当前位置:文档之家› ch3.周期信号的傅里叶级数展开

ch3.周期信号的傅里叶级数展开

ch3.周期信号的傅里叶级数展开
ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开:

1. 三角形式: 周期信号()f t ,周期T ,基波频率12w T

π=,

所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞

==++∑

其中:202

1()T

T a f t dt T -=?

2122()cos T

T n a f t nw tdt T -=?

212

2()sin T

T n b f t nw tdt T -=? 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式:

011

()cos()n

n n f t c c

nw t ?∞

==++∑

其中:00c a =

n c =

n

n n

b tg a φ=-

(3)物理意义: (4)幅度谱和相位谱

2. 指数形式: 完备正交函数集 :复指数函数集{}1

jnw t e

1()jnw t

n

n f t F e

=-∞

=

其中122

1()T

jnw t T n F f t e dt T --=?

注意:(1)幅度谱和相位谱n

j n n F F e φ= :偶谱和奇谱

与三角形式间的关系

(2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞

==+∑

0n b = 或011

()cos()n n n f t c c nw t ?∞

==++∑,00c a =

||n n c a =

0,

0,0n n n

a a ?π>?=?

()sin n n f t b nw t ∞

==∑

00n a a ==

或011

()cos()n n n f t c c nw t ?∞

==++∑,00c =

||n n c b =

,02,0

2

n

n n

b b π

?π?->??=??

(3)奇谐函数:()()2

T f t f t =-±

其傅里叶级数展开式中仅含奇次谐波分量,即: 0240a a a ====

2460b b b ===

=

4. 典型周期矩形脉冲的傅里叶级数

信号()f t ,周期为T ,脉宽为τ,脉幅为E

(1)三角形式

011

()cos n

n f t a a

nw t ∞

==+

∑ 0n b =

其中:2202211()T T E a f t dt Edt T T T

τ

ττ

--===

??

211222cos 2n E a E nw tdt Sa nw T T ττττ-??== ???

? 谐波形式:011

()cos()n n n f t c c nw t φ∞

==++∑

其中:00c a =

n n

c a =, {

0,0

,0

n n n a a ?π>=< (2)指数形式:1

()jnw t n n f t F e ∞

=-∞

=∑

其中:112222

11()T jnw t

jnw t T n F f t e dt Ee dt T T τ

τ---==??

112E Sa nw T ττ??

=

???

(3)幅度谱和相位谱的特点 谱线间隔和频谱宽度

二.傅里叶变换 ()()jwt F w f t e dt ∞--∞

=?

1()()2jwt f t F w e dw π

∞-∞

=

?

特点:(1)()()()j w F w F w e ?= 幅频函数和相频函数 (2)变换条件:|()|f t dt ∞

-∞<∞? (3)()f t 也是由许多频率分量构成

三.常见信号的傅里叶变换对 单边指数衰减信号

,0

()0,0

t e t f t t α-?>=?

?

1()F w jw α

=

+ 双边指数衰减信号||

,0

(),0t t t

e t

f t e

e t ααα--?>==?

?

22

2()F w w α

α=

+

矩形脉冲(),2

f t E t

τ

=<

? ()()2

F w E Sa w τ

τ=

符号函数()sgn()f t t = ?

2()F w jw

=

冲击函数()()f t t δ= ? ()1F w = ()()f t t δ'=

? ()F w jw =

()()()n f t t δ=

? ()

()n

F w jw = 直流信号()1f t = ? ()()2F w w πδ=

()f t jt =-

? ()()2F w w πδ'=

()

()n

f t jt =-

?

()()()2n F w w πδ=

阶跃信号()()f t u t = ?

()1

()F w w jw

πδ=

+

四.傅里叶变换的性质 1.线性性

2.奇偶虚实性:()f t 为实函数

()()()cos ()sin jwt

F w f t e

dt f t wtdt j f t wtdt ∞∞

--∞

-∞

-∞

==-?

?

?

(1)()f t 为实偶函数,虚部()()sin 0X w f t wtdt ∞

-∞==? (2)()f t 为实奇函数,实部()()cos 0R w f t wtdt ∞

-∞==?

3. 对称性

4.时移性

5. 尺度变换:时域压缩,频谱扩张 时域扩张,频谱压缩 时域反褶,频谱反褶

6.频移性:0

0()()jw t

F f t e F w w ??=-??

