当前位置:文档之家› 信号与系统教案,第三章 周期信号的傅里叶级数表示

信号与系统教案,第三章 周期信号的傅里叶级数表示

信号与系统教案,第三章 周期信号的傅里叶级数表示
信号与系统教案,第三章 周期信号的傅里叶级数表示

东北电力大学

教案

东北电力大学

教案

若,则

东北电力大学

教案

然而,以下所用的是采用与连续时间情况下同样的方法,有可能来求得a的一个闭式表示式。

这两个公式对离散时间周期信号所起的作用,如同(3.38)式和

3.7.2 一次差分

3.7.3 离散时间周期信号的帕斯瓦尔定理

帕斯瓦尔定理再一次表明:一个周期信号的平均功率等于它的所

N

东北电力大学

教案

东北电力大学

教案

实验一 离散时间信号与系统的傅里叶分析

电子信息工程系实验报告 课程名称: 数字信号处理 实验项目名称:实验1 离散时间信号与系统的傅里叶分析 时间: 2012-3-17 班级:电信092 姓名:XXX 学号:910706201 实 验 目 的: 用傅里叶变换对离散时间信号和系统进行频域分析。 实 验 环 境: 计算机、MATLAB 软件 实 验 原 理: 对信号进行频域分析即对信号进行傅里叶变换。对系统进行频域分析即对其单位脉冲响应进行傅里叶变 换,得到系统的传输函数;也可由差分方程经过傅里叶变换直接求其传输函数,传输函数代表的就是频率响应特性。而传输函数是w 的连续函数,计算机只能计算出有限个离散频率点的传输函数值,故可在0~2∏之间取许多点,计算这些点的传输函数的值,并取它们的包络,所得包络即所需的频率特性。 实 验 内 容 和 步 骤: 1、已知系统用下面差分方程描述:y (n )=x (n )+ay (n -1),试在a =0.95和a =0.5 两种情况下用傅立叶变换分析系统的频率特性。要求写出系统的传输函数,并打印|H (e j ω)|~ω曲线。 解:B=1;A=[1,-0.95]; [H,w]=freqz(B,A,'whole'); subplot(1,3,1);plot(w/pi,abs(H),'linewidth',2);grid on; xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性'); axis([0,2,0,2.5]); B=1;A=[1,-0.5];[H,w]=freqz(B,A,'whole'); subplot(1,3,3);plot(w/pi,abs(H),'linewidth',2);grid on; xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性'); axis([0,2,0,2.5]); 图形如下图1、2所示: 图1 a=0.95时的幅频响应特性 图2 a=0.5时的幅频响应特性 2、已知两系统分别用下面差分方程描述: y 1(n )=x (n )+x (n -1) y 2(n )=x (n )-x (n -1) 试分别写出它们的传输函数,并分别打印|H (e j ω)| ~ω曲线。 解:B=[1,1];A=1;[H,w]=freqz(B,A,'whole'); subplot(1,2,1);plot(w/pi,abs(H),'linewidth',2);grid on; 成 绩: 指导教师(签名):

傅里叶与信号与系统

信 号 与 系 统 —走进傅里叶

目录 一.傅里叶生平 (2) 二.傅里叶的成就 (2) 1. 数学方面 (2) 2. 物理方面 (3) 三.傅里叶事迹 (4) 四.傅里叶变换算法的意义 (5) 五.感想.............................. 错误!未定义书签。

