当前位置:文档之家› 活性可控自由基聚合

活性可控自由基聚合

活性可控自由基聚合
活性可控自由基聚合

活性/可控自由基聚合

在20世纪50、60年代,自由基聚合达到了它的鼎盛时期。但由于存在链转移和链终止反应,传统自由基聚合不能较好地控制分子量及大分子结构[1]。1956年美国科学家Szwarc等提出了活性聚合的概念[2],活性聚合具有无终止、无转移、引发速率远远大于链增长速率等特点,与传统自由基聚合相比能更好地实现对分子结构的控制,是实现分子设计、合成具有特定结构和性能聚合物的重要手段。但离子型活性聚合反应条件比较苛刻、适用单体较少,且只能在非水介质中进行,导致工业化成本居高不下,较难广泛实现工业化。鉴于活性聚合和自由基聚合各自的优缺点,高分子合成化学家们联想到将二者结合,即可控活性自由基聚合(CRP)或活性可控自由基聚合。CRP可以合成具有新型拓扑结构的聚合物、不同成分的聚合物以及在高分子或各种化合物的不同部分链接官能团,适用单体较多,产物的应用较广,工业化成本较低。目前实现“活性”/可控自由基聚合可分以下几种途径: (1) 稳定“活性”自由基聚合(SFRP);(2) 原子转移自由基聚合(ATRP);(3)可逆加成-断裂链转移聚合(RAFT)。

一、稳定“活性”自由基聚合(SFRP)

SFRP属于非催化性体系,是利用稳定自由基来控制自由基聚合。其机理是按照下面的可逆反应进行:外加的稳定自由基X·可与活性自由基P·迅速进行失活反应,生成“休眠种”P-X,P-X能可逆分解,又形成X·及活性种自由基P·而链增长。有研究表明,使用烷氧胺作引发剂效果好[3]。

反应体系中的自由基活性种P·可抑制在较低的浓度,这样就可以减少自由基活性种之间的不可逆终止作用,从而聚合反应得到控制。稳定自由基X·,主要有TEMPO(2,2,6,6-四甲基-1-哌啶氮氧自由基)和CoⅡ·,TEMPO属于稳定的有机自由基;CoⅡ·属于稳定的有机金属自由基。氮氧稳定自由基这类体系聚合的一大特点是聚合工艺较简单,可合成一些具有特殊结构的大分子,如树枝-线状杂化结构、聚苯乙烯嵌段共聚物等[4,5],其缺点是氮氧自由基的价格较贵,合成困难,只适用于苯乙烯及其衍生物,并且聚合慢,温度需在110℃~140℃之

间,在聚合过程中增长链自由基和氮氧自由基可发生歧化终止的副反应而影响控制程度。不过,Moad、Thang等[6]认为,这些缺点是可以避免的,他们采用新的一类氮氧自由基2,2,5,5-(tetraalkylimida zolidin-4-one-1-oxyl)或其衍生物替代TEMPO组成的聚合体系,得到了分子量可控和窄分子量分布的均聚物、无规共聚物和嵌段共聚物,同时这类聚合反应具有比TEMPO聚合体系更好的活性聚合特征,并且具有较易合成、无挥发性和副反应较少等优点。另外一种方法是利用电子效应作用于氮氧自由基[7]。用CoⅡ·类稳定自由基体系聚合得到的聚合物分子量不高,分子量分布较宽[8]。可以相信,通过使用新型氮氧自由基,此体系完全可以扩展到(甲基)丙烯酸和其它单体。

二、原子转移自由基聚合(ATRP) [9]

自由基是一种十分活泼的活性种,在自由基聚合中极易发生链转移和链终止,所以要抑制副反应,聚合体系中必须具有低而恒定的自由基浓度;但又要维持可观的反应速度(自由基浓度不能太低);为解决这一矛盾,高分子化学家们受活性正离子聚合体系的启发,将可逆链转移和链终止的概念引入自由基聚合,通过在活性种和休眠种之间建立一个快速交换反应,成功的实现了矛盾的对立统一。以RX/CuX/bpy体系(其中RX为卤代烷烃、bpy为2、2′-联二吡啶、CuX为卤化亚铜)引发ATRP反应为例,典型原子(基团)转移自由基聚合的基本原理如下:引发阶段:R-X +CuX/bpy →R·+CuX2/bpy(X=Cl、Br);R·+monomer→P1·

增长阶段:Pn-X+CuX/bpy →Pn·+CuX2/bpy(X=Cl、Br);Pn·+monomer→P n+1·终止阶段:Pn·+Pm·→P n+m or (P n2+P m H)

在引发阶段,处于低氧化态的CuX和bpy络合物从R-X中夺取卤原子生成初级自由基R·及CuX2/bpy高氧化态络合物休眠种。初级自由基再引发单体生成单体自由基即活性种。活性种既可以继续引发单体进行活性聚合,也可从休眠种上夺取卤原子、自身变成休眠种。用“活性”自由基聚合制备结构可控的聚合物,要求链增长自由基稳态浓度低,关键在于活性种和休眠种之间建立一个快速的动态平衡:Pn-X +CuX/bpy Pn·+CuX2/bpy

由于这种聚合反应中的可逆转移包含着卤原子从卤化物到金属络合物,再从金属络合物转移到自由基的原子转移过程,所以称之为原子转移聚合;同时,由于其反应活性种为自由基,所以称之为原子转移自由基聚合。

三、可逆加成-断裂链转移聚合(RAFT)

RAFT 活性自由基聚合的突出优点是其单体适用性广,除了通常的烯类单体外,还可适用于含有羧基、羟基、二烷胺基等特殊官能团烯类单体的聚合。同时可用多种聚合方法,可合成许多窄分布的均聚物和共聚物,以及支化、超支化的高聚物。尤其是嵌段聚合物应用范围广泛,如两亲性聚合物、工程塑料、聚合物改性剂等,均可利用RAFT聚合方法,逐步加入单体来得到所要的嵌段聚合物。

从图1 中可以发现,增长链自由基(propagating chain radical)与双硫酯的可逆链转移过程(2),(4)是整个RAFT 活性自由基聚合的关键。增长自由基进攻双硫酯上的C=S 双键,形成不稳定的中间态自由基,中间态自由基两边的侧臂之一裂解后重又得到一个增长自由基和一个处于休眠态的双硫酯链。由于双硫酯的链转移常数很大,大部分的增长自由基均处于这个可逆过程中,使得只有可逆平衡中裂解出的增长自由基才能与单体加成而增长,增长着的自由基又可与双硫酯进行链转移的可逆平衡,从而控制活性增长链的数目保持在一个较低的水平,每根链的反应几率相似,表现出活性聚合的特征:分子量与转化率成线性关系,分子量分布很小,另加单体可继续聚合,同时可进行分子结构的设计[10-12]。

图1 Proposed Mechanism of the RAFT Process

四、结论与展望

可控自由基聚合是当前快速发展的研究新领域,容易实现的反应条件,简便的合成操作,使其具有重要的商业应用价值。在今后的可控自由基聚合研究中,

除了研制更好的催化引发体系以及寻找在分散多相体系中的聚合特性外,应对这三种聚合反应的机理以及其动力学方面做更加充分的研究,使用不同的单体来合成具有新型结构的聚合物,从而使得新型材料不断的出现。

参考文献

[1] Matyjaszewski K,Gaynor S G,Coca S. U. S. Patent,6538091,2003.

