当前位置:文档之家› 原子物理学 杨福家第四章题解

原子物理学 杨福家第四章题解

原子物理学 杨福家第四章题解
原子物理学 杨福家第四章题解

4-l 一束电子进入1.2T 的均匀磁场时,试问电子自旋平行于和反平行于磁场的电子的能量差为多大? 分析要点: m s =1/2,g s =2;

B B s s z g m μμμ±=±=

解:已知:电子自旋磁矩在磁场方向的投影

B B s s z g m μμμ±=±=

依磁矩与磁场的作用能量 θμμcos B B E =?=

自旋与磁场平行时

1cos0s s B E B B B μμμ=?=?=

自旋与磁场反平行时

2cos180s s B E B B B μμμ=?=?=-

442122 1.20.578810 1.38910B E E E B eV eV μ--?=-==???=?

4-2 试计算原子处于2

3/2D 状态的磁矩μ及投影μz 的可能值. 解:已知:j =3/2, 2s +1=2 s =1/2, l =2

则 -)j

s 依据磁矩计算公式

依据磁矩投影公式 B j j z g m μ-=μ

4-3 试证实:原子在6G 3/2状态的磁矩等于零,并根据原子矢量模型

对这一事实作出解释.

解: 因为 2S+1=6 S=5/2

J = 3/2 l = 4

m

=3/2,1/2,-1/2,-3/2

g J m J=0

这是一个多电子耦合系统,相互作用产生的总效果为零.说明多电子作用有互相抵消的情况.

4-4 在史特恩-盖拉赫实验中,处于基态的窄的银原子束通过极不均匀的横向磁场,并射到屏上,磁极的纵向范围d=10cm,磁极中心到屏的距离D=25 cm.如果银原子的速率为400m/s,线束在屏上的分

裂间距为 2.0mm,试问磁场强度的梯度值应为多大?

银原子的基态为

2S1/2,质量为107.87u.

:

对原子态2

S1/2?L=0 S=1/2 J=1/2故M g因子为:g=2

4-5在史特恩-盖拉赫实验中(图19.1),不均匀横向磁场梯度为

d=10cm,磁极中心到屏的距离

D=30cm,使用的原子束是处于基态4F3/2的钒原子,原子的动能

E k=50MeV.试求屏上线束边缘成分之间的距离.

解:对于多个电子 2S+1=4 S=3/2 L=3,J=3/2

Z=

3kT=mV 2=0.1eV Z=

3

±

Z=

2

即: Z±3/2=2Z2(±3/2)= 2×0.52092=1.42cm

Z±1/2=2Z2(±1/2)= 2×0.1736=0.347cm

4-6. 在史特恩-盖拉赫实验中,原子态的氢从温度为400 K的炉中射

出,在屏上接受到两条氢束线,间距为0.60cm.若把氢原子换成氯

原子(基态为2P3/2),其它实验条件不变,那么,在屏上可以接受到几

条氯束线?其相邻两束的间距为多少?

解: 已知 Z 2=0.30cm T =400K 3kT =3×8.617×10-5×400eV=0.103eV J =2 m =±1

Z =当换为氯原子时,因其基态为23/2 ,j =3/2, l =1 s =1/2

22231()22s l j -=+

311

共有2j +1=4条,相邻两条间距为|Z ''-Z '|=0.4cm 。

4-7 试问波数差为29.6cm -1的赖曼系主线双重线,属于何种类氢离子? 解:

41

31

3

484.5)1(~84.5)1(~--+?=??+=?cm l l n z cn l n z νν

16.29~-=?cm ν

以为是赖曼系主线 n =2 L =1 代入上式 得,z =3 所以是Li 原子 又因为其为类氢离子 所以为++Li 4-8

试估计作用在氢原子2P 态电子上的磁场强度. 解: B B hc B μμμλλ222?=?=

又由(21-13)式,Δμ=4.53×10-5eV

T 4.010

788.521053.425

5

=???=?≈--B B μμ 4-9 试用经典物理方法导出正常塞曼效应.

4-10 Z =30锌原子光谱中的一条谱线(3S 1→3p 0)在B 为1.00T 的磁场中发生塞曼分裂,试问:从垂直于磁场方向观察,原谱线分裂为几条?相邻两谱线的波数差等于多少?是否属于正常塞曼效应?并请画出相应的能级跃迁图.

解: 已知:对于激发态 L =0,J =1, S =1. m 1=0,±1,在外磁场作用 )-=J L S g

对于基态=0, S =1

B

g m g m E E E E B μ)()(-+-='-'=B E E B μ???

?

?

??-+-202

-=(0.934,0,-0.934)cm -1

所以原谱线在外加磁场中分裂为三条,垂直磁场可以看到三条谱线。

Δm=0,+1,-1,分别对应于π,σ+,σ-三条谱线。

虽然谱线一分为三,但彼此间间隔值为2μB B,并不是μB B,并非激发态和基态的S=0,因S≠0所以它不是正常的塞曼效应。

对应的能级跃迁图

4-11 试计算在B为2.5T的磁场中,钠原子的D双线所引起的塞曼分裂.

解:A .对于2S 1/2

s =1/2, l =0;j =1/2代入,

即可算出g j =2;由于j =1/2,因而m j

m j g j =±1。

B.对于P 态,相应的l =1,因而j =l ±s, s =1/2,j =1/2,3/2,有两个原子态2P 1/2,2P 3/2。分别对应于 g 1/2=2/3, m 1g 1=±1/3 g 3/2=4/3, m 2g 2=±2/3 , ±6/3 依

条线。

分裂为六条线。

4-12 注:此题(2)有两种理解(不同习题集不同做法,建议用第二种方法).

钾原子的价电子从第一激发态向基态跃迁时,产生两条精细结构谱线,其波长分别为766.4nm 和769.9nm ,现将该原子置于磁场B 中(设为弱场),使与此两精细结构谱线有关的能级进一步分裂. (1)试计算能级分裂大小,并绘出分裂后的能级图.

(2)如欲使分裂后的最高能级与最低能级间的差距ΔE 2等于原能级差ΔE 1的1.5倍,所加磁场B 应为多大?