[][]001()cos ()()2

F f t wt F w w F w w =-++

[][]001

()sin ()()2F f t wt F w w F w w j

=

--+ 7.时域微分:[]()()F f t jwF w '=

()()()()n n

F f t jw F w ??=??

8.频域微分:[]()()F jtf t F w '-=

()

()()()n n F jt f t F w ??-=??

9.时域卷积:()()()1212()F f t f t F w F w *=???? 10.频域卷积:

五.周期信号的傅里叶变换:

(1) 周期信号的傅里叶级数展开式:

1()jnw t

n

n f t F e

=-∞

=

(2) 周期信号的傅里叶变换:

1

()2()n

n F w F w nw πδ∞

=-∞

=

-∑

特点:(ⅰ)频谱为冲击谱 (ⅱ)强度为2n F π

(ⅲ)谱线位于谐波处(1nw )

(ⅳ)()1120211()|T

jnw t jwt T n w nw F f t e dt f t e dt T T

∞--=-∞-==??

()101

|w nw F w T

==

其中:0()f t 为周期信号的第一个脉冲, ()0F w 为0()f t 的傅里叶变换。

六.抽样定理

(1)抽样过程

抽样脉冲p(t)为冲击序列或周期矩形脉冲

(2) 数学表达式()()()s f t f t p t =?

(3) 时域波形 (4) 频谱表达式:

()[]1

()[()]2s F w F w F p t π

=

* ()11

()22n n F w p w nw πδπ

=-∞??=*-?

???

1()()n n

s

n n p F w nw p F w nw ∞

=-∞

=-∞

=

-=

-∑

其中:周期T ,基波频率1w =抽样频率s w 即:抽样信号频谱()s F w 将原信号频谱()F w 在频率轴上进行周期延拓

(5)理想抽样:

δT (t)

()()()s T f t f t t δ=?

()()1s s n F w F w nw T ∞

=-∞

=-∑

(6)实际抽样:fs(t) 其中: ()()()s f t f t p t =?

()()s n

s

n F w p F w nw ∞

=-∞

=

-∑

其中1()2

n E p Sa nw T

ττ=

(7)信号恢复: (8)抽样定理:

连续时间信号()f t ,抽样周期为T ,抽样频率s w 其频谱为()F w ,m w w ≤,抽样信号的频谱为()s F w ,

且:()()1s s n F w F w nw T ∞

=-∞

=-∑,即:抽样信号频谱()s F w 将原

信号频谱()F w 在频率轴上进行周期延拓。当2s m w w ≥时

()s F w 频谱不发生混叠,当2s m w w <时频谱发生混叠。

习题课:

1. 已知[()]()F f t F w =,求下列信号的傅里叶变换:

(1)()df t t dt

(2)(25)f t -

解:(1)()()f t F w ? (2)5(25)(2())2

f t f t -=

-

()

()df t jwF w dt

? ()()f t F w ?

1(2)()22

w

f t F ?

()[()]

df t d jwF w jt dt dw

-?

5211

(25)()22

j w f t F w e --?

2. 系统如图所示:

y(t)

c t)

其中:输入为x(t),其频谱X (w )如图所示,输出为y(t),且w c >>w m

求:输出y(t)解:1()()cos()()2

c

c

jw t jw t

c y t x t w t x t e e -??=?=?+??

[]1

()()()2

c c Y w X w w X w w =

-++

3.画出(100)Sa t 的频谱

л

-100 100 w

4.证明: 傅里叶的积分特性:[()]()F f t F w =

()()

[()](0)t F w F f t dt F w jw πδ-∞

=

+?

证明:由于 ()()()t

f t dt f t u t -∞=*?

()1

[()]()(

)t F f t dt F w w jw

πδ-∞

=?+?

()()

(0)F w F w jw

πδ=

+ 5. 求下列频谱函数所对应的时间信号 (1)()5w δ- (2)2w

解:(1)

512j t

e π

(2)()1t δ?

()()

2

t jw δ''?

(3)()5050Sa t π

6. 已知f(t)波形如图所示:求:(1)(0)F (2)()F w dw ∞

-∞?

解:

(1)(0)()4F f t dt ∞

-∞

==?

(2)()2(0)4F w dw f ππ∞

-∞==?

