当前位置:文档之家› 热管的特性,结构与工作原理

热管的特性,结构与工作原理

热管的特性,结构与工作原理
热管的特性,结构与工作原理

热管的特性,结构与工作原理

晨怡热管

从热力学的角度来看,物体的吸热、放热是相对的,凡是有温差存在时,就必然发生热从高温处传递到低温处,这是自然界和工程技术领域中极普遍的一种现象,而热传递的方式有三种:辐射、对流、传导,其中以热传导为最快。1963年美国Los Alamos 国家实验室的 G.M.Grover发明了一种称作为『热管』的传热组件,它充分利用热传导原理与致冷介质快速热传递性质,透过热管将发热物体的热量迅速传递到体外,导热能力超过了任何已知金属的导热能力。

热管的特性:

1。热管传热能力高?因为热管的传热主要靠工质相变过程中吸收.释放气化潜热和蒸汽流的传热,所以它的传热能力较其他导热材料高几十倍。?2.热管的均温特性好

热管工作时,管内蒸汽处于饱和状态,蒸汽流动和相变时的温差小,所以沿热管蒸发端表面的温度梯度很小,可自动地形成均匀的热流温度.

3。具有可变热流密度的能力?由于热管中的蒸发和冷凝空间是分开的,若在蒸发端输入高热流密度,则在冷凝端可得到低的输出热流密度,实现“热变压器”的作用。?4.具有良好的恒温特性

采用一种充有惰性气体的可控热管,当输入端的热量变化时,因蒸汽压力的变化使冷凝端的冷凝面积改变,以维持热源温度的恒定。

热管典型结构以及工作原理:

热管由管壳﹑吸液芯和工质组成,热管的工作段可分为蒸发段,绝热段和冷凝段三部分。当蒸发端收热时,通过管壁使浸透于细液芯中的工质蒸发,蒸汽在蒸发和冷凝端之间所形成的压差作用下流向冷凝端,由于冷凝端受到冷却作用,蒸汽凝结为液体,释放汽化潜能。冷凝后的气体,靠吸液芯与液体相结合所产生的毛细力作用,将冷凝液输送回蒸发段,以形成工作循环。

热管规格如下:

直径 mm长度 mm 备注

3 0-280 圆热管烧结 / 铜网

40-280 圆热管烧结 / 铜网

5 0-280 圆热管烧结 / 铜网

6 0-280 圆热管烧结/铜网

6.350-280 圆热管烧结 / 铜网

8 0-280圆热管烧结 / 铜网

热管工质特性如下表:

液芯类型:

单层.多层丝网格吸液芯,烧结粉末吸液芯,轴向槽道吸液芯,组合型吸液芯. 常用吸液芯特性如下表:

热管折弯工艺:

折 弯 规 格

管径(m m) 最小折弯 R (mm ) 建议 R (m m)

最小折弯角 θ 建议弯角 θ

Φ 3

9 12 〉 90 ° 〉 120 ° Φ 4

12 16 Φ 5

15 20 Φ 6

18 24 Φ 8

24 32 Φ 9

27 36 Φ 9.35 28 37 热管的传热原理及其应用特点

在众多的传热元件中,热管是人们所知的最有效的传热元件之一,它可将大量的热量通过其很小截面积远距离地传输而无需外加动力。国际上对热管技术的研究和应用是在20世纪60年代开始的。我国在这方面的研究起始于上世纪70年代,当时主要侧重的方向为电子器件冷却和空间飞行器上的应用。80年代初,我国的热管研究和开发重点转向节能和能源的合理利用,相继开发了热管气-气换热器、热管余热锅炉、高温热管蒸汽发生器等各类热管产品。由于碳钢—水重力热管的结构简单、价格低廉、制造方便、易于推广,使得此类热管得到了广泛的应用。

随着科学技术的不断提高,热管研究和应用的领域也在不断拓宽。目前,热管及热管换热器已广泛应用于石油、化工、动力、冶金、建材、轻工等领域的高效传热设备,以及电子装置芯片冷却、笔记本电脑CPU 冷却及电路控制板等的冷却。

目前,除微型热管已批量化、大规模生产外,工业中余热回收用的热管换热器由于各种设备规模、大小、使用情况的不同,几乎每台设备都根据设备的工艺条件、现场情况设计、制造。

