,0℃下处理便会使细菌细胞膜的透性发生改变,此时的细胞呈现出感受态。 制备好的农杆菌感受态细胞迅速冷冻于70℃可保存相当一段时间而不会对其转化效率有太大影响。 三、实验仪器、材料和试剂 仪器:超净工作台,恒温摇床,冷冻高速离心机,高压灭菌锅,冰箱,70℃超低温冰柜,分光光度计,接种针,10ml 试管,50ml 离心管,1.5ml 离心管,冰浴,微量进样器及吸头。以上玻璃仪器和离心管需在用前灭菌,灭菌条件:120℃,15分钟。 材料:土壤农杆菌LBA4404菌株或其它农杆菌菌株 试剂: YEB 液体培养基(1升):酵母提取物1g ,牛肉膏5g ,蛋白胨5g ,蔗糖 5g , MgSO4.7H2O 0.5g, pH7.0,高压灭菌; 链霉素(Sm )储液:125mg/ml

0.15 N NaCl,高压灭菌。 20mM CaCl2,高压灭菌。 四、实验步骤 1. 挑取根癌农杆菌LBA4404 单菌落于3ml 的YEB 液体培养基(含Sm 125mg/l)中,28°C 振荡培养过夜; 2. 取过夜培养菌液0.5ml 接种于50mlYEB(Sm 125mg/l液体培养基中,28°C 振荡培养至OD600为0.5; 3. 5000rpm, 离心5min ; 4. 加入10ml 0.15N NaCl,使农杆菌细胞充分悬浮,5000rpm, 离心5min ; 5. 弃上清,置于冰上,加入1ml 预冷的20mM CaCl2,充分悬浮细胞,冰浴中保存,24小时内使用,或分装成每管200ml ,液氮中速冻1 分钟,置70°C 保存备用。

里氏木霉概述

里氏木霉 一、里氏木霉概述:里氏木霉是多细胞的真核微生物,红褐肉座菌的无性型,隶属于丛梗孢目木霉属。其作为工业菌株用于生产分解不同植物材料的酶类,包括纤维素酶、半纤维素酶、蛋白酶、淀粉酶等,已有多年历史。里氏木霉所产生的一种主要的纤维酶一纤维二糖水解酶,由单拷贝基因编码,其产量可达里氏木霉胞外分泌性蛋白总量的50%。由此可见,纤维二糖水解酶启动子是很强的启动子。因此在对里氏木霉的遗传改造中,常利用纤维二糖水解酶的启动子与终止子序列构建载体,并利的前导肽序列引导重组蛋白进行分泌性表达。里氏木霉具有极好的合成蛋白和分泌蛋白的能力;并具有真核的分泌机制,很可能还具有与哺乳动物系统相似的蛋白修饰性能,如:高甘露糖型和N-糖基化等。由于里氏木霉具有以上优良性能,再加之其工业化规模发酵条件已比较成熟,这些都促进了对里氏木霉的遗传改造,为同源或异源分泌性蛋白的产生提供了一条行之有效的途径。 里氏木霉不仅具有适于蛋白生产的诸多优点,且对人没有毒性,在产酶条件下也不产生真菌毒素和抗生素。近年来的实践表明,经过基因工程手术改造的里氏木霉重组菌株是安全无害的。 二、里氏木霉使用说明:里氏木霉主产纤维素酶-纤维二糖水解酶,具有极好的合成蛋白和分泌蛋白的能力,一般采用的发酵方法有两种:固态发发酵和液体深层培养发酵生产纤维素酶,产生的纤维素酶是胞外酶。现在的固体发酵比较的成熟,液态发酵一般采用的是流加发酵。主要用于秸秆腐熟剂添加使用。

产品用途:作为饲料添加剂使用, 作饲料用:1.提高饲料原料中营养物质的转化,提高原料的消化能力和代谢能力,提高动物生产性能。 2.提高内源酶的分泌及活性,促进营养物质的消化吸收,提高饲料利用率。 3.促进动物肠道内有益菌的生长从而抑制有害菌的繁殖,有效提高了动物的免疫力,并有效防止腹泻。 使用量:建议添加80-100克/吨。 添加方法:均匀的混合于粉料中 保存方法:25℃以下低温干燥保存 产品包装:4kg一袋 保质期:阴凉干燥下12个月 注意事项:防暴晒、雨淋,避免高温或阳光直射;防止与皮肤或粘膜性物质接触。

相关主题
文本预览
相关文档 最新文档