一.傅里叶生平 傅里叶全名让·巴普蒂斯·约瑟夫·傅里叶(1768年3月21日-1830年5月16日),法国数学家、物理学家,提出傅里叶级数,并将其应用于热传导理论上,傅里叶变换也以他命名。 傅里叶于1768年3月21日出生于法国约讷省欧塞尔的一个裁缝家庭。很早的时候他的父母就双亡,八岁时就沦为了孤儿,曾在军队中教授数学,在1795年他到巴黎高等师范教书,之后又在巴黎综合理工学院占一教席。1798年他跟随拿破仑东征,被任命为下埃及的总督。由于英国舰队对法国人进行了封锁,所以他受命在当地生产军火为远征部队提供军火。这个时期,他向开罗埃及学院递交了几篇有关数学的论文。1801年,拿破仑的远征军队远征失败后,他便被任命为伊泽尔省长官。1816年他回到巴黎,六年后他当选了科学院的秘书,并发表了《热的分析理论》一文,此文建立是在牛顿的热传导理论的速率和温度差成正比的基础上。1830年5月16日他病逝于巴黎,1831年他的遗稿被整理出版成书。 二.傅里叶的成就 1.数学方面 傅里叶在数学方面的主要贡献是在研究热的传播时创立了一套数学理论。1807年向巴黎科学院呈交《热的传播》论文,推导出著名的热传导方程,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示,从而提出任一函数都可以展成三角函

傅里叶变换在信号与系统系统中的应用

河北联合大学 本科毕业设计(论文) 题目傅里叶变换在信号与系统中的应用 院系理学院 专业班级07数学一班 学生姓名刘帅 学生学号200710050113 指导教师佟玉霞 2011年5月24日

题目傅里叶变换在信号与系统中的应用 专业数学与应用数学姓名刘帅学号200710050113 主要内容、基本要求、主要参考资料等 主要内容 傅里叶变换是一种重要的变换,且在与通信相关的信号与系统中有着广泛的应用。本文主要研究傅里叶变换的基本原理;其次,掌握其在滤波,调制、解调,抽样等方面中的应用。分析了信号在通信系统中的处理方法,通过傅里叶变换推导出信号调制解调的原理,由此引出对频分复用通信系统的组成原理的介绍。 基本要求 通过傅里叶变换实现一个高通滤波,低通滤波,带通滤波。用傅里叶变换推导出信号调制解调的原理。通过抽样实现连续信号离散化,简化计算。另外利用调制的原理推导出通信系统中的时分复用和频分复用。 参考资料 [1]《信号与系统理论、方法和应用》徐守时著中国科技大学出版社 2006年3月修订二版 [2]《信号与系统》第二版上、下册郑君里、应启珩、杨为理著高等教育出版社 [3]《通信系统》第四版 Simon Haykin 著宋铁成、徐平平、徐智勇等译沈 连丰审校电子工业出版社 [4]《信号与系统—连续与离散》第四版 Rodger E.Ziemer 等著肖志涛等译 腾建辅审校电子工业出版社 [5]《现代通信原理》陶亚雄主编电子工业出版社 [6]《信号与系统》乐正友著清华大学出版社 [7]《信号与线性系统》阎鸿森、王新风、田惠生编西安交通大学出版社 [8]《信号与线性系统》张卫钢主编郑晶、徐琨、徐建民副主编西安电 子科技大学出版社 [9] https://www.doczj.com/doc/9a15636808.html,/view/191871.htm//百度百科傅里叶变换 [10]《通信原理》第六版樊昌信曹丽娜编著国防工业出版社 [11]A.V.Oppenheim,A.S.Willsky with S.H.Nawab.Siganals and systems(Second edition).Prentice-Hall,1997.中译:刘树棠。信号与系统。西安交通工业大学出版社 完成期限 指导教师 专业负责人