一、热管工作原理

热管是一种具有高导热性能的传热元件,它通过在全封闭真空管壳

内工质的蒸发与凝结来传递热量,具有极高的导热性、良好的等温

性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度

等一系列优点。由热管组成的热管换热器具有传热效率高、结构紧

凑、流体阻损小、有利于控制露点腐蚀等优点。目前已广泛应用于

冶金、化工、炼油、锅炉、陶瓷、交通、轻纺、机械等行业中,作为

废热回收和工艺过程中热能利用的节能设备,取得了显著的经济效

益。

典型的重力热管如图所示,在密闭的管内先抽成真空,在此状态下充入适量工质,在热管的下端加热,工质吸收热量汽化为蒸汽,在微小的压差下,上升到热管上端,并向外界放出热量,凝结为液体。冷

凝液在重力的作用下,沿热管内壁返回到受热段,并再次受热汽化,如此循环往复,连续不断的将热量由一端传向另一端。由于是相变传热,因此热管内热阻很小,

热管的高导热能力与银、铜、铝等金属相比,单位重量的热管可多传递几个数量级的热量,所以能以较小的温差获得较大的传热率,且结构简单,具有单向导热的特点,特别是由于热管的特有机理,使冷热流体间的热交换均在管外进行,这就可以方便地进行强化传热。此外,由于热管内部一般抽成真空,工质极易沸腾与蒸发,热管启动非常迅速。

热管这种传热元件,可以单根使用,也可以组合使用,根据用户现场的条件,配以相应的流通结构组合成各种形式换热器,热管换热器具有传热效率高、阻力损失小、结构紧凑、工作可靠和维护费用少等多种优点,它在空间技术、电子、冶金、动力、石油、化工等各种行业都得到了广泛的应用。

二、热管换热器的类型与基本结构

热管换热器属于热流体与冷流体互不接触的表面式换热器。热管换热器显著的特点是:结构简单,换热效率高,在传递相同热量的条件下,热管换热器的金属耗量少于其他类型的换热器.换热流体通过换热器时的压力损失比其他换热器小,因而动力消耗也小。由于冷、热流体是通过热管换热器不同部位换热的,而热管元件相互又是独立的,因此即使有某根热管失效、穿孔也不会对冷、热流体间的隔离与换热有多少影响。此外,热管换热器可以方便地调整冷热侧换热面积比,从而可有效地避免腐蚀性气体的露点腐蚀。热管换热器的这些特点正越来越受到人们的重视,其用途亦日趋广泛。

按照热流体和冷流体的状态,热管换热器可分为气—气式、气—汽式、气—液式、液—液式、液—气式.从热管换热器结构形式来看,热管换热器又分为整体式、分离式和组合式:

1、整体式热管换热器

该换热器是由许多单根热管组成。热管数量的多少取决于换热量的大小.

为了提高气体的换热系数,往往采取在管外加翅片的方法,这样可使所需

要的热管数目大大减少.整体式热管换热器主要分为气—气式、气—汽

式、气—液式。

(1)、热管式气—气换热器主要由壳体、热管元件及冷、热流体进出接

口组成。壳体是一个钢结构件,一侧为热流体通道,另一侧为冷流体通道,

中间由管板分隔。壳体的上、下孔板与盖板间以及设备的两侧均设有保

温层.上、下盖板是可拆卸结构,便于检修和更换热管。

(2)、热管式气—汽换热器(热管蒸汽发生器)系统

该系统由两部分组成:热管蒸汽发生器,汽水分离装置(汽包)。其中热管蒸汽发生器是一种新型的蒸汽发生装置,它以具有良好导热性能的热管作为传热元件。热管受热段采用高频焊接翅片来强化传热,因而整套装置传热效率高,设备结构紧凑,热流体流动阻力小,并且由于热管的存在使得水的受热及汽化均在烟道之外完成,而且汽水分离也在汽包中完成,这就不同于一般的烟道式余热锅炉。同时水套管与汽包之间用导管连接,管道可以任意调节长度,现场布置灵活,全套设备无转动部件,运行可靠,操作维修方便。

2、分离式热管换热器

(1)工作原理

分离式热管也是利用工质的汽化—凝结来传递热量,只是将受热部

分与放热部分分离开来,用蒸汽上升管与冷凝液下降管相联接,可

应用于冷、热流体相距较远或冷、热流体绝对不允许混合的场合.

