当前位置:文档之家› 概率论与数理统计-第32讲

概率论与数理统计-第32讲

第32讲协方差与相关系数

{}2[()][()],,()()(),,()()().

.3 E X E X X Y D X Y D X D Y X Y D X Y D X D Y Y Y E +=+++=-+-上一讲中方差性质:

设是两个随机变量 则有

特别地 若与相互独立时 则有 {}[()][()]0

E X E X Y E Y --≠那么X Y 与不相互独立协方差

{}[()][(,)]0E X E X Y E Y X Y --=即, 若与相互独立时 则有

当 时,称X 与Y 正相关;

时,称X 与Y 负相关; 当 时,称X 与Y 不相关.

{}

[()][()](,:,)E X E X Y E Y X Y Cov X Y --数值为随机变量与的协方差,记为定义 即{}.

(,)[()][()]Cov X Y E X E X Y E Y =--(,)Cov X Y X Y 协方差反映了随机变量与的线性相关性:(,)0Cov X Y >(,)0Cov X Y <(,)0Cov X Y =()()()2(,)

++D X Y D X D Y Cov X Y =+此时

{}

[()][()]E X E X Y E Y --由于 {}

()()()()=--+E XY XE Y YE X E X E Y ()()()()()()()

=--+E XY E X E Y E Y E X E X E Y ()()().

=-E XY E X E Y (,)((.

)())=-E XY E X E C X Y Y ov 协方差的计算公式:

012

1 0 1 V U

-{1}{1}{0,1}=-=-=-===U X Y X Y {+1}={1}?==X Y V (1,1)(0,1)(0)(1)1/4;P U V P X Y P X P Y =-========故而 1/4000 1/4 1/4

1/40

0(1,0)(1,2)0;P U V P U V =-===-==故而,,1/201,,,.

X Y U X Y V X Y U V -=-=+设相互独立且均服从参数为的分布记 求与的例: 协方差1~(1,12),~(1,12),, X B Y B 解: 由于 且两者独立 则

012

1 0 1/4 00 1/4 0 1/4 1 0 1/4 0V U -()

1/4

1/2

1/4

P U i =() 1/4 1/2 1/4

=P V j 从而(,)()()()0.

Cov U V E UV E U E V =-=因此

()(1)1140014021411140;

E UV =-??+??+??+??=故()(1)1401/21140=-?+?+?=;

E U

12121.(,)(,);

2.(,)();

3.(,)(,),,;

4.(,)(,)(,).

Cov X Y Cov Y X Cov X X D X Cov aX bY ab Cov X Y a b Cov X X Y Cov X Y Cov X Y ===?+=+其中为两个实数{}

(,)[()][()]()()()

=Cov X Y E X E X Y E Y E XY E X E Y =---注意到协方差的性质:

3(,)2(,)=+Cov X X Cov Y X 3()2(,).

=+D X Cov X Y (3,)(2,)

=+Cov X X Cov Y X (1)(32,)Cov X Y X + 思考:

(2)(32)D X Y - (32,32).

Cov X Y X Y --或者利用来做(3)(2)2(3,2)

=+-+-D X D Y Cov X Y (3(2))

=+-D X Y 9()4()12(,).

=+-D X D Y Cov X Y ?

=?

,,1/201,,,1 X Y U X Y V X Y U V -=-=+对于例:设相互独立且均服从参数为的分布记 利用协方差性质例2: 求与的协方差.解: 由于,, X Y 而与同分布因此它们的方差相等故

()(,)(,)()

()(),

D X Cov X Y Cov Y X D Y D X D Y =+--=-(,)(,)(,)(,)

Cov X X Cov X Y Cov Y X Cov Y Y =++-+-(,)(,)

Cov U V Cov X Y X Y =-+(,)0.

Cov U V =

协方差是有量纲的数字特征,为了消除其量纲的影响,引入一个新概念:

定义:数值 称为随机变量X 与Y 的相关系数, 是没有量纲的. (,)

()()

ρ=XY Cov X Y D X D Y **()

()

,,

()()--==X E X Y E Y X Y D X D Y 若记标准化变量 则 *

*(,.

)ρ=XY Cov X Y

1. 1;

2. 1,()11010.

XY XY XY XY a b P Y a bX b b ρρρρ≤=?=+==>=-<存在常数,使 特别的,时,;时,相关系数的性质:

说明:上面的性质也可写为:

2()()0,((,))()(),,,,() 1.