要点分析:钾原子的价电子从第一激发态向基态的跃迁类似于钠的精细结构。其能级图同上题。

解:

(1) 先计算朗德因子和m j g j

A.对于2S1/2

将s=1/2, l=0;j=1/2代入,即可算

出g j=2;由于j=1/2,因而m j

m j g j=±1。

B.对于P态,相应的l=1,因而j=l±s, s=1/2,j=1/2,3/2,有两个原子态2P1/2,2P3/2。分别对应于

2P1/2对应有m1=±1/2, g1/2=2/3, m1g1=±1/3

2P3/2对应有m2=±1/2,g3/2=4/3, m2g2=±2/3 , ±6/3

能级分裂大小:

P 3/2能级分裂大小: m 2g 2从+6/3→+2/3为4/3μB B P 1/2能级分裂大小: m 2g 2从+1/3→-1/3为2/3μB B S 1/2能级分裂大小: m 1g 1从+1→-1为2μB B (2) 解: 有两种认为: (2)

第一种认为:ΔE =(E 2-E 1) 与教材计算结果一致.

分裂后的最高能级2P 3/2, m

=3/2与最低能级差2P ,m =-1/2

若使ΔE 2=1.5ΔE 1=1.5(E 2- E 1) 即ΔE 1+7/3μB B =1.5ΔE 1 即 7/3μB B =0.5ΔE 1=0.5(E 2-E 1)

=0.5[(E

B=27.17 T (3)

第二种认为:ΔE =(E 2-E 0)与教材结果相差甚远

分裂后的最高能级2P 3/2, m J =3/2与最低能级差2s 1/2,m J =-1/2

若使ΔE 2=1.5ΔE 1 即ΔE 1+3μB B =1.5ΔE 1

即 3μB B =0.5ΔE 1=0.5(E 2-E 0)

B=4648.3 T

4-13 假如原子所处的外磁场B 大于该原子的内磁场,那么,原子的L ·S 耦合将解脱,总轨道角动量L 和总自旋角动量S 将分别独立地绕B 旋进.

(1)写出此时原子总磁矩μ的表示式;

(2)写出原子在此磁场B 中的取向能ΔE 的表示式;

(3)如置于B 磁场中的原子是钠,试计算其第一激发态和基态的能级分裂,绘出分裂后的能级图,并标出选择定则(Δm s =0,Δm ι=0,±1)所允许的跃迁. 4-14 4-14 在居B=4T 的外磁场中,忽略自旋—轨道相

互作用,试求氢原子的2P -1S 跃迁 (λ=121 nm)所产生的谱线的波长.

解:∵ B g m g m h h B μνν)(1122-+='

忽略自旋与轨道相互作用,即引起帕邢-巴克效应。

此时,B L g S g m e

B U l s e

?+=?-=)(2μ

或者

)(22)(22l s e z z e m m m B

e L S m eB U +=+= (1)

选择规则变为

Δm s =0,Δm ι=0,±1

∴ 对应于1S 态,m s =±1/2, m l =0. 因此类比 (1)式给出双分裂. 对应于1P 态,m s =±1/2, m l =0,±1. 因此给出六分裂. 依据跃迁定则可能的跃迁如图.产生六种跃迁,三种波长。 由(1)式看来,三种波长必然差

11 1.8740.4674--=?==cm cm c

m eB L e π~ L ~

10111????

?

??-+='λλ λ=121nm

nm ????

? ??+-='00274.012112100274.0121λ

原子物理学教学大纲

原子物理学理论课教学大纲 《原子物理学》课程教学大纲新06年8月课程编号:02300009 课程名称:原子物理学 英文名称: Atomic Physics 课程类型:专业基础课 总学时: 54 学分: 2.5 适用对象:物理、电子信息科学专业本科生 先修课程:高等数学、力学、电磁学、光学 1.课程简介 本课程着重从光谱学、电磁学、X射线等物理实验规律出发,以原子结构为中心,按照由现象到本质、由实验到理论的过程帮助学生建立起微观世界量子物理的基本概念,并利用这些基本概念说明原子、分子以及原子核和粒子的结构和运动规律,介绍在现代科学技术上的重大应用。是近代物理的入门课程,是物理专业的一门重要基础课。本课程需在高等数学、力学、电磁学、光学之后开设,是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。 2.课程性质、目的和任务

本课程是物理专业学生必修课。是力学、电磁学和光学的后续课程、近代物理课的入门课程。是量子力学、固体物理学、原子核物理学、激光、近代物理实验等课程的基础课。目的是引导学生从实验入手,用量子化和微观思维方式,分析微观高速运动物体的规律。主要任务是:通过本课程的教学,让学生对原子及原子核的结构、性质、相互作用及运动规律有概括而系统的认识。通过对重要实验现象以及理论体系逐步完善过程的分析,使学生建立丰富的微观世界的物理图像和物理概念,培养学生用微观思维方式分析问题和解决问题的能力。 3.教学基本要求 (1)了解原子物理学、原子核物理学发展的历程,培养科学研究的素质,加深对辩证唯物主义的理解。 (2)了解原子和原子核所研究的内容和前沿研究领域的概况,培养有现代意识、有远见的新一代大学生。 (3)掌握原子、原子核物理学的基本原理、基本概念和基本规律;掌握处理原子、原子核物理学现象及问题的手段和途径。培养学生掌握科学研究的基本方法。 (4)使学生了解无限分割的物质世界中的依次深入的不同结构层次,理解原子核的结构和基本性质、基本运动规律; (5)结合一些物理学史介绍,使学生了解物理学家对物理结构的实验——理论——再实验——再理论的认识过程,了解微观物理学对现代科学技术重大影响和各种应用,并为以后继续学习量子力学和有关课程打下基础。 4.教学内容及要求

原子物理学试题汇编

临沂师范学院物理系 原子物理学期末考试试题(A卷) 一、论述题25分,每小题5分) 1.夫朗克—赫兹实验的原理和结论。 1.原理:加速电子与处于基态的汞原子发生碰撞非弹性碰撞,使汞原子吸收电子转移的的能量跃迁到第一激发态。处第一激发态的汞原子返回基态时,发射2500埃的紫外光。(3分) 结论:证明汞原子能量是量子化的,即证明玻尔理论是正确的。(2分) 2.泡利不相容原理。 2.在费密子体系中不允许有两个或两个以上的费密子处于同一个量子态。(5分) 3.X射线标识谱是如何产生的 3.内壳层电子填充空位产生标识谱。(5分) 4.什么是原子核的放射性衰变举例说明之。 4.原子核自发地的发射 射线的现象称放射性衰变,(4分)例子(略)(1分) 5.为什么原子核的裂变和聚变能放出巨大能量 5.因为中等质量数的原子核的核子的平均结合能约为大于轻核或重核的核子的平均结合能,故轻核聚变及重核裂变时能放出巨大能