其工作原理如图所示。

(2)设备的基本结构

由通过热流体的换热器、冷流体的换热器及蒸汽上升管、冷凝液下

降管组合而成。换热器主要由壳体和管束组成。壳体是一个钢结构

件,它分别是热流体和冷流体的流通通道,壳体的上顶下底、两侧均

设有内保温层。为了便于检修和观察积灰情况,及时清除积灰,接

口处设有人孔,设备顶盖也可打开,用于检修和更换管束。每台壳体

内均装有若干片彼此独立的管束。受热段和放热段相对应的各片管

束通过蒸汽上升管和冷凝液下降管连接,构成各自独立的封闭系

统。

三、热管换热器的应用特点

1、整体式换热器特点:

(1)、传热效率高,热管的冷、热侧均可根据需要采用高频焊翅片强化传热,弥补一般气—气换热器换热系数低的弱点。

(2)、有效地避免冷、热流体的串流,每根热管都是相对独立的密闭单元,冷、热流体都在管外流动,并由中间密封板严密的将冷、热流体隔开。

(3)、有效的防止露点腐蚀,通过调整热管根数或调整热管冷热侧的传热面积比,使热管壁温提高到露点温度以上.

(4)、有效的防止积灰,换热器设计可采用变截面结构,保证流体进出口等流速流动,达到自清灰的目的.

(5)、无任何转动部件,没有附加动力消耗,不需要经常更换元件,即使有部分元件损坏,也不影响正常生产。

(6)、单根热管的损坏不影响其它的热管,同时对整体换热效果的影响也可忽略不计。

2、分离式热管换热器的特点:

(1)、装置的受热段和放热段可视现场情况而分开布置,可实现远距离传热,这就给工艺设计带来了较

大的灵活性,也给装置的大型化、热能的综合利用以及热能利用系统的优化创造了良好的条件。(2)、工作介质的循环是依靠冷凝液的位差和密度差的作用,不需要外加动力,无机械运行部件,增加了设备的可靠性,也极大地减少了运营费用。

(3)、放热段与受热段彼此独立,易于实现流体分割、密封、因而能适用于易燃易爆等危险性流体的换热,并且也可实现一种流体与多种流体的同时换热。

(4)、受热段与放热段管束可根据冷、热流体的性能及工艺要求选择不同的结构参数和材质,从而可有效地解决设备的露点腐蚀和积灰问题。

(5)、根据工艺要求,可以将流体顺、逆流混合布置,以适应较宽的温度范围。

(6)、系统换热元件由多片热管管束组成,各片之间相互独立,因此,其中一片甚至几片损坏或失效不会影响整个系统的安全运行.

热管原理热管构造热管制作

热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地.

?从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。从热传递的三种方式:辐射、对流、传导,其中热传导最快.热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。一般热管由管壳、吸液芯和端盖组成.热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。管壁有吸液芯,其由毛细多孔材料构成.热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外

一端.这种循环是快速进行的,热量可以被源源不断地传导开来。

?热管的基本工作?典型的热管由管壳、吸液芯和端盖组成,将管内抽成1。3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。如此循环不己,热量由热管的一端传至另—端。热管在实现这一热量转移的过程中,包含了以下六个相互关联的主要过程:?(1)热量从热源通过热管管壁和充满工作液体的吸液芯传递到(液-—-汽)分界面;

(2)液体在蒸发段内的(液--汽)分界面上蒸发;

(3)蒸汽腔内的蒸汽从蒸发段流到冷凝段;

(4)蒸汽在冷凝段内的汽.液分界面上凝结:? (5)热量从(汽-—液)分界面通过吸液芯、液体和管壁传给冷源:?(6)在吸液芯内由于毛细作用使冷凝后的工作液体回流到蒸发段。

热管的基本特性?热管是依靠自身内部工作液体相变来实现传热的传热元件,具有以下基本

(3)很高的导热性热管内部主要靠工作液体的汽、液相变传热,热阻很小,因此特性。?