D X D Y Cov X Y D X D Y X Y a b P Y a bX ≠≤=+=当

时有 其中等号当且仅当与之间有严格的线性关系即存在常数使

相关系数是一个用来表征两个随机变量之间线性关系密切程度的特征数, 有时也称为“线性相关系数”. ρXY 当

较大时,表明X 与Y 的线性关系程度较好; 当

较小时,表明X 与Y 的线性关系程度较差. ρXY 特别地,

时,表明X 与Y 之间以概率1存在线性关系; 1ρ=XY 当

时,表明X 与Y 之间没有线性关系,称 两个变量不相关.

0XY ρ=

,,,XY X Y X Y ρ 抛一枚均匀的硬币十次若令分别表示出现正面和反面的次数求和的相关系数例3: .

,10,

Y X =-由题意知 解: XY X Y ρ那么和与相关系数为

(,)(,10)=()()()(10)XY Cov X Y Cov X X D X D Y D X D X ρ-=-()= 1.()()

D X D X D X -=-(,10)(,10)(,)(10)()10() (10)()

-=+-=?-?--=Cov X X Cov X Cov X X E X E X D X D X D X

概率论与数理统计第4章作业题解

第四章作业题解 4.1 甲、乙两台机床生产同一种零件, 在一天内生产的次品数分别记为 X 和 Y . 已知 ,X Y 的概率分布如下表所示: 如果两台机床的产量相同, 问哪台机床生产的零件的质量较好? 解: 11.032.023.014.00)(=?+?+?+?=X E 9.0032.025.013.00)(=?+?+?+?=Y E 因为 )()(Y E X E >,即乙机床的平均次品数比甲机床少,所以乙机床生产的零件质量较好。 4.2 袋中有 5 个球, 编号为1,2,3,4,5, 现从中任意抽取3 个球, 用X 表示取出的3 个球中的 最大编号,求E (X ). 解:X 的可能取值为3,4,5. 因为1.01011)3(35 == = =C X P ;3.010 3)4(35 2 3== = =C C X P ; 6.010 6)5(3 5 24=== =C C X P 所以 5.46.053.041.03)(=?+?+?=X E 4.3 设随机变量X 的概率分布1 {}(0,1,2,),(1) k k a P X k k a +===+ 其中0a >是个常 数,求()E X 解: 1 1 2 1 1 1 ()(1) (1) (1) k k k k k k a a a E X k k a a a -∞ ∞ +-=== = +++∑∑ ,下面求幂级数11 k k k x ∞ -=∑的和函数, 易知幂级数的收敛半径为1=R ,于是有 1 2 1 1 1()( ),1,1(1) k k k k x k x x x x x ∞ ∞ -==''=== <--∑ ∑

概率论与数理统计及其应用第二版课后答案浙江大学

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投 掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T,则再抛一颗骰子,观 察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{Λ=S ;(3)},,,,{ΛTTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,就是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___ ___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375.0)()(])[()(=-=-=AB P B P B A S P B A P , 875.0)(1)(___ --=AB P AB P , 5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。 解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为

应用概率论与数理统计试题

试卷 学期: 2011至 2012 学年度第一学期 课程:应用概率论与数理统计专业: 班级:姓名:学号: 解答下列各题(每小题3分,共计51分) 1.设随机事件A与B互不相容,P(A)=0.2,P(B)=0.4,求P(B|A)2.设事件A、B满足P(A B)=0.2,P(A)=0.6,求P(AB)。 3.某人射击三次,其命中率为0.8,求三次中至多命中一次的概率为。

4.已知随机变量X 的分布函数为 F(x)= ????? ????? ?≥<≤<≤<3131321021 00x x x x , 求P }{1X =。 5.已知离散型随机变量X的分布函数为F(x)=???? ???≥<≤<≤<4 ,143,6.031,1.010x x x x ,, 求1}X |4P{X ≠<。 6.设随机变量X 的概率密度为 ??? ??<<-=,, ;x ,x )x (f 其他0224求P {-1

7.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,求F(3)。 8.一口袋装有3只红球,2只黑球,今从中任意取出2只球,求这两只恰为一红一黑的概率. 9.某仪器上装有4只独立工作的同类元件,已知每只元件的寿命(以小时计)σ),当工作的元件不少于2只时,该仪器能正常工作。 X~N(5000,2 求该仪器能正常工作5000小时以上的概率。 10.设事件A与B互不相容,P(A)=0.2,P(B)=0.3,求P(B A?). 11.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,求第二次取到的是正品的概率.