信号与系统实验报告3实验3傅里叶变换及其性质

信息工程学院实验报告 课程名称: 实验项目名称:实验3 傅里叶变换及其性质 实验时间:2015/11/17 班级:通信141 姓名: 学号: 一、实 验 目 的: 学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换;学会运用MATLAB 求连续时间信号的频谱图;学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。 二、实 验 设 备 与 器 件 软件:Matlab 2008 三、实 验 原 理 3.1傅里叶变换的实现 信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞ --∞ ==? , 傅里叶反变换定义为:1 1()[()]()2j t f t F F f e d ωωωωπ ∞ --∞ == ? 。 信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方法,下面分别加以探讨。同时,学习连续时间信号的频谱图。 3.1.1 MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函数fourier( )和ifourier( )。Fourier 变换的语句格式分为三种。 (1)F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。 (2)F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的 ω,即 ()()jvt F v f t e dt ∞ --∞ =?。 (3)F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的函数,即 ()()jvu F v f t e du ∞ --∞ =?。 傅里叶反变换的语句格式也分为三种。 (1)f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默认返回是关于x 的函数。 (2)f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。 (3)f=ifourier(F,u,v):是对关于v 的函数F 进行反变换,返回关于u 的函数f 。

(完整word版)信号系统方波与三角波的傅里叶的分解与合成

实验<编号> 学号姓名分工 11350023 韦能龙编写代码 11350024 熊栗问题分析1.问题描述 实验二信号的合成与分解

2. 问题分析 此次主要是考察傅里叶的合成与分解,运用分解公式求出系数,运用合成公式合成函数,三角波和矩形波是很典型的连个列子,这个大作业只要分解出系数还有用合成公式,基本上就解决了问题了。 3. 实验代码与实验结果 (1)周期性矩形波的系数表示 ,.....7,5,3,1),2 sin(2==n npi kpi a k 代码: t = -3:0.001:3; M = 1;%M =1,7,29,99 T = 2; W = 2*pi/T; f1 = 0*ones(1,length(t)); for n= -M:2:M a = 2/(n*pi)*sin(n*pi/2); f1 = f1+a*exp(j*n*W*t); end plot(t,f1) xlabel('t') ylabel('f(t)') title('M=1,7,29,99时的方波') ylim([-1.5 1.5]); hold on plot(t , zeros(1,length(t))) hold off 图像: M =1时:

M= 7: M = 29

M = 99 (2)三角波的系数表示:

??--==101)()(1dt e t x dt e t x T a jkwt T jkwt k )2 (sin 42 1 2 2 20npi pi n a a n == 代码: t = -3:0.001:3; M = 1;%M =1,7,29,99 T = 1; W = 2*pi/T; G1= 0*ones(1,length(t)); for n= -M:M if n==0 a =1/2; else a = 4/(n^2*pi^2)*(sin(n*pi/2)^2) ; end G1 = G1+a*exp(j*n*W*t); end G1 = G1-0.5; plot(t,G1) xlabel('t') ylabel('G(t)') title('M=1时的三角波') ylim([-1.5 1.5]); hold on plot(t , zeros(1,length(t))) hold off M=1 时

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开: 1. 三角形式: 周期信号()f t ,周期T ,基波频率12w T π=, 所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞ ==++∑ 其中:202 1()T T a f t dt T -=? 2122()cos T T n a f t nw tdt T -=? 212 2()sin T T n b f t nw tdt T -=? 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式: 011 ()cos()n n n f t c c nw t ?∞ ==++∑ 其中:00c a = n c = n n n b tg a φ=- (3)物理意义: (4)幅度谱和相位谱 2. 指数形式: 完备正交函数集 :复指数函数集{}1 jnw t e 1()jnw t n n f t F e ∞ =-∞ = ∑ 其中122 1()T jnw t T n F f t e dt T --=?

注意:(1)幅度谱和相位谱n j n n F F e φ= :偶谱和奇谱 与三角形式间的关系 (2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞ ==+∑ 0n b = 或011 ()cos()n n n f t c c nw t ?∞ ==++∑,00c a = ||n n c a = 0, 0,0n n n a a ?π>?=? ??=??