具有很高的导热能力。与银、铜、铝等金属相比,单位重量的热管可多传递几个数量级的热量。当然,

高导热性也是相对而言的,温差总是存在的,可能违反热力学第二定律,并且热管的传热能力受到各种

因素的限制,存在着一些传热极限;热管的轴向导热性很强,径向并无太大的改善(径向热管除外)。

? (2)优良的等温性热管内腔的蒸汽是处于饱和状态,饱和蒸汽的压力决定于饱和温度,饱和蒸汽从蒸发段流向冷凝段所产生的压降很小,根据热力学中的方程式可知,温降亦很小,因而热管具有优良的等温性。? (3)热流密度可变性热管可以独立改变蒸发段或冷却段的加热面积,即以较小的加热面积输入热量,而以较大的冷却面积输出热量,或者热管可以较大的传热面积输入热量,而以较小的冷却面积输出热量,这样即可以改变热流密度,解决一些其他方法难以解决的传热难题.? (4)热流方向酌可逆性一根水平放置的有芯热管,由于其内部循环动力是毛细力,因此任意一端受热就可作为蒸发段,而另一端向外散热就成为冷凝段。此特点可用于宇宙飞船和人造卫星在空间的温度展平,也可用于先放热后吸热的化学反应器及其他装置。

(5)热二极管与热开关性能热管可做成热二极管或热开关,所谓热二极管就是只允许热流

向一个方向流动,而不允许向相反的方向流动;热开关则是当热源温度高于某一温度时,热管开始工

(6)恒温特性(可控热管)普通热管的作,当热源温度低于这一温度时,热管就不传热。?

各部分热阻基本上不随加热量的变化而变,因此当加热量变化时,热管备部分的温度亦随之变化。但

人们发展了另一种热管——可变导热管,使得冷凝段的热阻随加热量的增加而降低、随加热量的减少

而增加,这样可使热管在加热量大幅度变化的情况下,蒸汽温度变化极小,实现温度的控制,这就是

(7)环境的适应性热管的形状可随热源和冷源的条件而变化,热管可热管的恒温特性。?

做成电机的转轴、燃气轮机的叶片、钻头、手术刀等等,热管也可做成分离式的,以适应长距离或冲

热流体不能混合的情况下的换热;热管既可以用于地面(重力场),也可用于空间(无重力场)。

上图表示了热管管内汽—液交界面形状,蒸气质量流量,压力以及管壁温度T w和管内蒸气温度

Tv沿管长的变化趋势。沿整个热管长度,汽—液交界处的汽相与液相之间的静压差都与该处的局

部毛细压差相平衡.

△Pc(毛细压头—是热管内部工作液体循环的推动力,用来克服蒸汽从蒸发段流向冷凝段的压力降

△ Pv,冷凝液体从冷凝段流回蒸发段的压力降

△Pl和重力场对液体流动的压力降(△Pg可以是正值,是负值或为零,视热管在重力场中的位置而

定).

因此,△ Pc≥ △Pl +△ P v +△Pg是热管正常工作的必要备件。

由于热管的用途、种类和型式较多,再加上热管在结构、材质和工作液体等方面各有不同之处,故而

对热管的分类也很多,常用的分类方法有以下几种。

(1)按照热管管内工作温度区分热管可分为低温热管(—273---0℃)、常温热管(0—25

0℃)、中温热管[250---450℃)、高温热管(450一1000℃)等.?[2)按照工作

液体回流动力区分热管可分为有芯热管、两相闭式热虹吸管(又称重力热管)、重力辅助热管、旋转热管、电流体动力热管、磁流体动力热管、渗透热管等等。? (3)按管壳与工作液体的组合方式划分(这是一种习惯的划分方法)可分为铜-水热管、碳钢。水热管、铜钢复合—水热管、铝—丙酮热管、碳钢·荣热管、不锈钢.钠热管等等。

(4)按结构形式区分可分为普通热管、分离式热管、毛纫泵回路热管、微型热管、平板热管、径向热管等。? (5)按热管的功用划分可分为传输热量的热管、热二极管、热开关、热控制用热管、仿真热管、制冷热管等等。

热管的相容性及寿命?热管的相容性是指热管在预期的设计寿命内,管内工作液体同壳体不发生显著的化学反应或物理变化,或有变化但不足以影响热管的工作性能。相容性在热管的应用中具有重要的意义.只有长期相容性良好的热管,才能保证稳定的传热性能,长期的工作寿命及工业应用的可能性。碳钢-水热管正是通过化学处理的方法,有效地解决了碳钢与水的化学反应问题,才使得碳钢-水热管这种高性能、长寿命、低成本的热管得以在工业中大规模推广使用。?影响热管寿命的因素很多,归结起来,造成效管不相容的主要形式有以下三方面,即:产生不凝性气体:工作液体热物性恶化:管壳材料的腐蚀、溶解。