概率论与数理统计知识点总结详细

概率论与数理统计知识点 总结详细 Newly compiled on November 23, 2020

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计在大数据分析中的应用3篇 概率论与数理统计

概率论与数理统计在大数据分析中的应用3篇概率论与 数理统计 精品文档,仅供参考

概率论与数理统计在大数据分析中的应用3篇概率 论与数理统计 在大数据时代,利用概率论与数理统计方法来对繁杂数据进行分析与挖掘不失为是一种简单高效的方法。下面是本站为大家带来的,希望能帮助到大家! 概率论与数理统计在大数据分析中的应用1 概率论与数理统计知识是数学知识体系中的重要分支,对日常生活有着广泛的理论指导。基于此,本文首先介绍了概率论与数理统计的主要学科知识,其次对于概率论与数理统计知识在日常生活中的应用,从等概率问题、序列概率问题、几何概率模型问题、统计模型、常识性统计几个方面,进行具体的研究与分析,最后对概率与数理统计的应用做出展望。 概率论和数理统计是高等数学中的重要组成部分。在自然界和人们的日常生活中,随机现象与随机事件非常普遍,概率论和数理统计是对某一事件可能结果的客观分析和理性判断。只要我们细心研究就会发现,概率论和数理统计在日常生活中有着多方面的应用。 一、概率论与数理统计知识 概率论(Probability Theory)是研究随机现象数量规律的数学分支,数理统计(Mathematics Statistics)是以概率论为基础,研究人类社会和自然界中的随机现象变化规律的

一种数学模型[1]。概率论与数理统计知识主要包含事件间关系的确定、概率的计算、概率计算模型、概率计算公式、相关性分析、参数估计、假设检验与回归分析、随机变量知识、中心极限定理等等[2]。概率论与数理统计来源与生活,是对生活中的多种随机现象的逻辑分析与抽象总结。在日常生活中,也能找到多种应用概率论与数理统计知识的具体体现。 二、概率论与数理统计在日常生活中的具体应用体现 (一)概率论与数理统计在等概率事件中的应用 等概率事件是指每一个随机事件发生的概率都是相同的,等概率问题是生活中常见的问题,小到我们玩狼人杀时的身份抽取、值日生分组中的抓阄分组,大到工厂的货物质检、食品安全部门的卫生抽检,都能应用到概率论与数理统计的相关知识。 例1:一个罐头生产厂将密封不严、颜色不达标、微生物超標的罐头列为次品。该工厂每月生产十五批货。一批货的次品率是1/20,数量很大,有几万个,现在随机取9个。问9个里面次品数量大于2个(包括2个)的概率有多少? 解:P(B1)代表9个产品中次品数量大于2的概率 P(B2)代表9个里面次品数量小于1个(包括1个)的概率,也相当于只有一个次品的概率+没有次品的概率 P(B2)=9*(1/20)*(19/20)8 +(19/20)9

概率论与数理统计的发展

数理统计学前沿简介 (陈希孺院士访谈) 一、概率论与数理统计学的产生和发展 记者:陈希孺院士,请你谈谈概率论与数理统计学学科的诞生和发展情况。 陈希孺院士:我们先从数理统计学开始,数理统计学是研究收集数据、分析数据并据以对所研究的问题作出一定的结论的科学和艺术。数理统计学所考察的数据都带有随机性(偶然性)的误差。这给根据这种数据所作出的结论带来了一种不确定性,其量化要借助于概率论的概念和方法。数理统计学与概率论这两个学科的密切联系,正是基于这一点。 统计学起源于收集数据的活动,小至个人的事情,大至治理一个国家,都有必要收集种种有关的数据,如在我国古代典籍中,就有不少关于户口、钱粮、兵役、地震、水灾和旱灾等等的记载。现今各国都设有统计局或相当的机构。当然,单是收集、记录数据这种活动本身并不能等同于统计学这门科学的建立,需要对收集来的数据进行排比、整理,用精炼和醒目的形式表达,在这个基础上对所研究的事物进行定量或定性估计、描述和解释,并预测其在未来可能的发展状况。例如根据人口普查或抽样调查的资料对我国人口状况进行描述,根据适当的抽样调查结果,对受教育年限与收入的关系,对某种生活习惯与嗜好(如吸烟)与健康的关系作定量的评估。根据以往一般时间某项或某些经济指标的变化情况,预测其在未来一般时间的走向等,做这些事情的理论与方法,才能构成一门学问——数理统计学的内容。