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

周期信号的傅里叶级数

《信号、系统与信号处理实验I》 实验报告 实验名称:周期信号的傅里叶级数 姓名:韩文草 学号:15081614 专业:通信工程 实验时间:2016.11.7 杭州电子科技大学 通信工程学院

一、实验目的 二、实验内容

三、实验过程及实验结果 1.1 t = 0:0.02:2*pi; %0-2π时间间隔为0.01 y = zeros(10, max(size(t))); %10*629(t的长度)的矩阵 x = zeros(10, max(size(t))); for k = 1:2:9 %奇次谐波1,3,5,7,9 x1 = 3*sin(k * t)/k; %各次谐波正弦分量 x(k,:) = x(k,:) + x1; %x第k(1,3,5,7,9)行存放k次谐波的629个值y((k+1)/2,:) = x(k,:); %矩阵非零行向量移至1-5行 subplot(7,1,(k+1) /2); plot(t,x(k,:)); end subplot(2,1,1); plot(t, y(1:5,:)); %绘制y矩阵中1-5行随时间波形 grid; halft = ceil(length(t)/2); %行向量长度减半(由对称前后段一致)subplot(2,1,2); %绘制三维图形:矩阵y中全部行向量的一半 mesh(t(1:halft), [1:10], y(:,1:halft));

1.2 t = -4.5 : 0.001 : 5.5; t1 = -4.499 : 0.001 : 5.5; x = [ones(1,1000) , zeros(1,1000)]; x = [x , x , x , x , x]; subplot(1 , 2 , 1); plot(t1 , x , 'b','linewidth', 1.5); axis([-4.5 , 5.5 , -0.5 , 1.5]); N = 10; c0 = 0.5; f1 = c0 * ones(1 , length(t)) for n = 1:N f1 = f1 + cos(pi * n * t)*sinc(n/2); end subplot(1,2,2); plot(t , f1 , 'r' , 'linewidth', 1.5); axis([-4.5, 5.5, -0.5, 1.5]);

典型信号的地傅里叶变换

例9.1 试将图9.3中所示的非正弦周期信号(称为方波信号)展成傅里叶级数。 解 根据图上所示信号的波形,可知其既对称于纵轴,又具有半波对称性质,所以它是兼有奇谐波函数性质的偶函数。依照上述定理,此信号的傅里叶级数中必定只含有余弦的奇次谐波项,因此只需按公式 ()2 04cos T km A f t k tdt T ω= ? 计算A km 。 对图上的波形图可以写出 ()04 42 T A t f t T T A t ?

图9.3 方波信号 图9.4 三角波信号 例9.2 试求图9.4所示三角波信号的傅里叶级教。 解 视察一下所给的波形可以知道,它既是原点对称又是半波横轴对称。因此,其傅里叶级数仅由正弦奇次谐波分量组成。由于 ()404 4242 A T t t T f t A T T t A t T ???=??-+??≤≤≤≤ 故有 2044444sin 2sin T T km T A A B t k tdt t A k tdt T T T T ωω??= -- ??? ?? 参照积分公式 211 sin sin cos x axdx ax x ax a a = -? 可算出 22 22 81,5,9,83,7,11km A k k B A k k ππ?=??=??-=??L L 于是所欲求的傅里叶级数 ()2222 8111sin sin 3sin 5sin 7357A f t t t t t ωωωωπ?? = -+-+ ??? L 。 例9.3 已知一如图9.5所示的信号波形,试求其傅里叶级数。 图9.5 例9.3用图

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若 则 其中a和b均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数。 解因 由式(3-55)得 二、对称性 若则 证明因为 有 将上式中变量换为x,积分结果不变,即

再将t用代之,上述关系依然成立,即 最后再将x用t代替,则得 所以 证毕 若是一个偶函数,即,相应有,则式(3-56) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数。式中的表示频谱函数坐标轴必须正负对调。例如: 例3-7若信号的傅里叶变换为 试求。 解将中的换成t,并考虑为的实函数,有 该信号的傅里叶变换由式(3-54)可知为