(1)产生不凝性气体由于工作液体与管完材料发生化学反应或电化学反应,产生不凝性气体,在热管工作时,该气体被蒸汽流吹扫到冲凝段聚集起来形成气塞,从而使有效冷凝面积减小,热阻增大,传热性能恶化,传热能力降低甚至失效.? (2)工作液体物性恶化有机工作介质在一定温度下,会逐渐发生分解,这主要是由于有机工作液体的性质不稳定,或与壳体材料发生化学反应,使工作介质改变其物理性能,如甲苯、烷、烃类等有机工作液体易发生该类不相容现象。

(3)管壳材料的腐蚀、溶解、工作液体在管壳内连续流动,同时存在着温差、杂质等因素,使管壳材料发生溶解和腐蚀,流动阻力增大,使热管传热性能降低。当管壳被腐蚀后,引起强度下降,甚至引起管壳的腐蚀穿孔,使热管完全失效。这类现象常发生在碱金属高温热管中。

热管制造?1热管零部件及其加工

热管的主要零部件为管壳、端盖(封头)、吸液芯、腰板(连接密封件)四部分。不同类型的热管对这些零部件有不同的要求.? 2 管壳

热管的管壳大多为金属无缝钢管,根据不同需要可以采用不同材料,如铜、铝、碳钢、不锈钢、合金钢等。管子可以是标准圆形,也可以是异型的,如椭圆形、正方形、矩形、扁平形、波纹管等。管径可以从2mm到200mm,甚至更大。长度可以从几毫米到l00米以上。低温热管换热器的管材在国外大多采用铜、铝作为原料。采用有色金属作管材主要是为了满足与工作液体相容性的要求。

3 端盖?热管的端盖具有多种结构形式,它与热管舶连接方式也因结构形式而异。端盖外圆尺寸可稍小于管壳。配合后,管壳的突出部分可作为氩弧焊的熔焊部分,不必再填焊条,焊口光滑乎整质量容易保证。?旋压封头是国内外常采用的一种形式,旋压封头是在旋压机上直

4吸液接旋压而成,这种端盖形式外型美观,强度好、省材省工,是一种良好的端盖形式。?

芯结构?吸液芯是热管的一个重要组成部分。吸液芯的结构形式将直接影响到热管和热管换热器的性能.近年来随着热管技术的发展,各国研究者在吸液芯结构和理论研究方面做了大量工作,下面对一些典型的结构作出简赂的介绍。

1。管芯型式?一个性能优良的管芯应具有:

(1)足够大的毛细抽吸压力,或较小的管芯有效孔径

(2)较小的液体流动阻力,即有较高的渗透率?(3)良好的传热特性,即有小的径

向热阻.

(4)良好的工艺重复性及可靠性,制造简单,价格便宜。?管芯的构造型式大致可分为以下几类:?(1)紧贴管壁的单层及多层网芯此类管芯

多层网的网层之间应尽量紧贴,网与管壁之间亦应贴合良好,网层数有l至4层或更多,各层网的目数可相同或不同.若网层多,则液体流通截面大,阻力小,但径向热阻大;用细网时毛细抽吸力大但流动阻力亦增加。如在近壁因数层用粗孔网,表面一层用细孔网,这样可由表面细孔网提供较大的毛细抽吸压力,通道内的粗孔网使流动阻力较小,但并不能改善径向热胆大的缺点.网芯式结构的管芯可得到较高的毛细力和较告的毛细提升高度,但因渗透率较低,液体回流阻力较大,热管的轴向传热能力受到限制.此外其径向热阻较大,工艺重复性差又不能适应管道弯曲的情况,故在细长热管中逐渐由其它管芯取代。? (2)烧结粉末管芯由一定目数的金属粉末烧结在管内壁面而形成与管壁一体的烧结粉末管芯,也有用金属丝网烧结在管内壁面上的管芯.此种管芯有较高的毛细抽吸力,并较大地改善了径向热阻,克服了网芯工艺重复性差的缺点,但因其渗透率较差,故轴向传热能力仍较轴向槽道管芯及干道式管芯的小。?(3)轴向槽道式管芯在管壳内壁开轴向细槽以提供毛细压力及液体回流通道,槽的截面形状可为矩形,梯形,圆形及变截面槽道,槽道式管芯虽然毛细压头较小,但液体流动阻力甚小,因此可达到较高的轴向传热能力,径向热阻较小,工艺重复性良好,可获得精确幼儿何参数,因而可较正确地计算毛细限,此种管子弯曲后性能基本不变,但由于其抗重力工作能力极差,不适于倾斜(热端在上)工作对于空间的零重力条件则是非常适用的,因此广泛用于空间飞行器。?(4)组合管芯一般管芯往往不能同时兼顾毛细抽吸力及渗透率.为了有高的毛细抽吸力,就要选用更细的网成金属粉末,但它仍的渗透率较差,组合多层网虽然在这方面有所提高,可是其径向热阴大.组合管芯跃能兼顾毛细力和渗透率,从而能获得高的轴向传热能力,而且大多数管芯的径向热阻甚小.它基本上把管芯分成两部分.一部分起毛细抽吸作用,另一部分起液体回流通道作用。