这样的统计学始于何时?恐怕难于找到一个明显的、大家公认的起点。一种受到某些著名学者支持的观点认为,英国学者葛朗特在1662年发表的著作《关于死亡公报的自然和政治观察》,标志着这门学科的诞生。中世纪欧洲流行黑死病,死亡的人不少。自1604年起,伦敦教会每周发表一次“死亡公报”,记录该周内死亡的人的姓名、年龄、性别、死因。以后还包括该周的出生情况——依据受洗的人的名单,这基本上可以反映出生的情况。几十年来,积累了很多资料,葛朗特是第一个对这一庞大的资料加以整理和利用的人,他原是一个小店主的儿子,后来子承父业,靠自学成才。他因这一部著作被选入当年成立的英国皇家学会,反映学术界对他这一著作的承认和重视。 这是一本篇幅很小的著作,主要内容为8个表,从今天的观点看,这只是一种例行的数据整理工作,但在当时则是有原创性的科研成果,其中所提出的一些概念,在某种程度上可以说沿用至今,如数据简约(大量的、杂乱无章的数据,须注过整理、约化,才能突出其中所包含的信息)、频率稳定性(一定的事件,如“生男”、“生女”,在较长时期中有一个基本稳定的比率,这是进行统计性推断的基础)、数据纠错、生命表(反映人群中寿命分布的情况,至今仍是保险与精算的基础概念)等。 葛朗特的方法被他同时代的政治经济学家佩蒂引进到社会经济问题的研究中,他提倡在这类问题的研究中不能尚空谈,要让实际数据说话,他的工作总结在他去世后于1690年出版的《政治算术》一书中。 当然,也应当指出,他们的工作还停留在描述性的阶段,不是现代意义下的数理统计学,那时,概率论尚处在萌芽的阶段,不足以给数理统计学的发展提供充分的理论支持,但不能由此否定他们工作的重大意义,作为现代数理统计学发展的几个源头之一,他们以及后续学者在人口、社会、经济等

概率论与数理统计在电子专业的应用

概 率 统 计 在 电 子 专 业 的 应 用 姓名:储东明 学号:1305062023 专业班级:电子信息工程 成绩: 教师评语:

论概率统计在电子专业中的应用 概率论与数理统计是一门十分重要的大学数学基础课,也是唯一一门研究随机现象规律的学科,它指导人们从事物表象看到其本质.的概率论与数理统计学实际应用背景很广范。正如世界知名概率学家、华裔数学家钟开莱于1974年所说:“在过去半个世纪中,概率论从一个较小的、孤立的课题发展为一个与数学许多其它分支相互影响、内容宽广而深入的学科。”概率论与数理统计学应用于自然科学、社会科学、工程技术、经济、管理、军事和工农业生产等领域.经过不断的发展,学科本身的理论和方法日趋成熟,在社会生活中,就连面试、赌博、彩票、体育和天气等等也都会涉及到概率学知识。近年来,概率统计知识也越来越多的渗透到诸如物理学、遗传学、信息论等学科当中。尤其在电子信息通信方面尤为重要,甚至是通信原理的基础课程。可以说,概率统计是当今数学中最活跃,应用最广泛的学科之一。在此文中,进一步讨论概率统计在电子信息方面的应用。 概率论与数理统计在电子电路的随机信号处理及实验中有着广泛的应用,通信工程中信号的接收和发射,都需要概率论与数理统计学的理论作为基础。因为,信号是信息的载体。信号源的输出都是随机的,怎样在随机信号中找出我们所需要的信息,就需要使用统计方法来描述。同时,对于接收者来说怎样从一个不缺定或不可预测的信号中获取我们所需要的信息,仍然需要再次利用统计学中的知识。 根据概率论与数理统计中的知识所描述,事件的概率就是对于一次随机试验E,S是它的样本空间,那么对于随机试验E中的每一个

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案 第七章参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2 的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σμ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。 解:(1)X c θc θc c θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θ n n n i i x x x c θ x f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