量。(5分) 二、(20分)写出钠原子基态的电子组态和原子态。如果价电子被激发到4s态,问向基态跃迁时可能会发出几条光谱线试画出能级跃迁图,并说明之。 二、(20分)(1)钠原子基态的电子组态1s22s22p63s;原子基态为2S1/2。(5分) (2)价电子被激发到4s态向基态跃迁时可发出4条谱线。(6分)(3)依据跃迁选择定则1 0, j 1,± = ? ± ?= l(3分)能级跃迁图为(6分) 三、(15 耦合时,(1)写出所有 可能的光谱项符号;(2)若置于磁场中,这一电子组态一共分裂出多少个能级(3)这些能级之间有多少可能的偶极辐射跃迁 三、(15分)(1)可能的原子态为 1P 1,1D 2, 1F 3; 3P 2,1,0, 3D 3,2,1, 3F 4,3,2。 (7分) (2)一共条60条能级。(5分) (3)同一电子组态形成的原子态之间没有电偶极辐射跃迁。(3分)

原子物理学 杨福家 第四版(完整版)课后答案

原子物理学杨福家第四版(完整版)课后答案 原子物理习题库及解答 第一章 111,222,,mvmvmv,,,,,,,ee222,1-1 由能量、动量守恒 ,,,mvmvmv,,,,,,ee, (这样得出的是电子所能得到的最大动量,严格求解应用矢量式子) Δp θ mv2,,,得碰撞后电子的速度 p v,em,m,e ,故 v,2ve, 2m,p1,mv2mv4,e,eee由 tg,~,~~,~,2.5,10(rad)mvmv,,,,pm400, a79,2,1.44,1-2 (1) b,ctg,,22.8(fm)222,5 236.02,102,132,5dN(2) ,,bnt,3.14,[22.8,10],19.3,,9.63,10N197 24Ze4,79,1.441-3 Au核: r,,,50.6(fm)m22,4.5mv,, 24Ze4,3,1.44Li核: r,,,1.92(fm)m22,4.5mv,, 2ZZe1,79,1.4412E,,,16.3(Mev)1-4 (1) pr7m 2ZZe1,13,1.4412E,,,4.68(Mev)(2) pr4m 22NZZeZZeds,,242401212dN1-5 ()ntd/sin()t/sin,,,,,2N4E24EAr2pp 1323,79,1.44,106.02,101.5123,,(),,1.5,10,, 24419710(0.5) ,822,610 ,6.02,1.5,79,1.44,1.5,,8.90,10197 3aa,,1-6 时, b,ctg,,,,6012222 aa,,时, b,ctg,,1,,902222 32()2,dNb112 ?,,,32dN1,b222()2 ,32,324,101-7 由,得 b,bnt,4,10,,nt

原子物理学课程教学大纲

原子物理学课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:原子物理学 所属专业:物理学专业 课程性质:基础课 学分:4 (二)课程简介、目标与任务; 原子物理学是物理类专业本科生的专业必修课,以物质结构的第一个微观层次(原子)为研究对象,是联接经典物理和近代物理的一门承上启下的课程。在理论方法上,该课程揭露经典理论在原子这一微观层次遭遇到的困难,并且为了解决这些困难而引入量子力学,学生将在本课程中较为系统地学习到量子力学的基本概念、基本原理、基本思想和方法。在应用实践上,通过本课程的学习,学生将系统性地了解和掌握原子物理学的发展历史,获得有关原子的电子结构、性质及其与外场相互作用的系统性知识,为以后从事相关的科学研究、生产应用和教学工作打下良好的基础。 (三)先修课程要求,与先修课之间的逻辑关系和内容衔接; 先修课程:《高等数学》、《数学物理方法》、《力学》、《理论力学》、《热学》、《电磁学》、《光学》 关系:《高等数学》和《数学物理方法》是学习原子物理学的数学基础。《力学》、《理论力学》、《热学》、《电磁学》和《光学》包含了学生在学习原子物理学之前需要掌握的必要的经典物理知识。有了这些准备知识才能理解为何不能用经典理论来研究原子体系,从而必须引入量子力学。 (四)教材与主要参考书; 选用教材:杨福家, 《原子物理学》第四版, 高等教育出版社, 2010 主要参考书:

1, C. J. Foot,《Atomic Physics》, Oxford University Press, 2005 2, H. Friedrich,《Theoretical Atomic Physics》, Springer, 2006 3, 褚圣麟,《原子物理学》,高等教育出版社, 1987 4, 曾谨言,《量子力学》,科学出版社, 2000 5, 卢希庭,《原子核物理》,原子能出版社, 1981 二、课程内容与安排 绪论原子物理学的发展历史(2学时)【了解】 第一章原子的组成和结构(5学时) 第一节原子的质量和大小【掌握】 第二节电子的发现【了解】 第三节原子结构模型【了解】 第四节原子的核式结构,卢瑟福散理论【重点掌握】【难点】 第五节卢瑟福理论的成功和不足【掌握】 第二章原子的量子态,玻尔理论(8学时) 第一节背景知识:黑体辐射、光电效应和氢原子光谱【掌握】 第二节玻尔的氢原子理论【重点掌握】【难点】 第三节玻尔理论的实验验证【掌握】 第四节玻尔理论的推广:椭圆轨道理论和碱金属原子光谱【重点掌握】 第五节玻尔理论的成功与缺陷【掌握】 第三章量子力学导论(18学时)【重点掌握】【难点】 第一节波粒二象性 第二节不确定关系 第三节波函数及其统计解释 第四节态叠加原理 第五节薛定谔方程 第六节薛定谔方程应用举例 第七节平均值和算符 第八节量子力学总结 第九节氢原子/类氢离子的量子力学解法 第十节爱因斯坦关于辐射和吸收的唯象理论 第十一节量子跃迁理论,含时微扰论