[2] Matyjaszewski K. Current Opinion in Solid State &Ma-terials Science,1996,1(6): 769~776.

[3] Miyamoto M,Sawamotto M,Higashimura. Living Polymerization of Isobutyl Vinyl Ether with the Hydrogen Iodide/Iodine Initiating System [J].Macromolecules,1984,18:265

[4] Faust R,Kennedy J P. Living Carbocationic Polymeriza-tionⅢ. Demonstration of the Living Polymerization of Isobutylene [J] . Polym Bull,1986,15(4):317 [5] Fayt R,Forte R,Teyssie P,et al. New Initiator system for the Living Anionic Polymerization of Tert - Alkyl Acrylates [J] . Macromolecules,1987,20(6):1 442 [6] Reetz M T. New Method for the Anionic Polymerization of α-Activated Olefins [J] . Angew Chem,1988,100(7):1026

[7] Georges M K,Veregin R P N,et al. Narrow Molecular Weight Resins by a Free-Radical Polymerization Process [J]. Macromolecules,1993,26:2 987

[8] Wang Jinshan ,Matyjaszewski K Controlled/“Living” Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes [J] . J Am Chem Soc,1995,117:5 614

[9] 贾彬彬,陈滇宝,华静,刘曲峰,于洪俊“活性”自由基聚合的新进展—原子转移自由基聚合[A] 青岛化工学院学报2001年3月第22卷第1期

[10] Farmer,S. C.; Patten,T. E. Journal of Polymer Science Parta-Polymer Chemistry 2002,40,555-563.

[11] Ganachaud,F; Monteiro,M. J; Gilbert,R. G.; Dourges,M. A; Thang,S.

H.; Rizzardo, E. Macromolecules 2000,33,6738-6745.

[12] Goto,A.; Sato,K.; Tsujii,Y.; Fukuda,T.; Moad,G.; Rizzardo,E.; Thang,S. H. Macromolecules 2001,34,402-408.

活性可控自由基聚合

活性/可控自由基聚合 在20世纪50、60年代,自由基聚合达到了它的鼎盛时期。但由于存在链转移和链终止反应,传统自由基聚合不能较好地控制分子量及大分子结构[1]。1956年美国科学家Szwarc等提出了活性聚合的概念[2],活性聚合具有无终止、无转移、引发速率远远大于链增长速率等特点,与传统自由基聚合相比能更好地实现对分子结构的控制,是实现分子设计、合成具有特定结构和性能聚合物的重要手段。但离子型活性聚合反应条件比较苛刻、适用单体较少,且只能在非水介质中进行,导致工业化成本居高不下,较难广泛实现工业化。鉴于活性聚合和自由基聚合各自的优缺点,高分子合成化学家们联想到将二者结合,即可控活性自由基聚合(CRP)或活性可控自由基聚合。CRP可以合成具有新型拓扑结构的聚合物、不同成分的聚合物以及在高分子或各种化合物的不同部分链接官能团,适用单体较多,产物的应用较广,工业化成本较低。目前实现“活性”/可控自由基聚合可分以下几种途径: (1) 稳定“活性”自由基聚合(SFRP);(2) 原子转移自由基聚合(ATRP);(3)可逆加成-断裂链转移聚合(RAFT)。 一、稳定“活性”自由基聚合(SFRP) SFRP属于非催化性体系,是利用稳定自由基来控制自由基聚合。其机理是按照下面的可逆反应进行:外加的稳定自由基X·可与活性自由基P·迅速进行失活反应,生成“休眠种”P-X,P-X能可逆分解,又形成X·及活性种自由基P·而链增长。有研究表明,使用烷氧胺作引发剂效果好[3]。

反应体系中的自由基活性种P·可抑制在较低的浓度,这样就可以减少自由基活性种之间的不可逆终止作用,从而聚合反应得到控制。稳定自由基X·,主要有TEMPO(2,2,6,6-四甲基-1-哌啶氮氧自由基)和CoⅡ·,TEMPO属于稳定的有机自由基;CoⅡ·属于稳定的有机金属自由基。氮氧稳定自由基这类体系聚合的一大特点是聚合工艺较简单,可合成一些具有特殊结构的大分子,如树枝-线状杂化结构、聚苯乙烯嵌段共聚物等[4,5],其缺点是氮氧自由基的价格较贵,合成困难,只适用于苯乙烯及其衍生物,并且聚合慢,温度需在110℃~140℃之间,在聚合过程中增长链自由基和氮氧自由基可发生歧化终止的副反应而影响控制程度。不过,Moad、Thang等[6]认为,这些缺点是可以避免的,他们采用新的一类氮氧自由基2,2,5,5-(tetraalkylimida zolidin-4-one-1-oxyl)或其衍生物替代TEMPO组成的聚合体系,得到了分子量可控和窄分子量分布的均聚物、无规共聚物和嵌段共聚物,同时这类聚合反应具有比TEMPO聚合体系更好的活性聚合特征,并且具有较易合成、无挥发性和副反应较少等优点。另外一种方法是利用电子效应作用于氮氧自由基[7]。用CoⅡ·类稳定自由基体系聚合得到的聚合物分子量不高,分子量分布较宽[8]。可以相信,通过使用新型氮氧自由基,此体系完全可以扩展到(甲基)丙烯酸和其它单体。 二、原子转移自由基聚合(ATRP) [9] 自由基是一种十分活泼的活性种,在自由基聚合中极易发生链转移和链终止,所以要抑制副反应,聚合体系中必须具有低而恒定的自由基浓度;但又要维持可观的反应速度(自由基浓度不能太低);为解决这一矛盾,高分子化学家们受活性正离子聚合体系的启发,将可逆链转移和链终止的概念引入自由基聚合,通过在活性种和休眠种之间建立一个快速交换反应,成功的实现了矛盾的对立统一。

。。。乳液聚合的复习题(含详尽答案)