制造工艺?如前所述,构成热管的三个主要组成部分是管壳、管芯和工质。在设计过程中,对答壳和管芯的材料进行合理的选择后就可以开始制作。通常热管的制造过程包括下面的工艺操作,并按一定的程序进行。

1、机械加工--—

2、清洗---

3、管芯制作---

4、清洗--—5、焊接—--6、检漏--—-7、除气--—8、检漏---9、充装--—10、封接—--11、烘烤--—12、检验

实际制造的时候往往能达到20,甚至上百道的工序。这里只是最简单的一些必须工序.

烧结式热管结构

烧结式热管,顾名思义,其毛细结构是通过高温下铜粉烧结制造而成的。我们最常见的水介质烧结式热管制造流程大致为:选取99.5%纯度的铜粉,铜粉单体粒径一定要控制在75~150微米。首先使用工具将外径5mm红铜管内部清除干净,去除毛刺,接着将铜管放到稀硫酸中使用超声波清洗。清洗干净之后我们将得到一根内外壁皆十分光滑、无氧化物的铜管.此时将一根细钢棍插到铜管里(需要工具精确地将钢棍儿固定在铜管的中央,以方便铜粉均匀填充),将铜管底部用铜片暂时封闭。接着就可以把纯铜粉倒入铜管了.装填完毕之后就可以拿到烧结炉进行烧结。在烧结过程中,温度的把控也很重要。一般烧结炉峰值温度控制在800~850度(根据热管产品要求的渗透率规定)。烧结完成之后使用一个辅助工具把铜管加紧,使用工具把钢棍抽出即可。

严格按照上述流程制造的烧结式热管,每个部分的毛细结构渗透率都应该大致相同,铜粉烧结块分布

厚度大致均匀.当我们拆开热管仔细观察,就可以发现该热管的烧结工艺是否过关了。?小知识:这样的热管才算合格?一根热管的基本结构由容器、毛细结构和动作流体三部分组成。很多人都对热管中装的东西很好奇。那么,热管中装载的到底是什么呢?一般来说,热管中的动作流体需要根据热管所工作的温度区间进行选择。对于PC散热,考虑到成本因素,厂商们一般选择的是纯水和部分添加剂。那么,一般热管要装进多少动作流体呢?动作流体装入量太少,会导致流体无法将毛细结构孔隙填充,造成热管蒸发端局部干燥。而动作流体装入过多,则会引发液体阻塞现象,导致冷凝端无法正常工作。因此,热管的直径、毛细结构孔隙率、热管长度都会直接影响到动作液体的填入量.一般来说,最常用的5mm外口径,3。6mm内径,长度为150mm的铜热管动作液体装填量为0。4毫升。区区0.4毫升的填充液,也使得我们有时候敲开热管之后看不到液体的存在.其实看不到液体也没什么关系,在后面的文章里我们将教给大家一个最简单的热管有效性测试方法。