概率论与数理统计概率历史的介绍

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,

而且还有数学上的问题. “应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评. 3.统计定义的历史脉络 概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布?伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”. 事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯?米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用 单位:兴隆场初级中学姓名:姜宏琼 摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。 关键字:概率、保险、彩票、统计、数据、应用 由赌徒的问题引起,概率逐渐演变成一门严谨的科学。1654年,有一个法国赌徒梅勒遇到了一个难解的问题:梅勒和他的一个朋友每人出30个金币,两人谁先赢满3局谁就得到全部赌注。在游戏进行了一会儿后,梅勒赢了2局,他的朋友赢了1局。这时候,梅勒由于一个紧急事情必须离开,游戏不得不停止。他们该如何分配赌桌上的60个金币的赌注呢?梅勒的朋友认为,既然他接下来赢的机会是梅勒的一半,那么他该拿到梅勒所得的一半,即他拿20个金币,梅勒拿40个金币。然而梅勒争执道:再掷一次骰子,即使他输了,游戏是平局,他最少也能得到全部赌注的一半——30个金币;但如果他赢了,并可拿走全部的60个金币。在下一次掷骰子之前,他实际上已经拥有了30个金币,他还有50%的机会赢得另外30个金币,所以,他应分得45个金币。 赌本究竟如何分配才合理呢?后来梅勒把这个问题告诉了当时法国著名的数学家帕斯卡,这居然也难住了帕斯卡,因为当时并没有相关知识来解决此类问题,而且两人说的似乎都有道理。帕斯卡又写信告诉了另一个著名的数学家费马,于是在这两位伟大的法国数学家之间开始了具有划时代意义的通信,在通信中,他们最终正确地解决了这个问题。他们设想:如果继续赌下去,梅勒(设为甲)和他朋友(设为乙)最终获胜的机会如何呢?他们俩至多再赌2局即可分出胜负,这2局有4种可能结果:甲甲、甲乙、乙甲、乙乙。前3种情况都是甲最后取胜,只有最后一种情况才是乙取胜,所以赌注应按3:1的比例分配,即甲得

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

概率论与数理统计及其应用第二版课后答案

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录 投掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰 子,观察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求 )])([(),(),(),(___ ___ AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375.0)()(])[()(=-=-=AB P B P B A S P B A P , 875.0)(1)(___ --=AB P AB P , 5 .0)(625.0)])([()()])([()])([(___ =-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为 72.0900 648 = 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。 解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为 48344=??个,所以出现奇数的概率为 48.0100 48 = (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为 48.0100 48 = 5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。 (1)4只中恰有2只白球,1只红球,1只黑球。 (2)4只中至少有2只红球。 (3)4只中没有白球。 解: (1)所求概率为338 4 12 1 31425=C C C C ;

概率论与数理统计知识点总结详细

概率论与数理统计知识 点总结详细 Document number:PBGCG-0857-BTDO-0089-PTT1998

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计

《概率论与数理统计》 姓名:黄淑芹 学号:1543201000276 班级:数学与应用数学E 时间:2017年6月

概率论与数理统计 摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。 关键词:概率、统计、数学期望、方差、实际问题、应用 概率论与数理统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规律进行演绎和归纳的科学。随着社会的不断发展,概率论与数理统计的知识越来越重要,运用抽样数据进行推断已经成为现代社会一种普遍适用并且强有力的思考方式。目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。本文将就概率论与数理统计的方法与思想,在日常生活中的应用展开一些讨论,,推导出某些表面上并非直观的结论,从中可以看出概率方法与数理统计的思想在解决问题中的高效性、简捷性和实用性。 (一)、概率 要学习与概率有关的知识,首先要知道事件的定义与分类及与它们有关的运算性质: 随机事件 在抛掷一枚均匀硬币的试验中,“正面向上”是一个随机事件,可用A={正面向上}表示。 【1】随机试验中的每一个可能出现的试验结果称为这个试验的一个样本点,记作ωi。全体样本点组成的集合称为这个试验的样本空间,记作Ω.即Ω={ω1,ω2,…,ωn,…}。仅含一个样本点的随机事件称为基本事件,含有多个样本点的随机事件称为复合事件。 在随机试验中,随机事件一般是由若干个基本事件组成的。样本空间Ω的任一子集A称为随机事件。属于事件A的样本点出现,则称事件A发生。例如,在试验E中,令A表示“出现奇数点”,A就是一个随机事件,A还可以用样本点的集合形式表示,即A={1,3,5},它是样本空间Ω的一个子集,在试验中W中,令B表示“灯泡的寿命大于1000小时”,B也是一个随机事件,B也可用样本点的集合形式表示,即B={t|t>1000},B也是样本空间的一个子集。