1 什么是乳液聚合?乳液聚合的特点? 乳液聚合是在水或者其它液体做介质的乳液中, 按胶束机理或低聚物机理生成彼此孤立的乳胶粒,并在其中进行自由基聚合或者离子加成聚合来生产高聚物的一种聚合方法.优点:1 反应热易排出2 具有高的反应速率和高的分子量3 水作介质,安全、价廉、环保缺点:1 需经一系列后处理工序,才能得到聚合物2 具有多变性3 设备利用率低 2乳液聚合技术发展简史 1929 年Dinsmore专利“合成橡胶及其制备方法”:烯类单体可用油酸钾和蛋清混合物作乳化剂,在50~70℃下反应6个月,得到坚韧、有弹性,可硫化的合成橡胶——第一篇真正的乳液聚合的文献。40年代,乳液聚合研究中代表性有Harkins、Smith及Ewart的工作。Harkins定性阐明了在水中溶解度很低的单体的乳液聚合反应机理及物理概念。后二者在其理论基础上发展了定量的理论:确定乳胶粒数目与乳化剂浓度及引发剂浓度之间的定量关系,并提出三个阶段乳胶粒生成阶段,即成核阶段;乳胶粒长大阶段;乳液聚合完成阶段。 第二章乳液聚合原理 3什么是增溶现象?乳化作用及搀合作用分别是什么? 许多油类和烃类在水中溶解度很小但是向水中加入少量乳化剂后其溶解度显著增大这种现象称为增容现象。乳化作用:使两种互不相溶的的液体借助于表面活性剂(又称界面活性剂)的作用,降低它们之间的张力,使一种液体以极微小的状态均匀分散在另一种液体中,这种作用叫乳化作用。掺合作用即分散作用,固体以极细小的颗粒形式均匀悬浮在液体介质中叫做分散,在合成聚合物乳液中乳胶粒之所以能稳定的悬浮在水中而不凝聚,就是因为乳化剂的分散作用所致。 4 什么是临界胶束浓度(CMC)? 乳化剂能形成胶束的最低浓度或表面活性剂分子形成胶束时的最低浓度叫临界胶束浓度,CMC越小,越易形成胶束,乳化能力越强。 5 解释乳液聚合体系的物理模型? 分散阶段(加引发剂前) 乳化剂(三种形式):单分子(水相)、胶束、被吸附在单体珠滴表面。单体(三个去向):单体珠滴、单分子(水相)、被增溶在胶束中 阶段Ⅰ(乳胶粒生成阶段)诱导期结束到胶束耗尽 乳化剂(四个去处/形式):单分子(水相)、胶束、被吸附在单体珠滴表面、吸附在乳胶粒表面上;单体(三个去向):单体珠滴、单分子(水相)、被增溶在胶束和乳胶粒 阶段Ⅱ(乳胶粒长大阶段)胶束耗尽到单体珠滴消失;乳化剂(三种位置):单分子(水相)、被吸附在单体珠滴表面、吸附在乳胶粒表面上;动态平衡;单体(三个去向):单体珠滴、单分子(水相)、被增溶在乳胶粒中 阶段Ⅲ(聚合完成阶段)胶束和单体珠滴消失,仅存在两相:乳胶粒相和水相 6 乳液聚合三个阶段的特征? 阶段Ⅰ(乳胶粒生成阶段)诱导期结束到胶束耗尽阶段Ⅱ(乳胶粒长大阶段)胶束耗尽到单体珠滴消失阶段Ⅲ(聚合完成阶段)两相:乳胶粒相和水相 7什么是凝胶效应?玻璃化效应?产生原因? 凝胶效应:随着反应转化率提高反应区乳胶粒中单体浓度越来越低但是反应速率不仅不下降反而随转化率增加而大大增加这种现象叫凝胶效应。原因:随转化率增大,体系粘度增加,链自由基卷曲,活性端基受包埋,双基扩散终止困难,导致链终止速率常数降低而形成的。 玻璃化效应:某些单体的乳液聚合过程在阶段3后期当转化率曾至某一值时转化速率突然降低至0 这种现象叫做玻璃化效应。原因:阶段Ⅲ乳胶粒中聚合物浓度随转化率增大而增大,单体-聚合物体系的玻璃化温度T g也随之提高。当转化率增大到某一定值时,就使得T g刚好等于反应温度。此时在乳胶粒中,不仅活性分子链被固结,而且单体也被固结。是链增长速率常数K p急剧降低至零,故链增长速率也急剧降低至零。 8 Smith-Ewart关于阶段Ⅰ动力学理论的假定? ⑴阶段Ⅰ开始时,向体系中投入的乳化剂全部形成胶束,忽略在单体珠滴表面上吸附的以及在水中溶解的乳化剂;⑵进入阶段Ⅰ以后,乳化剂完全在胶束和乳胶粒之间进行分配⑶不管在胶束中还是在乳胶粒上,单位质量同种乳化剂的覆盖面积相等;⑷在阶段Ⅰ,乳胶粒中聚合物与单体的比例不变;⑸在阶段Ⅰ,每一个乳胶粒中聚合反应速率相等。 9 Smith-Ewart关于阶段Ⅰ动力学理论的两种极端情况?(推导过程见课本30—33) 假定所有的自由基全被胶束捕获而不进入乳胶粒,即所生成的自由基全部用于形成新的乳胶粒。这样,自由基生成速率将刚好等于新乳胶粒生成速率。乳胶粒数的上限方程。(2)不管粒子大小如何,单位表面积上单位时间内捕获自由基的能力都是一样的。乳胶粒数的下限方程 10 Smith-Ewart关于阶段Ⅰ反应速率的理论? 在阶段Ⅰ的起点处,S p=0,S m=S,即全部乳化剂形成胶束。进入阶段Ⅰ以后,乳胶粒不断生成,且不断长大,所以S p 不断增大,这需要通过消耗胶束乳化剂来实现,致使S m不断降低。当胶束耗尽时,S m=0,而S p=S,此时全部乳化剂被吸附在乳胶粒表面上。这是,新乳胶粒生成过程停止,阶段Ⅰ结束。 11 Gardon对阶段Ⅰ动力学理论研究的假定?

活性可控自由基聚合

活性/可控自由基聚合 在20世纪50、60年代,自由基聚合达到了它的鼎盛时期。但由于存在链转移和链终止反应,传统自由基聚合不能较好地控制分子量及大分子结构[1]。1956年美国科学家Szwarc等提出了活性聚合的概念[2],活性聚合具有无终止、无转移、引发速率远远大于链增长速率等特点,与传统自由基聚合相比能更好地实现对分子结构的控制,是实现分子设计、合成具有特定结构和性能聚合物的重要手段。但离子型活性聚合反应条件比较苛刻、适用单体较少,且只能在非水介质中进行,导致工业化成本居高不下,较难广泛实现工业化。鉴于活性聚合和自由基聚合各自的优缺点,高分子合成化学家们联想到将二者结合,即可控活性自由基聚合(CRP)或活性可控自由基聚合。CRP可以合成具有新型拓扑结构的聚合物、不同成分的聚合物以及在高分子或各种化合物的不同部分链接官能团,适用单体较多,产物的应用较广,工业化成本较低。目前实现“活性”/可控自由基聚合可分以下几种途径:(1)稳定“活性”自由基聚合(SFRP);(2)原子转移自由基聚合(ATRP);(3)可逆加成-断裂链转移聚合(RAFT)。 一、稳定“活性”自由基聚合(SFRP) SFRP属于非催化性体系,是利用稳定自由基来控制自由基聚合。其机理是按照下面的可逆反应进行:外加的稳定自由基X·可与活性自由基P·迅速进行失活反应,生成“休眠种”P-X,P-X能可逆分解,又形成X·及活性种自由基P·而链增长。有研究表明,使用烷氧胺作引发剂效果好[3]。 反应体系中的自由基活性种P·可抑制在较低的浓度,这样就可以减少自由基活性种之间的不可逆终止作用,从而聚合反应得到控制。稳定自由基X·,主要有TEMPO(2,2,6,6-四甲基-1-哌啶氮氧自由基)和CoⅡ·,TEMPO属于稳定的有机自由基;CoⅡ·属于稳定的有机金属自由基。氮氧稳定自由基这类体系聚合的一大特点是聚合工艺较简单,可合成一些具有特殊结构的大分子,如树枝-线状杂化结构、聚苯乙烯嵌段共聚物等[4,5],其缺点是氮氧自由基的价格较贵,合成困难,只适用于苯乙烯及其衍生物,并且聚合慢,温度需在110℃~140℃之