原子物理学期末自测题

1、原子半径的数量级是: A.10-10cm; B.10-8m C.10-10m D.10-13m 2、原子核式结构模型的提出是根据α粒子散射实验中: A.绝大多数α粒子散射角接近180° B. α粒子只偏差2°~3° C.以小角散射为主也存在大角散射 D.以大角散射为主也存在小角散射 3、进行卢瑟福理论实验验证时发现小角散射与实验不符这说明: A.原子不一定存在核式结构 B.散射物太厚 C.卢瑟福理论是错误的 D.小角散射时一次散射理论不成立 4、用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限.试问用质子束所得结果是用α粒子束所得结果的几倍? A.1/4 B.1/2 C.1 D.2 5、动能E =40keV的α粒子对心接近Pb(z=82)核而产生散射,则最小距离 K 为(m): A.5.9 B.3.0 C.5.9╳10-12 D.5.9╳10-14 6、如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍? A.2 B.1/2 C.1 D .4 7,每10000 现有4个粒子被散射到角度大于5°的围.若金箔的厚度增加到4倍,那么被散 A. 16 B.8 C.4 D.2 8、90°和60°角方向上单位立体角的粒子数之比为: A. 9,, 分布,在散射物不变条件下则必须使: A B C D 10、氢原子光谱莱曼系和巴耳末系的系线限波长分别为: A.R/4 和R/9 B.R 和R/4 C.4/R 和9/R D.1/R 和4/R

11、氢原子基态的电离电势和第一激发电势分别是: A.13.6V和10.2V;B.–13.6V和-10.2V;C.13.6V和3.4V;D.–13.6V和-3.4V 12 A.5.29×10-10m B.0.529×10-10m C. 5.29×10-12m D.529×10-12m 电子的动能为1eV,其相应的德布罗意波长为1.22nm。 13、欲使处于激发态的氢原子发出H 线,则至少需提供多少能量(eV)? α A.13.6 B.12.09 C.10.2 D.3.4 14、用能量为12.7eV的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋); A.3 B.10 C.1 D.4 15、按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的: A.1/10倍 B.1/100倍 C .1/137倍 D.1/237倍 16、已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的“正电子素”那么该“正电子素”由第一激发态跃迁时发射光谱线的波长应为: A. 17 A.-3.4eV B.+3.4eV C.+6.8eV D.-6.8eV +的第一轨道半径是: 18、根据玻尔理论可知,氦离子H e A. +处于第一激发态(n=2)时电子的轨道半径为: 19、一次电离的氦离子H e -10m-10-10-10m +离子中基态电子的电离能能是: 20、在H e A.27.2eV B.54.4eV C.19.77eV D.24.17eV 21、弗兰克—赫兹实验的结果表明: A电子自旋的存在B原子能量量子化C原子具有磁性D原子角动量量子化 22、为使电子的德布罗意假设波长为100nm,应加多大的加速电压: A.6V; B.24.4V;5V; D.15.1V 23、如果一个原子处于某能态的时间为10-7S,原子这个能态能量的最小不确定数量级为(以焦耳为单位):

原子物理学第四章习题解答

第四章习题解答 41 一束电子进入1、2T得均匀磁场时,试问电子得自旋平行于与反平行于磁场得电子得能量差为多大? 解:∵磁矩为得磁矩,在磁场中得能量为: U = ·= B 电子自旋磁矩 = ∴电子自旋平行于与反平行于磁场得能量差u =B – (B) =2B ∴u = 2B =2 ×0、5788×eV·× 1、2 T = 1、39 × eV 42试计算原子处于状态得磁矩μ及投影μz得可能值、 解:由可知 S= J= L=2 ∴=+=+= 又= = =1、55 ∴=1、55 又又 ∴ 或 即 43试证实:原子在状态得磁矩等于零,并根据原子矢量模型对这一事实作出解释、 解:由可知:S = J = L = 4 ∴ ∴ 即原子在状态得磁矩等于零。 解释:∵原子得总角动量为 ,而处于态原子各角动量为: 则它们得矢量关系如图示:

与同时绕旋进,相对取项保持不变 由三角形余弦定理可知: 22222211()[(1)(1)(1)]22 L J L J S L L J J S S ?=+-+++-+u r u r h h h = 而 ∴相应得磁矩 由于磁矩随着角动量绕旋进,因而对外发生效果得就是在方向上得分量。其大小计算如下: 此结果说明,垂直于,因而原子总磁矩 44 在史特恩盖赫拉实验中,处于基态得窄得银原子束通过极不均匀得横向磁场,并射到屏上,磁极得纵向范围d=10cm,磁极中心到屏得距离D=25cm 、如果银原子得速率为400m/s,线束在屏上得分裂间距为2、0mm,试问磁场强度得梯度值应为多大?银原子得基态为,质量为107、87u 、 解:原子束通过非均匀磁场时,如果磁场在Z 方向,可以证明:落在屏幕上得原子束偏离中心得距离为: (式中T 为炉温,d 为不均匀磁场得线度,D 就是磁场中心到屏得距离,就是横向不均匀磁场梯度,就是原子得总磁矩在Z 方向得分量),分裂后得原子束偏离中心得

原子物理学

《原子物理学》课程 一.课程简介 课程号: 06120850 课程名称: 原子物理学 英文名称:Atomic Physics 周学时: 3 学分: 3 预修课程: 微积分, 大学物理(力学, 热力学, 光学, 电磁学) 课程性质:专业课 授课对象:物理专业大学生 内容简介:(中英文) 《原子物理学》是物理学本科专业的一门重要基础课。内容包括原子模型、电子自旋和原子磁矩、元素周期律、X射线、核模型、核衰变、核反应、核裂变与聚变等内容。通过学习,不仅可掌握原子和原子核物理方面的基础知识,还可了解量子力学的基本概念和实验背景,为以后近代物理学的学习打下扎实基础。 This course is a degree program for undergraduate students in the department of physics, Zhejiang University. The contents of the course include the models of atoms, spin of electrons and magnetic moment of atoms, periodic law of the elements, X-ray, models of the nuclei, decay of the nuclei, nuclear reactions, nuclear fission and fusion etc. After study the course, students will understand the basic knowledge of atomic and nuclear physics, the basic ideas and experimental background of quantum physics, which are very important for further studying modern physics. 二.教材和参考书 1.教材:《原子物理学》, 杨福家著, 高等教育出版社, 第四版,2010年12月1日 2. 参考书: (1)《原子物理学》,苟清泉主编, 高等教育出版社, 1983年版 (2)《原子物理学》,卢希庭主编, 原子能出版社, 1982年版 (3)《原子物理学》,褚圣麟主编,人民教育出版社,1979年6月版 (4)《Physics of Atoms and Molecules》, B. H. Bransden and C. J. Joachain, 1983