说完动作液体,咱们来看看热管的毛细结构。毛细结构是一根合格热管产品的核心。它主要有三个作用:一是提供冷凝端液体回流蒸发端的通道,二是提供内壁与液体/蒸气进行热传导的通道,三是提供液气产生毛细压力所必须的孔隙。咱们在电脑上能用到的毛细热管有两种结构:沟槽式和烧结式。沟槽式热管是热管毛细结构中比较制造简单的一种,采用整体成型工艺制造,成本是一般烧结式热管的2/3。沟槽式热管生产方便,但缺点十分明显。沟槽式热管对沟槽深度和宽度要求很高,而且其方向性很强。当热管出现大弯折的时候,沟槽式方向性的特性就成了致命缺点,导致导热性能大幅度下跌。而烧结式热管则生产工艺相对比较复杂,成本也比较高。热管烧结对铜粉质量、纯度,单铜粉颗粒直径、烧结温度、烧结均匀度都提出了很高的要求。因此制造一根优异的烧结式热管并非容易的事情。不同工艺和成本制造的烧结热管,热传导能力也是不一样的,我们将在后面的测试中看到. 最后,我们简单了解一下热管直径和导热量、热阻之间的关系。以热管长度均为150mm计算,经过台湾有关权威机构测试,直径为3mm的热管其热阻值为0.33(测试物体温度变化区间60~90度)。而直径为5mm的时候,热阻立刻降到了0。11,已经可以满足绝大部分场合对导热的要求了。而当热管直径扩大到8mm的时候,热阻竟然达到了0.0625,这是大部分金属材质散热器难以企及的热阻。那么,不同直径的热管,最大导热量区别有多大呢?中国台湾省某研究所给出了一组参考数值.直径为3mm 的正品热管,2.8个标准热传递周期中只能传递15W(15焦耳/s)的热量。而直径为5mm的热管,在1。8个热传递周期最大热量传递达到了45W,是3mm热管的3倍!而8mm的热管产品只需0。6个周期就可以传递高达80W的热量.如此高的传热量,如果没有良好的散热片设计和风扇配合,很容易导致热量无法正常发散。

热管烧结铜层的物性量测

随著积体电路製造技术及单体功能的不断提升,以及使用者对於通讯影音產品功能的需求日增,高功率、小体积之电子或电脑元件已成为目前电路设计及製造的趋势。由於电子產品藉由电能损益所散失的能量多以热能的型态转换发散,不良的散热设计即成为其失效及损害的主要因素。根据统计,工件工作温度每增加10℃,其MTBF(Mean time between failures)值就会缩短一半.因此,为改善电子元件之稳定性及寿命,散热设计成为电子元件製造业愈来愈重视的问题。

在电子装置的应用领域中,构装电子元件冷却技术的相关研究及发展,传统上是以散热片模组的设计利用自然对流(Natural convection)或强制对流(Forced convection)的手段为主[1-4].於是,有研究者针对散热模组中的风扇结构进行实验及理论分析[5-7]。近年来,由於高功率电子元件发展迅速,利用循环水冷散热,或是应用相变化之高焓差所製成的热管(Heat pipe)、

肖特基二极管特性详解(经典资料)分析

肖特基二极管特性详解 我们所熟知的二极管被广泛应用于各种电路中,但我们真正了解二极管的某些特性关系吗?如二极管导通电压和反向漏电流与导通电流、环境温度存在什么样的关系等,让我们来扒扒很多数据手册中很少提起的特性关系和正确合理的选型。下面就随半导体设计制造小编一起来了解一下相关内容吧。 我们都知道在选择二极管时,主要看它的正向导通压降、反向耐压、反向漏电流等。但我们却很少知道其在不同电流、不同反向电压、不同环境温度下的关系是怎样的,在电路设计中知道这些关系对选择合适的二极管显得极为重要,尤其是在功率电路中。接下来我将通过型号为SM360A(肖特基管)的实测数据来与大家分享二极管鲜为人知的特性关系。 1、正向导通压降与导通电流的关系 在二极管两端加正向偏置电压时,其内部电场区域变窄,可以有较大的正向扩散电流通过PN结。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能真正导通。但二极管的导通压降是恒定不变的吗?它与正向扩散电流又存在什么样的关系?通过下图1的测试电路在常温下对型号为SM360A的二极管进行导通电流与导通压降的关系测试,可得到如图2所示的曲线关系:正向导通压降与导通电流成正比,其浮动压差为0.2V。从轻载导通电流到额定导通电流的压差虽仅为0.2V,但对于功率二极管来说它不仅影响效率也影响二极管的温升,所以在价格条件允许下,尽量选择导通压降小、额定工作电流较实际电流高一倍的二极管。 图1 二极管导通压降测试电路