傅里叶级数展开matlab实现

傅里叶级数展开matlab 实现给个例子说明下:将函数 y=x*(x-pi)*(x-2*pi),在(0,2*pi)的范围内傅里叶级数展开syms x fx=x*(x-pi)*(x-2*pi); [an,bn,f]=fseries(fx,x,12,0,2*pi)%前12 项展开latex(f)%将f 转换成latex 代码an = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] bn = [ -12, 3/2, -4/9, 3/16, -12/125, 1/18, -12/343, 3/128, -4/ 243, 3/250, -12/1331, 1/144] f = 12*sin(x)+3/2*sin(2*x)+4/9*sin(3*x)+3/16*sin(4*x)+12/ 125*sin(5*x)+1/18*sin(6 *x)+12/343*sin(7*x)+3/128*sin(8*x)+4/243*sin(9*x)+3/ 250*sin(10*x)+12/1331* sin(11*x)+1/144*sin(12*x) ans = 12\,\sin \left( x \right) +3/2\,\sin \left( 2\,x \right) +4/9\,\sin \left( 3\,x \right) +3/16\,\sin \left( 4\,x \right) +{\frac {12}{125}}\,\sin \left( 5\,x \right) +1/18\,\sin \left( 6\,x \right) +{\frac {12}{343}}\,\sin \left( 7\,x \right) +{\frac {3}{128}}\,\sin \left( 8\,x \right) +{\frac {4}{243}}\,\sin \left( 9\,x \right) +{\frac {3}{250}}\,\sin \left( 10\,x \right) +{\frac {12}{1331}}\,\sin \left( 11\,x \right) +{\frac {1}{144}}\,\sin \left( 12\,x \right) function [an,bn,f]=fseries(fx,x,n,a,b) %傅里叶级数展开% %an 为fourier 余弦项系数%bn 为fourier 正弦项系数%f 为展开表达式%f 为给定函数%x 为自变量%n 为展开系

傅里叶级数

傅里叶级数(Fourier Series ) 引言 正弦函数是一种常见而简单的周期函数,例如描述简谐振动的函数 就是一个以ωπ 2为周期的函数。其中y 表示动点的位置,t 表示时间,A 为振幅,ω为 角频率,?为初相。 但在实际问题中,除了正弦函数外,还会遇到非正弦的周期函数,它们反映了较复杂的周期运动,我们也想将这些周期函数展开成由简单的周期函数例如三角函数组成的级数。具体地说,将周期为)2(ωπ =T 的周期函数用一系列以T 为周期的正弦函数 )sin(n n t n A ?ω+组成的级数来表示,记为 其中),3,2,1(,,0 =n A A n n ?都是常数。 将周期函数按上述方式展开,它的物理意义就是把一个比较复杂的周期运动看成是许多不同频率的简谐振动的叠加。在电工学上,这种展开称为谐波分析。其中常数项0A 称为 )(t f 的直流分量;)sin(11?ω+t A 称为一次谐波(又叫做基波) ;而)2sin(22?ω+t A , )3sin(33?ω+t A 依次称为二次谐波,三次谐波,等等。 为了下面讨论方便起见,我们将正弦函数)sin(n n t n A ?ω+按三角公式变形,得 t n A t n A t n A n n n n n n ω?ω??ωsin cos cos sin )sin(+=+, 令x t A b A a A a n n n n n n ====ω??,cos ,sin ,2 00,则上式等号右端的级数就可以改写成 这个式子就称为周期函数的傅里叶级数。 1.函数能展开成傅里叶级数的条件 (1) 函数)(x f 须为周期函数; (2) 在一个周期内连续或只有有限个第一类间断点;(如果0x 是函数)(x f 的间断点,但 左极限)0(0-x f 及右极限)0(0+x f 都存在,那么0x 称为函数)(x f 的第一类间断点) (3) 在一个周期内至多只有有限个极值点。

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开: 1. 三角形式: 周期信号()f t ,周期T ,基波频率12w T π=, 所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞ ==++∑ 其中:202 1()T T a f t dt T -=? 2122()cos T T n a f t nw tdt T -=? 212 2()sin T T n b f t nw tdt T -=? 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式: 011 ()cos()n n n f t c c nw t ?∞ ==++∑ 其中:00c a = n c = n n n b tg a φ=- (3)物理意义: (4)幅度谱和相位谱 2. 指数形式: 完备正交函数集 :复指数函数集{}1 jnw t e 1()jnw t n n f t F e ∞ =-∞ = ∑ 其中122 1()T jnw t T n F f t e dt T --=?