根据对称性 故 再将中的换成t,则得 为抽样函数,其波形和频谱如图3-20所示。 三、折叠性 若 则 四、尺度变换性 若 则 证明因a>0,由

令,则,代入前式,可得 函数表示沿时间轴压缩(或时间尺度扩展) a倍,而则表示 沿频率轴扩展(或频率尺度压缩) a倍。 该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。 例3-8已知,求频谱函数。 解前面已讨论了的频谱函数,且 根据尺度变换性,信号比的时间尺度扩展一倍,即波形压缩了一半,因此其频谱函数 两种信号的波形及频谱函数如图3-21所示。

信号与系统傅里叶变换

实验二 连续信号频域分析(FT ) 一、实验目的 1.掌握连续时间周期信号的频谱分析方法; 2.掌握连续时间信号的频域分析方法; 3.熟悉通过调用fft ()函数求解连续信号的傅立叶变换的数值分析方法。 二、实验原理 连续时间周期信号)(t f 可展开成傅立叶级数,即三角函数形式 0001 ()cos sin n n n f t a a n t b n t ωω∞ ==++∑ 其中:dt t f T a T T ?-=2 /2/0)(1, tdt n t f T a T T n 02 /2/cos )(2ω?-= n=1,2,3… tdt n t f T b T T n 02 /2/sin )(2ω?-= n=1,2,3… 当取指数形式: 0()jn t n n f t F e ω∞ =-∞ = ∑ 00a F = 2 n n n jb a F -= n ≠0 则 dt e t f T F T t jn n ? -= 1)(1ω MATLAB 的符号积分函数int()可以帮助我们求出连续时间周期信号的截断傅立叶级数及傅立叶表示。 连续时间信号)(t f 的傅立叶变换定义为 dt e t f F t j ?∞ ∞ --=ωω)()( MATLAB 的Symbolic Math Toolbox 提供了能直接求解傅立叶变换及逆变换的函数fourier()及ifourier()。 另外,连续时间信号的傅立叶变换可以利用MA TLAB 提供的快速傅立叶变换函数fft()进行数值计算。 连续信号)(t f 进行离散化后得到序列)(?k f 记作)(k f ,则N 点离散序列的离散傅立叶变换(DFT )和反变换(IDFT )为: )1(1,2,1,0)()(21 -???==--=∑N n e k f n F kn N j N k π )2(1 ,2,1,0)(1)(21 -???==∑-=N k e n F N k f kn N j N n π

北京交通大学信号与系统第四章典型例题

第四章 典型例题 【例4-1-1】写出下图所示周期矩形脉冲信号的Fourier 级数。 A T 0 -T 0 t ) (~t x ? ??? ??2 /τO 2/τ- 周期矩形信号 分析: 周期矩形信号)(~t x 是实信号,其在一个周期[T 0/2,T 0/2]的定义为 ???>≤=2/ 02/ )(~ττt t A t x 满足Dirichlet 条件,可分别用指数形式和三角形式Fourier 级数表示。 解: 根据Fourier 级数系数C n 的计算公式,有 t t x T C t n T T n d e )(~ 1000j 2/2/0ω--?=== --? t A T t n d e 10j 2/2 /0ωττ 2/2/j 000e )j (ττωω=-=--t t t n n T A 2/)2/sin(00τωτωτTn n A =)2 (Sa 00τωτn T A = 故周期矩形信号)(~t x 的指数形式Fourier 级数表示式为 t n n t n n n n T A C t x 00j 00j e )2(Sa )(e )(~ωωτωτ∑∑∞ -∞ =∞-∞=== 利用欧拉公式 2 e e )cos(00j j 0t n t n t n ωωω-+= 可由指数形式Fourier 级数写出三角形式的Fourier 级数,其为 ()t n n T A T A t x n 0001 0cos )2(Sa )2()(~ωτωττ∑ ∞ =+= 结论: 实偶对称的周期矩形信号)(~t x 中只含有余弦信号分量。 【例4-1-2】写出下图所示周期三角波信号的Fourier 级数。 A -A 1 0.5 -1 t ) (~t x ? ??? ??-0.5 -2 2 周期三角波信号 分析: 周期矩形信号)(~ t x 是实信号,其在一个周期 [1/2,3/2]的表达式为