原子物理学期末试卷d

原子物理学D 卷 试题第1页(共3页) 原子物理学D 卷 试题第2页(共3页) 皖西学院 学年度第 学期期末考试试卷(D 卷) 系 专业 本科 级 原子物理学课程 一.填空题:本大题共9小题;每小题3分,共27分。 1. 在认识原子结构,建立原子的核式模型的进程中, 实验起了 重大作用。 2. 夫兰克-赫兹实验中用 碰撞原子,测定了使原子激发的“激发电势”,从而 证实了原子内部能量是 。 3. 线状光谱是 所发的,带状光谱是 所发的。 4. 碱金属原子光谱的精细结构是由于电子的 和 相互作用,导致碱 金属原子能级出现双层分裂(s 项除外)而引起的。 5.α 衰变的一般方程式为:α →X A Z 。放射性核素能发生α衰变的 必要条件为 。 6.原子中量子数l m l n ,,相同的最大电子数是 ;l n ,相同的最大电子数是 ; n 相同的最大电子数是 。 7.X 射线管发射的谱线由 和 两部分构成,它们产生的机制分别是: 和 。 8.二次电离的锂离子+ +Li 的第一玻尔半径,电离电势,第一激发电势和赖曼系第一条 谱线波长分别为: , , 和 。 9.泡利为解释β衰变中β粒子的 谱而提出了 假说,能谱的最大值对应于 的动量为零。 二.单项选择题:本大题共6小题;每小题3分,共18分。在每小题给出的四个选项中,只有一项是正确的,请把正确选项的字母填在题后的括号内。 1. 两个电子的轨道角动量量子数分别为:31=l ,22=l ,则其总轨道角动量量子数可 取数值为下列哪一个? (A )0,1,2,3 (B )0,1,2,3,4,5 (C )1,2,3,4,5 (D )2,3,4,5 ( ) 2. 静止的Rb 22688发生α衰变后,α粒子和子核动量大小之比为多少? (A )111:2 (B )3:111 (C )2:111 (D )1:1 ( ) 3. 在原子物理和量子力学中,描述电子运动状态的量子数是:),,,(s l m m l n ,由此判 定下列状态中哪个状态是存在的? (A )(1,0,0,-1/2) (B )(3,1,2,1/2) (C )(1,1,0,1/2) (D )(3,4,1,-1/2) ( ) 4. 在核反应O n n O 15 8168)2,(中,反应能MeV Q 66.15-=,为使反应得以进行,入射粒 子的动能至少为多少? (A )15.99MeV (B )16.64MeV (C )18.88MeV (D )克服库仑势,进入靶核 ( ) 5. 钾原子的第十九个电子不是填在3d 壳层,而是填在4s 壳层,下面哪项是其原因? (A ) 为了不违反泡利不相容原理; (B ) 为了使原子处于最低能量状态; (C ) 因为两状态光谱项之间满足关系 );3()4(d T s T < (D ) 定性地说,3d 状态有轨道贯穿和极化效应,而4s 状态没有轨道贯穿和极化 效应。 ( ) 6. 基态原子态为23 D 的中性原子束,按史特恩-盖拉赫方法,通过不均匀横向磁场后分 裂成多少束? (A )2; (B )3; (C )5; (D )7。 ( )

原子物理学 杨福家第二章习题答案

第二章习题 2-1 铯的逸出功为1.9eV ,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为1.5eV 的光电子,必须使用多少波长的光照射? 解:(1) ∵ E =hν-W 当hν=W 时,ν为光电效应的最低频率(阈频率),即 ν =W /h =1.9×1.6×10-19/6.626×10-34 =4.59×1014 ∵ hc /λ=w λ=hc /w =6.54×10-7(m) (2) ∵ mv 2/2=h ν-W ∴ 1.5= h ν-1.9 ν=3.4/h λ=c /ν=hc /3.4(m)=3.65×10-7m 2-2 对于氢原子、一次电离的氦离子He +和两次电离的锂离子Li ++,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长. n e e πε Z n a ∴H: r 1H =0.053×12/1nm=0.053nm r 2 H =0.053×22/1=0.212nm V 1H =2.19 ×106×1/1=2.19 ×106(m/s) V 2H =2.19 ×106×1/2=1.095 ×106(m/s) ∴He+: r 1He+=0.053×12/2nm=0.0265nm r 2He+=0.053×22/2=0.106nm

V 1 He+=2.19 ×106×2/1=4.38 ×106(m/s) V 2 He+=2.19 ×106×2/2=2.19 ×106(m/s) Li ++: r 1 Li++=0.053×12/3nm=0.0181nm r 2 Li++=0.053×22/3=0.071nm V 1 Li++=2.19 ×106×3/1=6.57 ×106(m/s) V 2 Li++=2.19 ×106×3/2=3.28 ×106(m/s) (2) 结合能:自由电子和原子核结合成基态时所放出来的能量,它 ∵ 基态时n =1 H: E 1H =-13.6eV He+: E 1He+=-13.6×Z 2=-13.6×22=-54.4eV Li ++: E 1Li+=-13.6×Z 2 2(3) 由里德伯公式 =Z 2×13.6× 3/4=10.2Z 2 注意H 、He+、Li++的里德伯常数的近似相等就可以算出如下数值。 2-3 欲使电子与处于基态的锂离子Li ++发生非弹性散射,试问电子至少具有多大的动能? 要点分析:电子与锂质量差别较小, 可不考虑碰撞的能量损失.可以近似认为电子的能量全部传给锂,使锂激发. 解:要产生非弹性碰撞,即电子能量最小必须达到使锂离子从基态达第一激发态,分析电子至少要使Li ++从基态n =1激发到第一激发态n =2. 因为Z n ++ ⊿E =E 2-E 1=Z 2R Li ++hc (1/12-1/22)≈32×13.6×3/4eV=91.8eV 讨论:锂离子激发需要极大的能量