注意:(1)幅度谱和相位谱n j n n F F e φ= :偶谱和奇谱 与三角形式间的关系 (2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞ ==+∑ 0n b = 或011 ()cos()n n n f t c c nw t ?∞ ==++∑,00c a = ||n n c a = 0, 0,0n n n a a ?π>?=? ??=??

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

傅里叶级数展开

傅里叶级数展开傅里叶级数其实是一种三角级数。三角级数的一般形式是 ∑∞=++10)sin cos (2a n n n nx b nx a 其中0a ,n a ,n b (n=1,2,···)都是实数。 现在能否把一个任意周期为2π的函数表示为一系列正弦函数之和呢?这样表示有什么条件吗?且听慢慢分辨。 现在的焦点就是把一个周期为2π的函数f (x )表示为: ∑∞=++=10)sin cos (2a )(f n n n nx b nx a x [1] 这样的形式。 现在有两个问题: 1.在什么条件下把f (x )展开成[1]的形式: 2.0a ,n a ,n b 如何确定。 由三角函数系的正交性可知,三角函数系中任意两个相同的函数之积在[-π,π]上积分不为零;任意两个不相同的函数之积在[-π,π]上积分为零。 接下来可以这样推导0a ,n a ,n b 的值 第一步:对[1]两边同时在[-π,π]上积分有: ∑∫∫∫∫∞=++=1---0-dx] sin b dx cos [dx 2a dx )(f n n n nx nx a x πππππ πππ=π0a , 故0a =∫πππ-dx x f 1)(第二步:对[1]两边同时乘以cosnπ然后在[-π,π]上积分有:∑∫∫∫∫∞=++=1---0-]d cos sin b d cosn cos [d cosn 2a d cosn )(f n n n x nx nx x x nx a x x x x x πππππππ π得, ),()(∫==πππ-n 2,1n cosnxdx x f 1a ?第三步:对[1]两边同时乘以cosnπ然后在[-π,π]上积分有: ∑∫∫∫∫∞=++=1---0-]d sin sin b d sinn cos [d sinn 2a d sinn )(f n n n x nx nx x x nx a x x x x x πππππ πππ得, ),()(∫==πππ-n 2,1n sinnxdx x f 1b ?那么什么条件下才能有以上展开呢?

c语言实现傅里叶级数展开

#include #include double Getb(double Low,double Up,double step,int s) { int i; double sum=0; for(i=0;i

return false; } int main(void) { double l=-3.1415926; double u=3.1415926; double st; double x,sum; int ps,n; printf("请输入区间个数:"); scanf("%d",&ps); st=(u-l)/ps; printf("请输入傅里叶展开的项数:"); scanf("%d",&n); printf("请输入你要求的数:"); scanf("%lf",&x); printf("x^2的傅里叶展开得到的结果为:"); sum=Getb(l,u,st,ps)/2+Geta(l,u,st,x,n,ps); printf("%lf\n",sum); if(!text(sum,x)) { printf("验证结果不相符,可能傅里叶级数展开有错!\n"); } else { printf("验证结果相符,傅里叶级数展开正确!\n"); } return 0; }

周期信号的傅里叶级数

《信号、系统与信号处理实验I》 实验报告 实验名称:周期信号的傅里叶级数 姓名:韩文草 学号:15081614 专业:通信工程 实验时间:2016.11.7 杭州电子科技大学 通信工程学院

一、实验目的 二、实验内容

三、实验过程及实验结果 1.1 t = 0:0.02:2*pi; %0-2π时间间隔为0.01 y = zeros(10, max(size(t))); %10*629(t的长度)的矩阵 x = zeros(10, max(size(t))); for k = 1:2:9 %奇次谐波1,3,5,7,9 x1 = 3*sin(k * t)/k; %各次谐波正弦分量 x(k,:) = x(k,:) + x1; %x第k(1,3,5,7,9)行存放k次谐波的629个值y((k+1)/2,:) = x(k,:); %矩阵非零行向量移至1-5行 subplot(7,1,(k+1) /2); plot(t,x(k,:)); end subplot(2,1,1); plot(t, y(1:5,:)); %绘制y矩阵中1-5行随时间波形 grid; halft = ceil(length(t)/2); %行向量长度减半(由对称前后段一致)subplot(2,1,2); %绘制三维图形:矩阵y中全部行向量的一半 mesh(t(1:halft), [1:10], y(:,1:halft));