(完整word版)概率论与数理统计教案(48课时)

《概率论与数理统计》课程教案 第一章 随机事件及其概率 一.本章的教学目标及基本要求 (1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,; (3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。了解概 率的公理化定义。 (5) 理解条件概率、全概率公式、Bayes 公式及其意义。理解事件的独立性。 二.本章的教学内容及学时分配 第一节 随机事件及事件之间的关系 第二节 频率与概率 2学时 第三节 等可能概型(古典概型) 2 学时 第四节 条件概率 第五节 事件的独立性 2 学时 三.本章教学内容的重点和难点 1) 随机事件及随机事件之间的关系; 2) 古典概型及概率计算; 3)概率的性质; 4)条件概率,全概率公式和Bayes 公式 5)独立性、n 重伯努利试验和伯努利定理 四.教学过程中应注意的问题 1) 使学生能正确地描述随机试验的样本空间和各种随机事件; 2) 注意让学生理解事件,,,,,A B A B A B A B AB A ???-=Φ…的具体含义,理解 事件的互斥关系; 3) 让学生掌握事件之间的运算法则和德莫根定律; 4) 古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组 合,复习排列、组合原理; 5) 讲清楚抽样的两种方式——有放回和无放回; 五.思考题和习题 思考题:1. 集合的并运算?和差运算-是否存在消去律?

2. 怎样理解互斥事件和逆事件? 3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点? 习题: 第二章 随机变量及其分布 一.本章的教学目标及基本要求 (1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续 型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律 或密度函数及性质; 二.本章的教学内容及学时分配 第一节 随机变量 第二节 第二节 离散型随机变量及其分布 离散随机变量及分布律、分布律的特征 第三节 常用的离散型随机变量 常见分布(0-1分布、二项分布、泊松分布) 2学时 第四节 随机变量的分布函数 分布函数的定义和基本性质,公式 第五节 连续型随机变量及其分布 连续随机变量及密度函数、密度函数的性质 2学时 第六节 常用的连续型随机变量 常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时 三.本章教学内容的重点和难点 a) 随机变量的定义、分布函数及性质; b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何 事件的概率; c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布); 四.教学过程中应注意的问题 a) 注意分布函数(){}F x P X x =<的特殊值及左连续性概念的理解; b) 构成离散随机变量X 的分布律的条件,它与分布函数()F x 之间的关系; c) 构成连续随机变量X 的密度函数的条件,它与分布函数()F x 之间的关系; d) 连续型随机变量的分布函数()F x 关于x 处处连续,且()0P X x ==,其中x 为任