基于应用型课程原子物理学的教学改革与实践思考 精选文档

基于应用型课程原子物理学的教学改革与实践思 考 1.引言 原子物理学是物理学专业的一门应用型很强的基础课,它是物理学发展史上承上启下的一门学科,成为经典物理和量子力学知识的桥梁和纽带,原子物理在物理学发展中起到非常重要的作用[1-3],从宏观到微观尺度的过渡,原子物理学所涉及的知识、理论和实验,是学习理论物理和从事材料科学、化学、生命科学、能源科学、量子物理、信息科学、光学、激光技术、环境科学以及空间科学研究的基础[4-6]。在内容体系上,原子物理学在普通物理知识的基础上,给出了原子尺度范围的粒子的量子特性及粒子运动和变化的基本规律,研究和讨论物质结构在原子、电子、原子核及基本粒子等层次的性质、结构、特点和运动规律[6-8],很多基本理论及实验仍然是材料科学、化学、生命科学等一些高技术应用领域的基础。所以,针对社会的实际需求,相应的在课堂教学与实验中,需要对课程内容、教学手段、教学方法、实验技能等方面进行改革和创新,以适应当代大学生综合素质的培养和社会发展的实际需要。 自我院成立至今,原子物理学这门课程一直是物理学专业学生的必修课。为了进一步改善原子物理学课程的教学效果,2000 年先后分几次组织物理系的老师重新编写了课堂教学纲要和实

验教学大纲,并设置了如原子核物理、物理学史、近物实验研究.等选修课,以辅助对原子物理课程的教学改革。在2010-2015年,学校和学院对人才培养方案和课程设置进行了四次修订,这也加大了我院课程教学改革的力度,原子物理学的教学及实验改革也多次在教研室活动中开展讨论。结合学校的质量工程项目和人才培养方案,原子物理学的课程改革势在必行。 2.现存主要问题 随着高新科技的发展和前沿相关知识的应用,许多旧理论和知识没有得到更新,相应的实验设备、实验技术也停留在很多年前,部分课程的内容显得很无新意。目前学院一直使用的原子物理学教材是?圣麟先生编写,由于编写时间较早,在与时俱进、科技同步发展的内容上缺少对前沿领域新知识、新技术、新实验、新功能、新应用的介绍和更新[9-10],导致原子物理的教学内容与现代物理、现代科技的迅猛发展实际相脱离,这就要求我们对原子物理的教学纲要及教学内容进行重新审定,同时改善现有的教学方法和教学手段。如何把原子物理里的量子理论及实验和现代高科技技术应用恰当的结合,让学生容易接受,便于吸收消化,并能用于创新实验和实践,成了原子物理学课程教学改革的一个急需解决的问题。 3.课程教学改革与实践的具体实施 本着加强基础知识,结合前沿领域,促进实验与实践创新,提出关于原子物理课程教学改革与实践的一些办法。

原子物理学杨福家第二章习题答案

第二章习题 2-1 铯的逸出功为,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为的光电子,必须使用多少波长的光照射 解:(1) ∵ E =hν-W 当hν=W 时,ν为光电效应的最低频率(阈频率),即 ν =W /h =××10-19/×10-34 =×1014 ∵ hc /λ=w λ=hc /w =×10-7(m) (2) ∵ mv 2/2=h ν-W ∴ = h ν ν=h λ=c /ν=hc /(m)=×10-7m 2-2 对于氢原子、一次电离的氦离子He +和两次电离的锂离子Li ++,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长. n e e Z n a ∴H: r 1H =×12/1nm= r 2 H =×22/1= V 1H = ×106×1/1= ×106(m/s) V 2H = ×106×1/2= ×106(m/s) ∴He+: r 1He+=×12/2nm= r 2He+=×22/2= V 1 He+= ×106×2/1= ×106(m/s) V 2 He+= ×106×2/2= ×106(m/s) Li ++: r 1 Li++=×12/3nm= r 2 Li++=×22/3=

V 1 Li++= ×106×3/1= ×106(m/s) V 2 Li++= ×106×3/2= ×106(m/s) (2) 结合能:自由电子和原子核结合成基态时所放出来的能量,它等于把电子从基态电离掉所需要的能量。 ∵ 基态时n =1 H: E 1H = He+: E 1He+=×Z 2=×22= Li ++: E 1Li+=×Z 2=×32= (3) 由里德伯公式 Z 2××3/4= 注意H 、He+、Li++的里德伯常数的近似相等就可以算出如下数值。 2-3 欲使电子与处于基态的锂离子Li ++发生非弹性散射,试问电子至少具有多大的动能 要点分析:电子与锂质量差别较小, 可不考虑碰撞的能量损失.可以近似认为电子的能量全部传给锂,使锂激发. 解:要产生非弹性碰撞,即电子能量最小必须达到使锂离子从基态达第一激发态,分析电子至少要使Li ++从基态n =1激发到第一激发态n =2. 因为 Z n ⊿E =E 2-E 1=Z 2R Li ++hc (1/12-1/22)≈32××3/4eV= 讨论:锂离子激发需要极大的能量 2-4 运动质子与一个处于静止的基态氢原子作完全非弹性的对心碰撞,欲使氢原子发射出光子,质子至少应以多大的速度运动 要点分析:质子与氢原子质量相近,要考虑完全非弹性碰撞的能量损失.计算氢原子获得的实际能量使其能激发到最低的第一激发态. 解: 由动量守恒定律得 m p V =(m p +m H )V ' ∵ m p =m H V’=V /2 由能量守恒定律,传递给氢原子使其激发的能量为:

原子物理学课后习题详解第4章(褚圣麟)教学内容

第四章 碱金属原子 4.1 已知Li 原子光谱主线系最长波长ολA 6707=,辅线系系限波长ο λA 3519=∞。求锂原子第一激发电势和电离电势。 解:主线系最长波长是电子从第一激发态向基态跃迁产生的。辅线系系限波长是电子从无穷处向第一激发态跃迁产生的。设第一激发电势为1V ,电离电势为∞V ,则有: 伏特。伏特375.5)11(850.111=+=∴+===∴=∞ ∞∞ ∞λλλλλλ e hc V c h c h eV e hc V c h eV 4.2 Na 原子的基态3S 。已知其共振线波长为5893οA ,漫线系第一条的波长为8193ο A ,基线系第一条的波长为18459οA ,主线系的系限波长为2413ο A 。试求3S 、3P 、3D 、4F 各谱项的项值。 解:将上述波长依次记为 οοοολλλλλλλλA A A A p f d p p f d p 2413,18459,8193,5893, ,,,max max max max max max ====∞∞即 容易看出: 1 6max 3416max 331 6max 316310685.0110227.1110447.21110144.41~---∞-∞ ∞ ?=-=?=- =?=-=?===米米米米f D F d p D p P P P S T T T T T v T λλλλλ 4.3 K 原子共振线波长7665οA ,主线系的系限波长为2858οA 。已知K 原子的基态4S 。试求4S 、4P 谱项的量子数修正项p s ??,值各为多少? 解:由题意知:P P s p p v T A A λλλο ο/1~,2858,76654max ====∞∞