1.2 t = -4.5 : 0.001 : 5.5; t1 = -4.499 : 0.001 : 5.5; x = [ones(1,1000) , zeros(1,1000)]; x = [x , x , x , x , x]; subplot(1 , 2 , 1); plot(t1 , x , 'b','linewidth', 1.5); axis([-4.5 , 5.5 , -0.5 , 1.5]); N = 10; c0 = 0.5; f1 = c0 * ones(1 , length(t)) for n = 1:N f1 = f1 + cos(pi * n * t)*sinc(n/2); end subplot(1,2,2); plot(t , f1 , 'r' , 'linewidth', 1.5); axis([-4.5, 5.5, -0.5, 1.5]);

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若 则 其中a和b均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数。 解因 由式(3-55)得 二、对称性 若则 证明因为 有 将上式中变量换为x,积分结果不变,即

再将t用代之,上述关系依然成立,即 最后再将x用t代替,则得 所以 证毕 若是一个偶函数,即,相应有,则式(3-56) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数。式中的表示频谱函数坐标轴必须正负对调。例如: 例3-7若信号的傅里叶变换为 试求。 解将中的换成t,并考虑为的实函数,有 该信号的傅里叶变换由式(3-54)可知为

根据对称性 故 再将中的换成t,则得 为抽样函数,其波形和频谱如图3-20所示。 三、折叠性 若 则 四、尺度变换性 若 则 证明因a>0,由

令,则,代入前式,可得 函数表示沿时间轴压缩(或时间尺度扩展) a倍,而则表示 沿频率轴扩展(或频率尺度压缩) a倍。 该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。 例3-8已知,求频谱函数。 解前面已讨论了的频谱函数,且 根据尺度变换性,信号比的时间尺度扩展一倍,即波形压缩了一半,因此其频谱函数 两种信号的波形及频谱函数如图3-21所示。

周期信的傅里叶级数

计算机与信息工程学院实验报告 一、 实验目的 1、 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 2、 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 3、 掌握用傅里叶级数进行谐波分析的方法。 4、 观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉 冲信号。 专业:通信工程 2013— 2014学年第二学期 年级/班级:2012级通信工程

实验仪器或设备 一台装有MATLAB勺计算机一台 三、设计原理 1.信号的时间特性与频率特性 信号可以表示为随时间变化的物理量,比如电压u(t )和电流i (t )等, 其特性主要表现为随时间的变化,波形幅值的大小、持续时间的长短、变化速率的快慢、波动的速度及重复周期的大小等变化,信号的这些特性称为时间特性。 信号还可以分解为一个直流分量和许多不同频率的正弦分量之和。主要表现在各频率正弦分量所占比重的大小不同;主要频率分量所占的频率范围也不同,信号的这些特性称为信号的频率特性。无论是信号的时间特性还是频率特性都包含了信号的全部信息量。2?信号的频谱 信号的时间特性和频率特性是对信号的两种不同的描述方式。根据傅里叶级数原理,任意一个时域的周期信号f(t),只要满足狄利克莱 (Dirichlet) 条件,就可以将其展幵成三角形式或指数形式的傅里叶级数。例如,对于一个周期为T的时域周期信号f(t),可以用三角形式的傅里叶级数求出它的各次分量,在区间(t1,t1+T )内表示为

3?信号的时间特性与频率特性关系 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图 4-1来形象地表示。其中图4-1(a)是信号在幅度--时间--频率三维坐标系统中的图形;图4-1(b)是信号在幅度--时间坐标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图4-1(c)是信号在 幅度--频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为

典型信号的傅里叶变换

例9.1 试将图9.3中所示的非正弦周期信号(称为方波信号)展成傅里叶级数。 解 根据图上所示信号的波形,可知其既对称于纵轴,又具有半波对称性质,所以它是兼有奇谐波函数性质的偶函数。依照上述定理,此信号的傅里叶级数中必定只含有余弦的奇次谐波项,因此只需按公式 ()2 04cos T km A f t k tdt T ω= ? 计算A km 。 对图上的波形图可以写出 ()04 42 T A t f t T T A t ?