表面改性之光接枝聚合综述

1.1表面改性概论[1,2] 聚合物的性能不仅仅与内部结构有关,有时也受材料表面性能的极大影响,聚合物本身存在着大量的表面和界面问题,表面的粘接、腐蚀、染色、吸附、耐老化、耐磨、润滑、表面硬度、表面硬度、表面电阻及由表面引起的对力学性能的影响等。聚合物表面存在弱边界层(WBL层),其表面能低、化学惰性、表面污染等影响表面吸附、印刷、以及其他应用。 聚合物的表面改性的方法有化学改性和物理改性两种,而按照改性过程体系的存在形态又分为干式处理和湿式处理。 干式处理可分为:聚合物混炼、表面粗化、离子注入、电离活化线处理、臭氧处理、火焰、蒸镀、放电处理。其中,放电处理细分为:电晕处理、辉光放电处理、等离子体聚合、低温等离子处理。 湿式处理分为:化学药品处理、引发处理、聚合物涂覆、电极沉积、催化接枝。 由于我的研究方向偏向光引发聚,所以此篇综述围绕光接枝聚合改性展开。 1.2光接枝改性 紫外光因为较低的工业成本以及选择性使得紫外光接枝受到重视,选择性是指众多聚烯烃材料不吸收长波紫外光(300-400nm),因此在引发剂引发反应时不会影响本体性能。 光接枝改性相对于传统表面改性方法有两大突出优点: (1)紫外光比高能辐射对材料的穿透力差,故接枝聚合可严格地限定在材料的表面或者亚表面进行,不会损坏材料的本体性能。 (2)紫外辐射的光源及其设备成本低,反应程度容易控制,容易实现连续化工业生产。 1.3表面光接枝的化学原理 这里首先介绍光聚合的基本原理[3]。 光聚合法又称光引发聚合,是指在光照条件下,光引发剂或者光敏剂吸收光能产

生活性中心(如自由基、阴离子和阳离子等),进而引发单体聚合的一项高分子合成技术。 同时,光聚合是一种环境友好的绿色聚合技术,它具有聚合能耗低、聚合速度快、生产效率高、聚合反应温度低、反应设备简单、环境污染小等优点,已经引起广大科研工作者极大的兴趣。众所周知,光波同时具有波和粒子的双重性质,即所谓的波粒二象性(wave-particle duality)。首先光波是电磁波,因而具有电磁波的波长和频率,作为一个粒子,每一个光量子具备一定的能量,根据爱因斯坦方程如式 1-1,光量子的能量 E 与光的频率ν成正比,与波长λ成反比。所以波长越短,光量子的能量越大。 式中 h 为普朗克(Planck)常数;c 为光速;λ为光波波长。因此可以根据紫外光的波长计算出每个光量子具有的能量。当光波波长λ为 300nm 时,光量子能量约 400kJ·mol-1,与有机化合物的共价键键能相当,低于一般化学反应的反应活化能,因而光辐照能够使某些化学键断裂,从而发生化学反应,这是光聚合的理论基础。 而光聚合有三大特点,分别是: (1)光引发聚合中,只有光辐照的区域才能产生自由基从而引发聚合反应,也就是说,光引发聚合反应可以被限定在特定的区域来进行,由于自由基的寿命极短,因而可以通过控制光源的开启和关闭,来控制聚合反应的进行或者停止,而且光辐照的强度也容易测量和控制,在进行聚合反应动力学研究中具有独特的优势,常用来测定自由基聚合反应中的链增长和终止速率常数。 (2)光聚合反应遵循光化学三大定律:a.Grotthus-Draper 定律:只有被光引发剂或者光敏剂吸收的光,才能引起光化学反应,因而紫外光光源波长必须与光引发及或者光敏剂分子所吸收的光波长相匹配;b.Stark-Einstein 定律:一个分子只吸收一个光子,即量子化的。c.Lambert-Beer 定律:光引发速率与吸光度成正比,光引发速率聚合反应速率可以通过控制光源强度、引发剂的浓度、光源与光引发剂波长匹配性等因素控制光照强度来控制聚合反应的速度。 (3)光引发剂分解活化能低,因而光聚合反应可以在较低温度下聚合。 1.4光接枝改性类型

自由基聚合机理以四种常见共聚物

自由基聚合机理 烯类单体的加聚反应多属连锁聚合,连锁聚合反应由链引发、链增长、链终止等基元反应组成,各步的反应速率和活化能相差很大。连锁聚合链引发形成活性中心(或称活性种),活性中心不断与单体加成而使链增长(单体之间并不反应),活性中心的破坏就是链终止。自由基、阳离子、阴离子都可能成为活性中心引发聚合,故连锁聚合又可分为自由基聚合、阳离子聚合、阴离子聚合和配位聚合等,其中自由基聚合产物约占聚合物总产量的60%。 热力学上能够聚合的单体对聚合机理的选择是有差异的,如氯乙烯只能自由基聚合、异丁烯只能阳离子聚合、MMA可以进行自由基聚合和阴离子聚合、苯乙烯则可按各种连锁机理聚合。 自由基聚合产物约占聚合物总产量60%以上,其重要性可想而知。高压聚乙烯、聚氯乙烯、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯酯、聚丙烯酸酯类、聚丙烯腈、丁苯橡胶、丁腈橡胶、氯丁橡胶、ABS树脂等聚合物都通过自由基聚合来生产。本节将对自由基链式聚合反应作较详细的讨论。 自由基聚合的基元反应 烯类单体的自由基聚合反应一般由链引发、链增长、链终止等基元反应组成。此外,还可能伴有链转移反应。现将各基元反应及其主要特征分述如下。 1 链引发 链引发反应是形成单体自由基活性种的反应。用引发剂引发时,将由下列两步组成:(1)引发剂I分解,形成初级自由基R?; (2)初级自由基与单体加成,形成单体自由基。 单体自由基形成以后,继续与其他单体加聚,而使链增长。 比较上述两步反应,引发剂分解是吸热反应,活化能高,约105~150kJ/mo1,反应速率小,分解速率常数约10-4~10-6s-1。初级自由基与单体结合成单体自由基这一步是放热反应,活化能低,约20~34kJ/mo1,反应速率大,与后继的链增长反应相似。但链引发必须包括这一步,因为一些副反应可以使初级自由基不参与单体自由基的形成,也就无法继续链增长。 有些单体可以用热、光、辐射等能源来直接引发聚合。这方面的研究工作不少,苯乙烯热聚合已工业化;紫外光固化涂料也已大规模使用。 2 链增长 在链引发阶段形成的单体自由基,仍具有活性,能打开第二个烯类分子的π键,形成新的自由基。新自由基活性并不衰减,继续和其他单体分子结合成单元更多的链自由基。这个过程称做链增长反应,实际上是加成反应。 为了书写方便,上述链自由基可以简写成,其中锯齿形代表由许多单元组成的碳链骨架,基团所带的独电子系处在碳原子上。 链增长反应有两个特征:一是放热反应,烯类单体聚合热约55~95kJ/mol;二是增长活化能低,约20~34KJ/mol,增长速率极高,在0.01~几秒钟内,就可以便聚合度达到数千,甚至上万。这样高的速率是难以控制的,单体自由基一经形成以后,立刻与其他单体分子加成,增长成活性链,而后终止成大分子。因此,聚合体系内往往由单体和聚合物两部分组成,不存在聚合度递增的一系列中间产物。 对于链增长反应,除了应注意速率问题以外,还须研究对大分子微观结构的影响。在链增长反应中,结构单元间的结合可能存在“头-尾”和“头-头”或“尾-尾”两种形式。经实验证明,主要以头-尾形式连接。这一结果可由电子效应和空间位阻效应得到解释。对一些取代基共轭效应和空间位阻都较小的单体聚合时头-头结构会稍高,如醋酸乙烯酯、偏二氟