【概率论】概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用 材料学院 1211900133 缪克松

摘要:数学在生活中的应用越来越广,而概率也发挥着重要的作用。它不仅在科学技术、工 农业生产和经济管理中发挥着重要作用。而且它常常就发生在我们身边, 出现在我们每一 个人的生里, 只要我们善于利用概率的知识去解决问题, 概率论就会对我们的生活产生积极 的影响。 关键字:概率论;数理统计;生活 概率论与数理统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规 律进行演绎和归纳的科学。随着社会的不断发展,概率论与数理统计的知识越来越重要, 运用抽样数据进行推断已经成为现代社会一种普遍适用并且强有力的思考方式。目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与 人们生活息息相关的领域。本文将就概率论与数理统计的方法与思想,在日常生活中的应 用展开一些讨论,从中可以看出概率方法与数理统计的思想在解决问题中的高效性、简捷 性和实用性。 一.随机现象与概率 在自然界和现实生活中, 一些事物都是相互联系和不断发展的。在它们彼此间的联系 和发展中, 根据它们是否有必然的因果联系, 可以分成两大类: 一类是确定性的现象, 指 在一定条件下, 必定会导致某种确定的结果。如, 在标准大气压下, 水加热到 100 ℃, 就 必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性的现象。这类现象在 一定条件下的结果是不确定的。例如, 同一个工人在同一台机床上加工同一种零件若干个, 它们的尺寸总会有一点差异。又如, 在同样条件下, 进行小麦品种的人工催芽试验, 各颗 种子的发芽情况也不尽相同有强弱和早晚之别等。为什么在相同的情况下, 会出现这种不 确定的结果呢? 这是因为, 人们说的“相同条件”是指一些主要条件来说的, 除了这些主 要条件外, 还会有许多次要条件和偶然因素是人们无法事先预料的。这类现象, 人们无法 用必然性的因果关系, 对现象的结果事先做出确定的答案。事物间的这种关系是属于偶然 性的, 这种现象叫做偶然现象,或者叫做随机现象。概率, 简单地说, 就是一件事发生的可能性的大小。比如: 太阳每天都会东升西落, 这件事发生的概率就是 100% 或者说是 1, 因为它肯定会发生; 而太阳西升东落的概率就是 0, 因为它肯定不会发生。但生活中的很 多现象是既有可能发生, 也有可能不发生的, 比如某天会不会下雨、买东西买到次品等等, 这类事件的概率就介于 0 和 100% 之间, 或者说 0 和 1 之间。在日常生活中无论是股市涨跌, 还是发生某类事故, 但凡捉摸不定、需要用运气来解释的事件, 都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦, 同时又常常是解决问题的一种有效手段甚 至唯一手段。 二. 社会热点与概率论诠释 社会热点 1 进入 21 世纪后,各种特大自然灾害不断出现,日本发生里氏 9. 0 级强震、冰岛南部冰川火山喷发、印尼地震引发海啸等,“ 2012 地球毁灭之说”是否是真的。 社会热点 2 中国福利彩票巨奖频现,继 2009 年河南彩民独中 3. 6 亿元之后, 2010 年一河南彩民博得 2. 58 亿元,近日浙江一彩民狂揽 5. 65 亿元。这几把接力“火炬”,无 疑让中国福彩业沸腾了,但并非人人都有这样的好运气。 概率论知识———小概率事件必然发生 以上热点 1 和热点 2 都是概率论里提及的小概率事件,意指发生可能性很小的事件。小概率事件的原理又称为似然推理,即如果一个事件发生的概率很小,那么在一次 试验中,可以把它看成是不可能事件。如考虑福彩双色球每一注中 500 万大奖的概率为p,则 p=1C633* C116=11 107 568* 16≈5. 64*10^-8,是典型的小概率事件,在一次

概率论与数理统计在日常生活中的应用

概 率 论 与 数 理 统 计 在 日 常 经 济 生 活 中 的 应 用 内容摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。 关键词:概率论 数理统计 经济生活 随机变量 贝叶斯公式 第一章 基本知识 §1.1 概率的重要性质 1.1.1定义 设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率。 概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P (3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===n k k n k k A P A P 1 1 )()( (n 可以 取∞) 1.1.2 概率的一些重要性质 (i ) 0)(=φP (ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===n k k n k k A P A P 1 1 )()( (n 可以取∞) (iii )设A ,B 是两个事件若B A ?,则)()()(A P B P A B P -=-,)A ()B (P P ≥

《概率论与数理统计》浙江大学第四版课后习题答案

概率论与数理统计习题答案 第四版 盛骤 (浙江大学) 浙大第四版(高等教育出版社) 第一章 概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) ??? ????=n n n n o S 1001, ,n 表小班人数 (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) S={10,11,12,………,n ,………} (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。 ([一] (3)) S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生。 表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。 表示为: C AB 或AB -ABC 或AB -C

(3)A ,B ,C 中至少有一个发生 表示为:A+B+C (4)A ,B ,C 都发生, 表示为:ABC (5)A ,B ,C 都不发生, 表示为:C B A 或S - (A+B+C)或C B A ?? (6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。故 表示为:C A C B B A ++。 (7)A ,B ,C 中不多于二个发生。 相当于:C B A ,,中至少有一个发生。故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。 相当于:AB ,BC ,AC 中至少有一个发生。故 表示为:AB +BC +AC 6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0. 7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾). 从而由加法定理得 P (AB )=P (A )+P (B )-P (A ∪B ) (*) (1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6, (2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。 7.[四] 设A ,B ,C 是三事件,且0)()(,4 1 )()()(=== ==BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )

相关主题
文本预览
相关文档 最新文档