故有 4044444sin 2sin T T km T A A B t k tdt t A k tdt T T T T ωω?? = -- ??? ?? 参照积分公式 211 sin sin cos x axdx ax x ax a a = -? 可算出 22 22 81,5,9,83,7,11km A k k B A k k ππ?=??=? ?-=? ? 于是所欲求的傅里叶级数 ()2222 8111 sin sin 3sin 5sin 7357 A f t t t t t ωωωωπ?? = -+-+ ??? 。 例9.3 已知一如图9.5所示的信号波形,试求其傅里叶级数。 图9.5 例9.3用图 解 此信号对原点对称,是奇函数,且又是半波横轴对称,所以其傅里叶级数仅是正弦奇次谐波分量组成。由于 ()022 T A t f t T A t T ?

周期方形信号的傅里叶级数展开

周期方形信号的傅里叶级数展开 提出问题: 用有限项傅里叶级数展开逼近周期方波信号。 设周期为1的方波信号由以下函数给出 ?? ???<=>=-<>=<->=+=)2且1(1)1且0()0且1(1)x (x x x x x x x x x f 。 利用Matlab 软件符号运算及绘图功能,观察方形信号由有限项傅里叶级数展开式的合成情况。 问题背景: 在信号分析与处理,特别是工程中,对于周期信号的处理通常采用傅里叶级数展开来进行分析,即频率分析法。在实际信号处理过程中,可以借助Matlab 软件来模拟傅里叶级数对于信号的逼近情况。 知识基础: 周期函数的傅里叶级数展开,Matlab 软件 实验过程: 对于周期为2π函数()f t , 满足Dirichlet 条件,则可展为傅里叶级数 经过傅里叶变换得到: ?????????--- +- =∑∑∑∞∞∞111)) 1(2sin(21)2sin(2 1))1(2sin(2 1)(x k x k x k x f πππ 将级数展开式截断到有限项可用来逼近周期函数。利用Matlab 软件,编写程序如下: clear;clc;x=linspace(-1,2,3000); y=(x+1).*(x<0)+x.*(x>=0&x<1)+(x-1).*(x>=1&x<=2); y1=0; 01()(cos sin ).2n n n a f t a nt b nt ∞==++∑1()cos n a f t ntdt πππ -=?1()sin n b f t ntdt πππ-=? 0,1,2n =L 1,2,3n =L

for k=1:10; y1=y1+1/(k*pi)*sin(2*k*pi*(x+1)).*(x<0); end y1=1/2-y1; y2=0; for k=1:50; y2=y2+1/(k*pi)*sin(2*k*pi*x).*(x>=0 & x<1); end y2=1/2-y2;y3=0; for k=1:100; y3=y3+1/(k*pi)*sin(2*k*pi*(x-1)).*(x>=1&x<=2); end y3=1/2-y3;plot(x,y1)hold on plot(x,y2) plot(x,y3)plot(x,y,'r') axis equal 此图当x 属于(-1,0)时,傅里叶级数取了前10项 此图当x 属于(0,1)时,傅里叶级数取了前50项 此图当x 属于(1,2)时,傅里叶级数取了前100项 红线代表实际函数,蓝线代表傅里叶级数展开函数 拓展练习: 1. 可将周期2π扩展为任意周期T ,则此时方波信号的角频率2/T ωπ=,当方波信号 ()f t 满足Dirichlet 条件时,则可展为傅里叶级数: 01()(cos sin ).2n n n a f t a n t b n t ωω∞==++∑ 0 02()d T a f t t T =?

第四章傅立叶变换习题

第三章傅立叶变换 第一题选择题 1.连续周期信号f (t )的频谱F(w)的特点是 D 。 A 周期连续频谱 B 周期离散频谱 C 非周期连续频谱 D 非周期离散频谱 2.满足抽样定理条件下,抽样信号f s (t)的频谱)(ωj F s 的特点是 (1) (1)周期、连续频谱; (2)周期、离散频谱; (3)连续、非周期频谱; (4)离散、非周期频谱。 3.信号的频谱是周期的连续谱,则该信号在时域中为 D 。 A 连续的周期信号 B 离散的周期信号 C 连续的非周期信号 D 离散的非周期信号 4.信号的频谱是周期的离散谱,则原时间信号为 (2) 。 (1)连续的周期信号 (2)离散的周期信号 (3)连续的非周期信号 (4)离散的非周期信号 5.已知f (t )的频带宽度为Δω,则f (2t -4)的频带宽度为( 1 ) (1)2Δω (2)ω?2 1 (3)2(Δω-4) (4)2(Δω-2) 6.若=)(1ωj F F =)()],([21ωj F t f 则F =-)]24([1t f ( 4 ) (1)ωω41)(21j e j F - (2)ωω41)2 (21j e j F -- (3)ωωj e j F --)(1 (4)ωω21)2 (21j e j F -- 7.信号f (t )=Sa (100t ),其最低取样频率f s 为( 1 ) (1)π100 (2)π 200 (3)100π (4)200 π 8.某周期奇函数,其傅立叶级数中 B 。 A 不含正弦分量 B 不含余弦分量 C 仅有奇次谐波分量 D 仅有偶次谐波分量 9.某周期偶谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 无奇次谐波分量 D 无偶次谐波分量 10.某周期奇谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 仅有基波和奇次谐波分量 D 仅有基波和偶次谐波分量 11.某周期偶函数f(t),其傅立叶级数中 A 。