原子物理学期末考试试卷(E)参考答案

《原子物理学》期末考试试卷(E)参考答案 (共100分) 一.填空题(每小题3分,共21分) 1.7.16?10-3 ----(3分) 2.(1s2s)3S1(前面的组态可以不写)(1分); ?S=0(或?L=±1,或∑ i i l=奇?∑ i i l=偶)(1分); 亚稳(1分)。 ----(3分) 3.4;1;0,1,2 ;4;1,0;2,1。 ----(3分) 4.0.013nm (2分) , 8.8?106m?s-1(3分)。 ----(3分) 5.密立根(2分);电荷(1分)。 ----(3分) 6.氦核 2 4He;高速的电子;光子(波长很短的电磁波)。(各1分) ----(3分) 7.R aE =α32 ----(3分) 二.选择题(每小题3分, 共有27分) 1.D ----(3分) 2.C ----(3分) 3.D ----(3分) 4.C ----(3分) 5.A ----(3分) 6.D 提示: 钠原子589.0nm谱线在弱磁场下发生反常塞曼效应,其谱线不分裂为等间距的三条谱线,故这只可能是在强磁场中的帕邢—巴克效应。 ----(3分) 7.C ----(3分) 8.B ----(3分) 9.D ----(3分)

三.计算题(共5题, 共52分 ) 1.解: 氢原子处在基态时的朗德因子g =2,氢原子在不均匀磁场中受力为 z B z B z B Mg Z B f Z d d d d 221d d d d B B B μμμμ±=?±=-== (3分) 由 f =ma 得 a m B Z =±?μB d d 故原子束离开磁场时两束分量间的间隔为 s at m B Z d v =?=??? ? ? ?212 22 μB d d (2分) 式中的v 以氢原子在400K 时的最可几速率代之 m kT v 3= )m (56.010400 1038.131010927.03d d 3d d 232 232B 2 B =??????=?=??= --kT d z B kT md z B m s μμ (3分) 由于l =0, 所以氢原子的磁矩就是电子的自旋磁矩(核磁矩很小,在此可忽略), 故基态氢原子在不均匀磁场中发生偏转正好说明电子自旋磁矩的存在。 (2分) ----(10分) 2.解:由瞄准距离公式:b = 22a ctg θ及a = 2 1204z z e E πε得: b = 20012*79 **30246e ctg MeV πε= 3.284*10-5nm. (5分) 22 22 ()()(cot )22 (60)cot 30 3:1(90)cot 45 a N Nnt Nnt b Nnt N N θ σθπθπ?=?==?==? (5分) 3.对于Al 原子基态是2P 1/2:L= 1,S = 1/2,J = 1/2 (1分) 它的轨道角动量大小: L = = (3分) 它的自旋角动量大小: S = = 2 (3分) 它的总角动量大小: J = = 2 (3分) 4.(1)铍原子基态的电子组态是2s2s ,按L -S 耦合可形成的原子态: 对于 2s2s 态,根据泡利原理,1l = 0,2l = 0,S = 0 则J = 0形成的原子态:10S ; (3分) (2)当电子组态为2s2p 时:1l = 0,2l = 1,S = 0,1 S = 0, 则J = 1,原子组态为:11P ; S = 1, 则J = 0,1,2,原子组态为:30P ,31P ,32P ; (3分) (3)当电子组态为2s3s 时,1l = 0,2l = 0,S = 0,1 则J = 0,1,原子组态为:10S ,31S 。 (3分) 从这些原子态向低能态跃迁时,可以产生5条光谱线。 (3分)

原子物理学杨福家第六章习题答案

练习六习题1-2解 6-1 某一X 射线管发出的连续X 光谱的最短波长为0.0124nm ,试 问它的工作电压是多少?解:依据公式 答:它的工作电压是100kV . 6-2莫塞莱的实验是历史上首次精确测量原子序数的方法.如测得某元素的K α )(10Z ;将值代入上式, 10 246.0101010 )??= = =1780 Z =43 即该元素为43号元素锝(Te). 第六章习题3,4 6-3 钕原子(Z=60)的L 吸收限为0.19nm ,试问从钕原子中电离一个K 电子需作多少功? 6-4 证明:对大多数元素K α1射线的强度为K α2射线的两倍. 第六章习题5,6参考答案 6-5 已知铅的K 吸收限为0.014 1nm,K 线系各谱线的波长分别为:0.016 7nm(K α);0.0146nm(K β);0.0142nm(K γ),现请: (1) 根据这些数据绘出有关铅的X 射线能级简图; (2) 计算激发L 线系所需的最小能量与L α线的波长. 分析要点:弄清K 吸收限的含义. K 吸收限指在K 层产生一个空穴需要能量. 即K 层电子的结合能或电离能.

解: (1)由已知的条件可画出X 射线能级简图. K K α L α K β K γ (2) 激发L 线系所需的能量: K 在L 壳层产生一个空穴所需的能量 E LK = φK -φL φL =φK - E LK =87.94 keV -84.93keV=3.01 keV φ为结合能. 或

即有 m 即L α线的波长为0.116nm. 6-6 一束波长为0.54 nm 的单色光入射到一组晶面上,在与入射束偏离为120?的方向上产生一级衍射极大,试问该晶面的间距为多大? ?的方向上产生一级衍射极大sin θ n =1 解得 d =0.312 nm 第六章习题8参考答案 6-7 在康普顿散射中,若入射光子的能量等于电子的静止能,试求散射光子的最小能量及电子的最大动量. 6-8 在康普顿散射中,若一个光子能传递给一个静止电子的最大能量为10 keV ,试求入射光子的能量. (1)其中c m 光子去的能量为电子获得的能量 k E h h ='-νν 依题意,如果电子获得最大能量,则出射光子的能量为最小,(1)式E 由此可算出: ν γγh E E 22=+