自由基聚合习题参考答案

第3章自由基聚合-习题参考答案 1、判断下列单体能否进行自由基聚合并说明理由 H2C CHCl H2C CH H2C CCl2H2C CH2H2C C H2C CHCN H2C C(CN)2H2C CHCH3F2C CF2ClHC CHCl H2C C CH3 COOCH3H2C C CN COOCH3 HC CH OC CO O 答: (1)可以。Cl原子的诱导效应为吸电性,共轭效应为供电性两者相抵,电子效应微弱,只能自由基聚合。 (2)可以。为具有共轭体系的取代基。 (3)可以。结构不对称,极化程度高,能自由基聚合。 (4)可以。结构对称,无诱导效应共轭效应,较难自由基聚合。 (5)不能。1,1—二苯基乙烯,二个苯基具有很强的共轭稳定作用,形成的稳定自由基不能进一步反应。 (6)可以。吸电子单取代基。 (7)不可以。1,1双强吸电子能力取代基。 (8)不可以。甲基为弱供电子取代基。 (9)可以。氟原子半径较小,位阻效应可以忽略不计。 (10)不可以。由于位阻效应,及结构对称,极化程度低,难自由基聚合 (11)可以。1,1-双取代。 (12)可以。1,1-双取代吸电子基团。 (13) 不可以。1,2-双取代,空间位阻。但可进行自由基共聚。 2、试比较自由基聚合与缩聚反应的特点。

答: 自由基聚合:(1)由链引发,链增长,链终止等基元反应组成,其速率常数和活化能均不等,链引发最慢是控制步骤。 (2)单体加到少量活性种上,使链迅速增长。单体-单体,单体-聚合物,聚合物-聚合物之间均不能反应。 (3)只有链增长才是聚合度增加,从一聚体增加到高聚物,时间极短,中间不能暂停。聚合一开始就有高聚物产生。 (4)在聚合过程中,单体逐渐减少,转化率相应增加 (5)延长聚合时间,转化率提高,分子量变化较小。 (6)反应产物由单体,聚合物,微量活性种组成。 (7)微量苯酚等阻聚剂可消灭活性种,使聚合终止。 缩聚反应:(1)不能区分出链引发,链增长,链终止,各部分反应速率和活化能基本相同。 (2)单体,低聚物,缩聚物中任何物种之间均能缩聚,使链增长,无所谓活性中心。 (3)任何物种之间都能反应,使分子量逐步增加,反应可以停留在中等聚合度阶段,只在聚合后期才能获得高分子产物。 (4)聚合初期,单体缩聚成低聚物,以后再由低聚物逐步缩聚成高聚物,转化率变化微小,反应程度逐步增加。 (5)延长缩聚时间分子量提高,而转化率变化较小。 (6)任何阶段都由聚合度不等的同系缩聚物组成。 (7)平衡和基团非等当量可使缩聚暂停,这些因素一旦消除,缩聚又可继续进行。 3、解释下列概念: 歧化终止,偶合终止,引发剂效率,笼蔽效应,诱导效应,自动加速现象,诱导期,聚合上限温度,悬浮聚合,乳液聚合,增溶作用,临界胶束浓度,胶束,种子乳液聚合, 答: 歧化终止:链自由基夺取另一自由基的氢原子或其他原子终止反应。 偶合终止:两链自由基的独电子相互结合成共价键的终止反应。 引发剂效率:引发剂在均裂过程中产生的自由基引发聚合的部份占引发剂分解总量的分率,

活性自由基聚合

活性自由基聚合 摘要:阐述了活性自由基聚合的产生背景和基本概念,介绍了活性自由基聚合的分类,描述了原子转移自由基聚合的研究进展。 关键词:活性自由基聚合 1.活性自由基聚合的基本思想 活性自由基聚合的核心思想是抑制增长自由基浓度,减少双基终止的发生。由高分子化学知识可知,链终止速率与链增长速率之比可用下式表示:[1] 通常kt/kp为104~105,假定体系中单体浓度为1mol/L,则: 当然,自由基活性种浓度不可能无限制地降低,一般来说,[P*]在10- 8mol/L左右,聚合反应的速率仍很可观。在这样的自由基浓度下,R t/R p≈10-4~10-3,Rt相对于R p就可忽略不计,所谓的活性自由基聚合的“活性”就在这里。自由基浓度的下降必然降低聚合反应速度,但由于链增长反应活化能高于链终止反应活化能,因此提高聚合反应温度不仅能提高聚合速率(因为能提高k p),而且能有效降低k t/k p比值,从而抑制链终止反应的进行。

这里需要解决两个问题:一是如何从聚合反应开始直到反应结束始终控制如此低的反应活性种浓度;二是在如此低的反应活性种浓度下,如何避免聚合物的聚合度过大(DP n=[M0]/[P*]=1/10-8=108)。 解决这两个问题的方法是在聚合体系中加入数量可人为控制的反应物X,此反应物X不能引发单体聚合,但可与自由基P*迅速作用而发生钝化反应,生成一种不会引发单体聚合的“休眠种”P-X。而此休眠种在聚合反应条件下又可均裂成增长自由基P*及X,如下式表示:[2] 这样体系中存在的自由基活性种的浓度将取决于3个参数:反应物X的浓度、钝化速率常数k d和活化速率常数k a,其中反应物X的浓度是人为可控的,所谓的可控活性自由基聚合的“可控”就在这里。另外研究表明,如果钝化反应和活化反应的转化速率足够快(不小于链增长速率),则在活性种浓度很低的情况下,聚合物的分子量将不由P*而由P-X的浓度决定。