第四章傅立叶变换习题

第三章傅立叶变换 第一题选择题 1.连续周期信号f (t )的频谱F(w)的特点是 D 。 A 周期连续频谱 B 周期离散频谱 C 非周期连续频谱 D 非周期离散频谱 2.满足抽样定理条件下,抽样信号f s (t)的频谱)(ωj F s 的特点是 (1) (1)周期、连续频谱; (2)周期、离散频谱; (3)连续、非周期频谱; (4)离散、非周期频谱。 3.信号的频谱是周期的连续谱,则该信号在时域中为 D 。 A 连续的周期信号 B 离散的周期信号 C 连续的非周期信号 D 离散的非周期信号 4.信号的频谱是周期的离散谱,则原时间信号为 (2) 。 (1)连续的周期信号 (2)离散的周期信号 (3)连续的非周期信号 (4)离散的非周期信号 5.已知f (t )的频带宽度为Δω,则f (2t -4)的频带宽度为( 1 ) (1)2Δω (2)ω?2 1 (3)2(Δω-4) (4)2(Δω-2) 6.若=)(1ωj F F =)()],([21ωj F t f 则F =-)]24([1t f ( 4 ) (1)ωω41)(21j e j F - (2)ωω41)2 (21j e j F -- (3)ωωj e j F --)(1 (4)ωω21)2 (21j e j F -- 7.信号f (t )=Sa (100t ),其最低取样频率f s 为( 1 ) (1)π100 (2)π 200 (3)100π (4)200 π 8.某周期奇函数,其傅立叶级数中 B 。 A 不含正弦分量 B 不含余弦分量 C 仅有奇次谐波分量 D 仅有偶次谐波分量 9.某周期偶谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 无奇次谐波分量 D 无偶次谐波分量 10.某周期奇谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 仅有基波和奇次谐波分量 D 仅有基波和偶次谐波分量 11.某周期偶函数f(t),其傅立叶级数中 A 。

周期信号的傅里叶变换

周期信号的傅里叶变换 周期信号虽然不满足绝对可积的条件,但其傅里叶变换是存在的。由于周期信号频谱是离散的,所以它的傅里叶变换必然也是离散的,而且是由一系列冲激信号组成。下面先讨论几种常见的周期信号的傅里叶变换,然后再讨论一般周期信号的傅里叶变换。 复指数信号的傅里叶变换 对于复指数信号 t j e t f 0)(ω±= ∞<<∞-t 因为 )(21ωπδ? 由频移性 ?? ? ??+?-?-)(21)(210000ωωπδωωπδωωt j t j e e (3-76)

复指数信号是表示一个单位长度的相量以固定的角频率ω0随时间旋转,经傅里叶变换 后,其频谱为集中于0ω,强度为π2的冲激。这说明信号时间特性的相移对应于频域中 的频率转移。 二、余弦、正弦信号的傅里叶变换 对于余弦信号 2cos )(0001t j t j e e t t f ωωω-+= = ∞<<∞-t 其频谱函数 [])(2)(22 1 )(001 ωωπδωωπδω++-=j F [] )()(00ωωδωωδπ++-= (3-77) 对于正弦信号 j e e t t f t j t j 2sin )(0002ωωω--= = ∞<<∞-t 有

[])(2)(221 )(002ωωπδωωπδω+--= j j F [] )()(00ωωδωωδπ--+=j (3-78) 它们的波形及其频谱如图3-25所示。 ω 00ω 图 3 - 25 三、单位冲激序列)(t T δ的傅里叶变换 若信号)(t f 为单位冲激序列,即 ∑∞ -∞ =-== =n T nT t t t f )()()(δδ (3-79) 则其傅里叶级数展开式为

相关主题
文本预览
相关文档 最新文档