从原子物理学的发展看原子物理学的特点及其教学任务_金蓉

第29卷湖北师范学院学报(自然科学版)V o l129第1期Journal o fH ube iN or m a lU n i versity(N at u ra l Sc i ence)N o11,2009 从原子物理学的发展 看原子物理学的特点及其教学任务 金蓉 (西华大学理化学院物理系,四川成都610039) 摘要:介绍原子物理学的发展概况,指出原子物理学的特点,探讨了原子物理学的教学任务. 关键词:原子物理学;发展概况;特点;教学 中图分类号:O571文献标识码:A文章编号:1009-2714(2009)01-0092-04 原子物理学是研究原子的结构、运动规律及相互作用的物理学分支。原子物理学理论的形成和发展主要发生在19世纪末至20世纪二十年代中叶,它的发展同时促进了量子力学这门反映微观粒子运动规律的理论的的诞生.此后原子物理在量子力学理论的指导下进一步发展,并同时推动着其他相关学科的发展.如今它在天体物理、光物理、凝聚态物理、量子物理、等离子体物理、大气物理、化学、生命科学、计量科学、材料科学、能源科学、考古学、地质学、矿物学等方面的重要作用,无不向世人彰显其在理论和应用领域中的重要价值。因此,它理应作为物理专业的一门专业基础课。了解原子物理学的发展概况,认识其特点将有利于我们更好地搞好原子物理学的教学。 1原子物理学的发展概况 原子物理的迅猛发展,始于19世纪末人类关于X射线、放射性和电子的发现。特别是后两个发现向人们充分表明原子具有其内部结构,彻底粉碎了原子不可分的理论。1898年,汤姆逊大胆地提出了原子的/枣糕模型0:原子的带正电部分是一个原子那么大的,具有弹性的冻胶状球体,正电荷均匀分布在这球内或球面上,有负电子镶嵌着,这些电子在其平衡位置上作简谐振动,原子发光频率即为电子振动频率。此模型能解释原子的稳定性和原子的电中性问题,但是在对原子光谱和放射性问题进行解释时遇到困难。随着1909年马斯顿和盖革两人作了著名的/A粒子散射实验0后,汤姆逊模型遇到了难以克服的困难,即它无法解释有1/8000几率的A粒子被靶物质/反弹0的现象,因而该模型被推翻。1911年3月,英国物理学家卢瑟夫在曼彻斯特经过长期探索以及上述实验结果的提示,确定原子中有高密度的核,据此提出了全新的原子核式结构模型.该模型被后人形象地称为/行星模型0,其内容是在原子的中心存在一个带正电的,占有原子绝大多数的质量,体积非常小的原子核,电子在其外绕核做高速圆周运动,原子的发光频率即为电子的运动频率。但是,当人们试图用经典物理学对原子结构以及原子光谱等现象进行说明时遇到了不能克服的困难。因为按照经典电磁理论,电子绕核运转要对外辐射电磁波,形成连续光谱,同时电子因失去能量而沿螺旋线落向原子核.这与原子的线状光谱和原子的稳定性事实相违背.为解决原子结构带来的上述困难,1913年,年仅28岁的丹麦人尼耳斯#玻尔博士,在普朗克能量子概念和爱因斯坦光量子假设的基础上,基于原子的稳定性和原子光谱的实验定律,提出的三条著名的假设,建立了原子的/玻尔模型0.也是在1913年,英国的物理学家莫塞莱发表了关于x射线谱的研究工作,建立了莫塞莱定律,引入了原子序数的概念。1914 收稿日期:2008)11)08 作者简介:金蓉(1964)),女,四川彭州人,硕士,副教授,从事基础物理教学与研究1

2000级原子物理学期末试题

原子物理学试题(A 卷) 适用于2000级本科物理教育专业 (2002—2003学年度第一学期) 一、选择题(每小题3分,共30分) 1.在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为: A .4:1 B.2:2 C.1:4 D.1:8 2.欲使处于激发态的氢原子发出αH 线,则至少需提供多少能量(eV )? A.13.6 B.12.09 C.10.2 D.3.4 3.已知锂原子光谱主线系最长波长为6707埃,辅线系线系限波长为3519埃,则Li 原子的电离电势为: A .5.38V B.1.85V C.3.53V D.9.14V 4.试判断原子态:1s1s 3S 1,1s2p 3P 2,1s2p 1D 1, 2s2p 3P 2中下列哪组是完全存在的? A. 1s1s 3S 1 1s2p 3P 2 2s2p 3P 2 B .1s2p 3P 2 1s2p 1D 1 C. 1s2p 3P 2 2s2p 3P 2 D.1s1s 3S 1 2s2p 3P 2 1s2p 1D 1 5.原子在6G 3/2状态,其有效磁矩为: A . B μ315; B. 0; C. B μ25; D. B μ2 15- 6.氖原子的电子组态为1s 22s 22p 6,根据壳层结构可以判断氖原子基态为: A.1P1; B.3S1; C .1S0; D.3 P0 . 7.原子发射伦琴射线标识谱的条件是: A.原子外层电子被激发;B.原子外层电子被电离; C.原子内层电子被移走;D.原子中电子自旋―轨道作用很强。 8.设原子的两个价电子是p 电子和d 电子,在L-S耦合下可能的原子态有: A.4个 ; B.9个 ; C.12个 ; D.15个。 9.发生β+衰变的条件是 A.M (A,Z)>M (A,Z -1)+m e ; B.M (A,Z)>M (A,Z +1)+2m e ; C. M (A,Z)>M (A,Z -1); D. M (A,Z)>M (A,Z -1)+2m e 10.既参与强相互作用,又参与电磁相互作用和弱相互作用的粒子只有: A.强子; B.重子和规范粒子; C.介子和轻子; D.介子和规范粒子 二、填空题(每题4分,共20分) 1.原子核式结构模型的提出是根据α粒子散射实验中α粒子的____________________。 2.夫—赫实验的结果表明___________________________________。 3.如果原子处于2P 1/2态,它的朗德因子g 值为___________。 4.8536Kr 样品的原子核数N 0在18年中衰变到原来数目的1/3, 再过18年后幸存的原子核数为_________。

相关主题
文本预览
相关文档 最新文档