过渡金属催化活性自由基聚合

Transition Metal-Catalyzed Living Radical Polymerization:Toward Perfection in Catalysis and Precision Polymer Synthesis Makoto Ouchi,Takaya Terashima,and Mitsuo Sawamoto* Department of Polymer Chemistry,Graduate School of Engineering,Kyoto University,Katsura,Nishikyo-ku,Kyoto615-8510,Japan Received July1,2009 Contents 1.Introduction4964 2.Design of the Initiating Systems4965 2.1.Required Initiating Systems4965 2.1.1.Synthesis of Controlled Polymers Free from Catalyst Residues 4966 2.1.2.Environmentally Friendly and Inexpensive Catalysts 4966 2.1. 3.Suppression of Side Reactions for High Molecular Weight Polymers and Perfect Block Copolymerization 4966 2.1.4.Application to Nonprotected Functional Monomers 4966 2.1.5.Biopolymers and Inorganic Molecules: Interdisciplinary Extension 4966 2.1.6.Tacticity and Sequence:Advanced Control4967 2.2.Transition Metal Catalysts4967 2.2.1.Overviews of Catalysts4967 2.2.2.Ruthenium4967 2.2. 3.Copper4971 2.2.4.Iron4971 2.2.5.Nickel4975 2.2.6.Molybdenum4975 2.2.7.Manganese4976 2.2.8.Osmium4976 2.2.9.Cobalt4976 2.2.10.Other Metals4976 2.3.Cocatalysts(Additives)4977 2.3.1.Overview of Cocatalysts4977 2.3.2.Reducing Agents4977 2.3.3.Free Radical Initiators4977 2.3.4.Metal Alkoxides4977 2.3.5.Amines4978 2.3.6.Halogen Source4978 2.4.Initiators4978 2.4.1.Overview of Initiators:Scope and Design4978 2.4.2.Alkyl Halides4978 2.4. 3.Arenesulfonyl Halides4979 2.4.4.N-Chloro Compounds4979 2.4.5.Halogen-Free Initiators4979 2.5.Solvents4980 2.5.1.Overview of Solvents4980 2.5.2.Catalyst Solubility and Coordination of Solvent 4981 2.5. 3.Environmentally Friendly Solvents4981 2.5.4.Water4981 2.5.5.Catalytic Solvents:Catalyst Disproportionation 4981 2.6.Monomers4982 2.6.1.Overview of Monomers4982 2.6.2.Conjugated Monomers4982 2.6. 3.Nonconjugated Monomers4982 3.Precision Polymer Synthesis4983 3.1.Overview of Precision Polymer Synthesis4983 3.2.Pendant-Functionalized Polymers4983 3.2.1.Non-Protected Functional Monomers4984 3.2.2.Protected Functional Monomers and Reactive Monomers 4985 3.2.3.Ionic Monomers and or Styrenic Functional Monomers 4986 3.2. 4.Designer Functional Monomers4986 3.3.End-Functionalized Polymers4987 3.3.1.R-End Functionalization via Functional Initiators 4988 3.3.2.ω-End Functionalization via Terminal Transformation 4992 3.3.3.R,ω-Telechelics via Polymer Reaction4994 3.4.Block Copolymers4994 3.4.1.System Design4995 3.4.2.Functionalized Block Copolymers4996 3.4.3.System Combination5000 3.4.4.Polymer Reaction5008 3.5.Random Copolymers5009 3.5.1.Conjugated Monomers5010 3.5.2.Non-Conjugated Monomers5013 3.5.3.Cyclic Monomers5015 3.6.Alternating Copolymers5015 3.7.Gradient Copolymers5015 3.7.1.Monomer Reactivity5015 3.7.2.Monomer Addition5016 3.8.Star Polymers5016 3.8.1.Multifunctional Initiators5016 3.8.2.Cross-Linked Microgel Cores5021 3.8.3.Polymer Reaction5026 3.9.Graft Copolymers5027 3.9.1.Grafting From5027 3.9.2.Grafting Through5032 3.9.3.Grafting Onto5034 3.10.Hyperbranched and Dendritic Polymers5035 3.10.1.Inimers5035 3.10.2.Divinyl Compounds5036 *To whom correspondence should be addressed.Phone:+81-75-383- 2600.Fax:+81-75-383-2601.E-mail:sawamoto@star.polym.kyoto-u.ac.jp. Chem.Rev.2009,109,4963–50504963 10.1021/cr900234b CCC:$71.50 2009American Chemical Society Published on Web09/29/2009

基于活性聚合技术的偶氮苯聚合物研究进展

第14卷 第3期2006年9月山东交通学院学报J OURNAL OF S HANDONG JI AOTONG UNI VERSI TY Vo.l 14No .3Sep.2006 收稿日期:2006-07-09 基金项目:国家自然科学基金资助项目(29874020,58573049);山东省教育厅科技基金资助项目(J 05D11);山东交通学院科研基金资助项目(Z200617)作者简介:唐新德(1968-),男,山东荣成人,山东交通学院副教授,北京大学博士后,主要从事功能高分子和功能树状物研究. 基于活性聚合技术的偶氮苯聚合物研究进展 唐新德1,张其震2 (1.山东交通学院新材料研究所,山东济南 250023;2.山东大学化学与化工学院,山东济南 250100) 摘要:偶氮苯类聚合物的光致各向异性、光致变色等功能在光电信息技术领域具有潜在的应用,采用活性聚合 技术可得到预定结构与分子量的偶氮苯聚合物,对于研究此类聚合物的结构与性能关系,深入探索其应用具有 重要意义。综述了10a 来该技术领域的发展,尤其是近年来的最新研究进展,并对其前景做了展望。 关 键 词:活性聚合技术;偶氮苯聚合物;阴离子聚合;阳离子聚合;原子转移自由基聚合 中图分类号:O63 文献标识码:A 文章编号:1672-0032(2006)03-0070-06 近年来,偶氮苯类聚合物的研究引起了人们的广泛关注[1-2]。由于偶氮苯发色团在光照射下发生可 逆的顺反异构,且在偏振光作用下会发生分子取向重排。偶氮苯聚合物的光致各向异性、光致变色等功能在光信息储存、光放大、光电子、光控分子取向、分子开关、二次谐波、电光调制、光折变效应、集成光学等方面具有巨大的应用潜力。 制备具有可控分子量和结构规整的聚合物是现代合成高分子化学的主要目标之一[3],活性聚合技术为实现对聚合物结构进行设计开辟了一条切实可行的途径。活性聚合技术具有分子量随转化率呈线性增加、分子量分布窄、端基可以是特定官能团以及可合成结构规整聚合物等特点,通过活性聚合易得到预定结构和序列的嵌段共聚物和接枝共聚物以及结构复杂的星形或树状聚合物。依引发机理不同,活性聚合可分为活性离子性聚合(包括阳离子活性聚合、阴离子活性聚合、配位活性聚合)和活性自由基聚合(包括稳态自由基聚合、原子转移自由基活性聚合和可逆加成)裂解)链转移聚合反应等)。而到目前为止,大多数偶氮苯聚合物采用普通自由基聚合或无规共聚法合成[1,4-6],结构不规整性与分子量分布较 宽等缺点限制了其作为特定功能材料的应用。采用活性聚合技术合成偶氮苯类聚合物则较好地解决了这一问题,虽然在引发偶氮苯单体聚合时部分引发剂会失活而导致实际分子量高于理论分子量 [7],但是近年来采用活性聚合技术,例如阴离子聚合、阳离子聚合以及原子转移自由基聚合,特别是通过原子转移 自由基聚合技术合成与研究偶氮苯聚合物出现了较快发展。1 活性阴离子聚合 阴离子聚合是开发最早、发展最为完善的活性可控聚合技术,采用该法成功获得了单分散聚合物、预定结构和序列的嵌段共聚物和接枝共聚物。但阴离子聚合反应条件苛刻,可聚合的单体少,故应用受到限制,其应用于偶氮苯聚合物方面的研究也较少。 1997年,Ober 及其合作者采用活性阴离子聚合技术合成了苯乙烯-异戊二烯双嵌段共聚物,通过将偶氮苯单体与异戊二烯嵌段连接,得到了含偶氮苯的液晶刚柔嵌段共聚物(图1)[8]。当液晶体积分数在0.20~0.82之间,嵌段共聚物显示近晶相,且清亮点温度基本相同,而清亮焓则强烈依赖于嵌段组成变化,随液晶嵌段体积分数的降低而降低。当液晶嵌段体积分数为0.22时,在透射电镜(TE M )下首次观察