傅里叶级数展开的实际意义

傅里叶级数展开的实际意义 1.傅立叶变换的物理意义 傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。 傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。 在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类: 1)傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子; 2)傅立叶变换的逆变换容易求出,而且形式与正变换非常类似; 3)正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系 数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计 算卷积的一种简单手段; 4)离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响 应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅 立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变 换算法(FFT))。正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、 信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 2.图像傅立叶变换的物理意义 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。 如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。 傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个

周期信号的傅里叶变换

周期信号的傅里叶变换 周期信号虽然不满足绝对可积的条件,但其傅里叶变换是存在的。由于周期信号频谱是离散的,所以它的傅里叶变换必然也是离散的,而且是由一系列冲激信号组成。下面先讨论几种常见的周期信号的傅里叶变换,然后再讨论一般周期信号的傅里叶变换。 复指数信号的傅里叶变换 对于复指数信号 t j e t f 0)(ω±= ∞<<∞-t 因为 )(21ωπδ? 由频移性 ?? ? ??+?-?-)(21)(210000ωωπδωωπδωωt j t j e e (3-76)

复指数信号是表示一个单位长度的相量以固定的角频率ω0随时间旋转,经傅里叶变换 后,其频谱为集中于0ω,强度为π2的冲激。这说明信号时间特性的相移对应于频域中 的频率转移。 二、余弦、正弦信号的傅里叶变换 对于余弦信号 2cos )(0001t j t j e e t t f ωωω-+= = ∞<<∞-t 其频谱函数 [])(2)(22 1 )(001 ωωπδωωπδω++-=j F [] )()(00ωωδωωδπ++-= (3-77) 对于正弦信号 j e e t t f t j t j 2sin )(0002ωωω--= = ∞<<∞-t 有

[])(2)(221 )(002ωωπδωωπδω+--= j j F [] )()(00ωωδωωδπ--+=j (3-78) 它们的波形及其频谱如图3-25所示。 ω 00ω 图 3 - 25 三、单位冲激序列)(t T δ的傅里叶变换 若信号)(t f 为单位冲激序列,即 ∑∞ -∞ =-== =n T nT t t t f )()()(δδ (3-79) 则其傅里叶级数展开式为

傅里叶级数课程及习题讲解范文

第15章 傅里叶级数 § 傅里叶级数 一 基本内容 一、傅里叶级数 在幂级数讨论中 1()n n n f x a x ∞ ==∑,可视为()f x 经函数系 线性表出而得.不妨称 2{1,,,,,}n x x x L L 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数. 1 三角函数系 函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx L L 称为三角函数系.其有下面两个重要性质. (1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零. 对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:L ,定义两个函数的内积为 (),()()()d b n m n m a x u x u x u x x =??, 如果 0 (),() 0 n m l m n x u x m n ≠=?=? ≠?,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:L 为正交系. 由于 1, sin 1sin d 1cos d 0 nx nx x nx x ππ π π --=?=?=??; sin , sin sin sin d 0 m n mx nx mx nx x m n π π π-=?=?=?≠?? ; cos , cos cos cos d 0 m n mx nx mx nx x m n π π π-=?=?=?≠??; sin , cos sin cos d 0 mx nx mx nx x π π -=?=? ; 2 1, 11d 2x ππ π -==?, 所以三角函数系在[],ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数 称为三角级数,其中011,,,,,,n n a a b a b L L 为常数 2 以2π为周期的傅里叶级数 定义1 设函数()f x 在[],ππ-上可积, 1 1 (),cos ()cos d k a f x kx f x kx x π π π π -= = ? 0,1,2,k =L ;

相关主题
文本预览
相关文档 最新文档