可控自由基聚合技术在合成高分子材料中的应用探究

可控自由基聚合技术在合成高分子材料中的应用探究1500 一、摘要:本文主要是说明了可控自由基聚合技术在合成高分子材料中的应用,然后具体的分析了线型聚合物的合成、接枝聚合物的合成、接枝聚合物的合成、无机/聚合物复合材料的制备,并对其未来的价值进行重要的论述。 关键词:可控自由基聚合;合成;材料 二、线型聚合物的合成 线型聚合物的合成主要包括两个方面嵌段共聚物和梯度共聚物。所谓的嵌段共聚物就是序列规整的聚合物中研究最多应用也最广泛的一类聚合物物质。通过可控自由基聚合可以得到AB型、ABC型、ABA型等多嵌段型的嵌段共聚物。然而对实现ATRP的方法可有两种方式,一方面是先把第一种单体的均聚物制备完成,然后直接把第二种单体加入就可;另一方法是先得到含有卤原子的大分子引发剂,然后再把第二种单体聚合引发,从而得到了二嵌段共聚物。梯度共聚物就是作为一类结构精密的新型共聚物,它具有嵌段和无规共聚物的多种优点 ,是作为一种特别有效的高分子共混增容剂。通常是采用不含有链终止反应的聚合技术是制备梯度共聚物的前提条件,且这种技术是作为梯度共聚物最佳技术方法。然而,因为各共聚单体的竞聚率存在着很大的差别,所以在梯度共聚物的制备上一般是依据所用单体的不同和制备要求而选择不同的加料方法,通常的加料方法主要有批量法和半批量法。 三、接枝聚合物的合成 关于接枝聚合物的合成主要是可控自由基聚合技术,通常大部分所采用ATRP技术合成梳状聚合物主要有两种方法途径:大分子单体技术和大分子引发技术。通过一些侧链比较均一的梳状聚合物利用大分子单体技术制得。哈丽丹·买买提等在纤维素氯化锂/N,N-二甲基乙酰胺(DMAc)均相溶液中,利用氯乙酰氯与纤维素发生均相酰化反应生成纤维素氯乙酸酯,再通过溶解DMAc中用氯化亚铁催化剂引发甲基丙烯酸丁酯,制备出纤维素/甲基丙烯酸丁酯接枝共聚物。 郑兴良等合成了两亲性接枝共聚物PtBA-g-PPEGMEMA,在对抗肿瘤药物方面的阿霉素进行了负载,最终通过试验表明该体系是有缓释特征的。林先凯等是通过以N,N-二甲基甲酰胺作溶剂材质、氯化亚铜/三( N,N-二甲基氨基乙基) 胺为催化配位体系,利用ATRP在商用PVDF 粉末上直接接枝,制备出PVDF-g-PNIPAAm 共聚膜。张洪文等是通过表面引发ATRP在 酯薄膜表面接枝了由γ-甲基丙烯酰氧基丙基三甲氧基硅烷和甲基丙烯酸甲酯形成的共聚物,最终得到提高基质材料的疏水性能。 四、支化聚合物的合成 3. 1星形聚合物 通过ATRP 技术制备星形聚合物的方法主要有先臂后核”和“先核后臂”两种方法。“先臂后核”法就是优先使用ATRP 制备出带有活性末端基的均聚物,这种均聚物然后再与多官能团化合物进行相互的反应得出多臂星形聚合物。然而“先核后臂”法就是利用多官能团的引发剂作用进行单体的ATRP。陈建芳等就是通过原子转移自由基偶联法得到了星形杂臂苯乙烯-甲基丙烯酸甲酯共聚物( PS-PMMA)和多臂星形聚苯乙烯 ( S-PS)。 4. 2聚合物刷 聚合物刷其实是一种比较特殊的高分子结构,其突出特征就是在特定基质的表面或界面上具

可控自由基聚合

可控自由基聚合制备用于光固化薄膜领域的定向低聚物结构 By Jon Scholte, Soon Ki Kim, and C.Allan Guymon 简介 光聚合是一个急速扩张的领域,它在工业上有许多方面的应用。由于光固化环氧树脂有良好光学清晰度与优异的附着性能,因此工业上经常使用到这类型树脂。虽然光固化环氧树脂以硬度闻名,但是其脆性很大以至在很多领域都不适合使用。最近的研究表明,混合型环氧丙烯酸酯树脂的整体硬度不但能达到纯的环氧树脂的水平,而且在更短的辐射时间里能达到更高的转化率。通常需要阳离子引发剂与自由基引发剂复配使用来使得复合体系中的双组分均能达到足够的转化率,因此这大大限制了它的使用范围。环氧树脂机械性能的改性主要是通过加入预聚物来实现。传统预聚物是由一系列分子量和聚合度的化合物组成,如果能准确控制预聚物的结构,这将会非常有用。能通过可控自由基聚合技术来得到这种可控结构的预聚物,氮氧调控自由基聚合就是其中一种。这项技术使用高度稳定的氮氧自由基去调控活性聚合物链的增长,因此产物保持较低的分散指数。另外,预聚物的分子量和结构能通过反应投料的改变来控制,这得益于NMP体系中产生的自由基有长的活性周期。 对预聚物结构的控制能实现材料的相分离,这对某些领域来说是非常有用的。先前的研究表明,在环氧树脂中引入多官能化的星型聚合物后,光固化聚合物网络的机械性能,包括冲击强度,得到了提高。此外,已有研究表明,当体系中加入了非反应性的低聚物,自由基光聚合会引发相分离。在这,我们提出加入环氧官能团改性的丙烯酸预聚物来增强环氧树脂,同时建立了玻璃化转变温度模型。通过简单的NMP法合成线性多官能预聚物。此外,我们还证实线性预聚物骨架上的反应性官能团会影响到聚合物网络的强度。 实验 新型预聚物的合成用到了BlocBuilder RC-50,它用来引发和调控自由基。在2L的反应容器中加入BlocBuilder RC-50,丙烯酸正丁酯以及等质量的乙酸乙酯作为溶剂。通过三步法加入不同的投料制得末端功能化的预聚物。第一步用到的原料是丙烯酸正丁酯和脂环族的环氧甲基丙烯酸酯。第二步加入的投料为丙烯酸正丁酯,最后一步加入的原料跟第一步一样。这个设计方案使得环氧基团能保留在单体的末端部位。类似的,制备无规预聚物的反应容器中最初装有BlocBuilder RC-50,丙烯酸正丁酯和乙酸乙酯,单一的投料只用了丙烯酸正丁酯和环氧族甲基丙烯酸酯。合成后,乙酸乙酯和残留的单体通过旋蒸的方式除去,通过GPC 来测定分析产物的分子量与分子量分布。表1的信息包括预聚物的目标重均分子量与官能团数目。薄膜的制备用到了不同浓度的预聚物以及交联剂(3,4-环氧环

“活性”可控自由基聚合

“活性”/可控自由基聚合 熊鹏鹏2010214110 摘要: 自由基聚合是生产高分子量聚合物的重要方法, “活性”/ 可控自由基聚合综合了自由基聚合和离子聚合的优点, 使自由基聚合具有可控性。本文对目前可以实现“活性”/ 可控自由基聚合的途径和各自机理进行介绍, 指出应该重视对“活性”/可控自由基聚合的研究。关键词: “活性”/可控自由基聚合; 稳定自由基; 可逆加成-裂解链转移; 原子转移; 引发转移终止剂;退化转移。 自由基聚合是工业上和实验室中生产高分子量聚合物的重要方法, 该法具有可聚合的单体种类多、反应条件宽松、以水为介质、容易实现工业化生产等优点, 但也存在着缺陷, 如自由基聚合的本质( 慢引发, 快速链增长, 易发生链终止和链转移等) 决定了聚合反应的失控行为,其结果常常导致聚合产物呈现宽分布, 分子量和结构不可控, 有时甚至会发生支化、交联等,从而严重影响聚合物的性能, 此外, 传统的自由基聚合也不能用于合成指定结构的规整聚合物。 鉴于离子聚合和配位聚合可以很好地控制聚合物结构, 而能不能控制自由基聚合体系则成为当前的研究热点, 但近年来从离子聚合和可控有机自由基反应的研究进展来看, 答案是肯定的。 就聚合反应而言, 要合成具有确定结构的聚合物, 则要求所有的链应同时引发, 增长相似, 这就需要快速引发, 在聚合结束前增长链应保持活性, 链转移和链终止的效应可以忽略, 而自由基聚合的本质( 慢引发, 快终止) 与之正好相反。所以实现可控自由基聚合要基于

以下三个原则: 1) 自由基体系中的增长反应应对自由基敏感, 终止反应对自由基浓度的敏感度次之。这样, 在自由基浓度很低时, 链增长反应与终止反应的速率比才足够高, 才能合成出分子量很大的聚合物。 2) 增长链的浓度必须比初始游离自由基的浓度高得多, 在整个反应过程中所有的链均需保持活性, 且游离自由基与高浓度休眠链处于动态平衡之中, 这种持续自由基效应对任何控制自由基反应来说都是最重要的。 3) 引发迅速, 增长链( 休眠链和活性链总和) 浓度保持稳定, 使用与大分子休眠链结构相类似的引发剂。目前已经发现有五种途经可以实现“活性”/ 可控自由基聚合, 下面分别论述其机理和研究现状。 1稳定“活性”自由基聚合( SFRP) SFRP属于非催化性体系, 是利用稳定自由基来控制自由基聚合。其机理是按照下面的 可逆反应进行: 外加的稳定自由基X·可与活性自由基P·迅速进行失活反应, 生成“休眠 种”P-X, P- X能可逆分解, 又形成X·及活X 性种自由基P·而链增长。有研究表明, 使用烷 氧胺作引发剂效果好。 反应体系中的自由基活性种P·可抑制在较低的浓度, 这样就可以减

可控活性自由基聚合的研究进展

第22卷第2期高分子材料科学与工程Vo l.22,N o.2 2006年3月POLYM ER M AT ERIALS SCIENCE AND EN GINEERING M ar.2006可控活性自由基聚合的研究进展X 郑 璇,张立武 (重庆大学化学化工学院,重庆400044) 摘要:可控活性自由基聚合(CRP)是一种合成具有设计微观结构和窄分子量分布聚合物的方法,原子转移自由基聚合(AT RP)较其它CRP方法具有分子设计能力较强等优点,是应用最广泛的CR P。文中简要介绍了CRP的分类,同时以A T RP为例从单体、引发剂、催化体系等方面讨论了CR P聚合体系的发展。 关键词:可控活性自由基聚合;分类;聚合体系;进展 中图分类号:T Q316.32+2 文献标识码:A 文章编号:1000-7555(2006)02-0016-04 在20世纪50、60年代,自由基聚合达到了它的鼎盛时期。但由于存在链转移和链终止反应,传统自由基聚合不能较好地控制分子量及大分子结构[1]。1956年美国科学家Szwarc等提出了活性聚合的概念[2],活性聚合具有无终止、无转移、引发速率远远大于链增长速率等特点,与传统自由基聚合相比能更好地实现对分子结构的控制,是实现分子设计、合成具有特定结构和性能聚合物的重要手段。但离子型活性聚合反应条件比较苛刻、适用单体较少,且只能在非水介质中进行,导致工业化成本居高不下,较难广泛实现工业化。鉴于活性聚合和自由基聚合各自的优缺点,高分子合成化学家们联想到将二者结合,即可控活性自由基聚合(CRP)或活性可控自由基聚合[1]。CRP可以合成具有新型拓扑结构的聚合物、不同成分的聚合物以及在高分子或各种化合物的不同部分链接官能团,适用单体较多,产物的应用较广,工业化成本较低。 1 C RP的分类 CRP的基本思想是[2]:向体系中加入一个与增长自由基之间存在着偶合-解离可逆反应的稳定自由基,以抑制增长自由基浓度,减少双基终止的发生。目前,各种CRP体系已经发展起来,可分为基于可逆终止和可逆转移机理两类。其中可逆终止机理包括稳定自由基聚合(SFRP)和原子转移自由基聚合(ATRP);可逆转移机理包括可逆加成-断裂链转移(RAFT)活性自由基聚合和退化转移自由基聚合[3]。1.1 稳定自由基聚合[4,5] SFRP属于非催化性体系,是利用稳定自由基来控制自由基聚合。稳定自由基X?,主要有T EM PO(2,2,6,6-四甲基-1-哌啶氮氧自由基)和Co(Ⅱ)?。前者属于稳定的有机自由基,主要可进行苯乙烯及其衍生物的聚合,聚合工艺较简单,可合成一些具有特殊结构的大分子,但氮氧自由基价格较贵,合成困难、聚合速率慢,温度需在110℃~140℃之间。后者属于稳定的有机金属自由基,主要进行丙烯酸酯活性聚合,但得到的聚合物分子量不高,且分子量分布较宽。研究者认为,通过使用新型氮氧自由基,此体系可以扩展到(甲基)丙烯酸和其它单体。其它有机金属化合物或过渡金属盐与自由基可逆络合的活性自由基聚合反应也有报道,如Al、Cr、Rh。 1.2 原子转移自由基聚合[2,5] X收稿日期:2005-01-18;修订日期:2005-05-16  联系人简介:郑 璇(1978-),女,硕士,E-mail:zhengxu an16@https://www.doczj.com/doc/9a16548247.html,

相关主题
文本预览
相关文档 最新文档