图2 导通压降与导通电流关系 2、正向导通压降与环境的温度的关系 在我们开发产品的过程中,高低温环境对电子元器件的影响才是产品稳定工作的最大障碍。环境温度对绝大部分电子元器件的影响无疑是巨大的,二极管当然也不例外,在高低温环境下通过对SM360A的实测数据表1与图3的关系曲线可知道:二极管的导通压降与环境温度成反比。在环境温度为-45℃时虽导通压降最大,却不影响二极管的稳定性,但在环境温度为75℃时,外壳温度却已超过了数据手册给出的125℃,则该二极管在75℃时就必须降额使用。这也是为什么开关电源在某一个高温点需要降额使用的因素之一。 表1 导通压降与导通电流测试数据

热管简介

基本简介 热管的产生,是由于当时航天器散热的需求. 航天器在进入太空的时候, 由于高速和大气摩擦,产生了很多的热,还有内部的电路设备的发热, 这些热如果不能及时散出去,或者损害电子器件. 所以, 必选选用高可靠性, 低能耗, 重量轻, 传热密度高(就是用更小的面积来传递这些热量), 基于这些要求, 热管都能满足. 其高可靠性的原理在于没用输送流体机械(例如压缩机,水泵等)用于管内的工质循环,工质仅仅靠热压和自然力循环(靠热使液体蒸发,由此产生的蒸汽压力高,所以自然流向冷端, 并在冷端 冷凝,变成液体,并借助自然力(重力,或者毛细张力循环回热端),因此,非常可靠,只要有热就能循环,就能排热. 低能耗,是相对于机械压缩制冷的,也就是传统空调,是因为没有流体机械,就是泵,或者压缩机.对于需要强化换热的地方,比如我们这个针对机房的小温差排热情况,需要加上室内外风扇来强化换热..这个不难理解吧, 夏天时候天气热, 打开电扇, 让风从自己身边吹过,可以帮助散热,让我们决定更凉快. 同样的道理, 用风扇加强风冷换热器散热,可以增强换热器的散热. 但是风扇的电耗和制冷的压缩机比起来,小了很多,风机电耗仅为压缩制冷的20-25%.这就是为什么我们能节能. 重量轻和传热密度高是放在一起说的, 也就是我们在面临同样的热量需要排放掉, 那么我们需要多少大的体积,面积和重量才能把这些热量排放出去. 从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。 自然界的传热, 从自发传热方向上, 总是让热从高温侧,传向低温侧, 就想水流, 在自然状况下, 总是从高处流到低处. 我们的热管,就是利用了这样的原理, 让热从我们的高温端, 也就是室内, 传到了低温段, 室外. 这个跟空调有不同. 在夏季的时候, 空调室让热从低温段(也就是室内, 比如设定在25度), 排放在室外(比如35度), 室内机在室内吸热, 然后压缩机把压力提高, 然后在室外侧, 把热排放在室外侧, 然后冷凝成液体, 在循环回室内. 这个就是非自发传热, 也就是我们必须对它做功, 必须有压缩机做工, 把循环冷媒工质的压力提上上去, 才能让工质的冷能温度高于室外温度, 在室外冷凝器才能冷凝成液体. 同理,就是水从高处,流到低处,是自然重力能帮助完成的,不需要我们做功..(这里说的是重力场呀,外太空非重力场不在这里讲). 水不能自救从低处流到高处. 但是我们也可以让这种 流动发生,就是我们加上水泵...加上水泵,用水泵对水做功,就让水从低处流到高处了. 在这种情况下,就是室内温度低,室外温度高,我们的热管是没法用的, 这时候必须把任务交给空调. 这就是为什么说, 我们不能完全替代空调. 但是在室外温度低于室内的情况下, 原来只能系统仍然需要压缩机做功, 来推动制冷工质循环, 来把室内的热传到室外. 这种情况的必然结果就是能耗高,因为压缩机只要运动,其功耗就不可能小. 同时,这样做也是不合理的,因为我们有外面的自然冷源可以用, 我们可是实现Free Cooling,那么为什么要用这么高的代价(电费), 而不顺其自然的传热方向, 来用我们的热管呢! 这就好比, 我们要从山上开车下来, 明明有路,路是带着斜坡向下足以让车自己滑行下来的,我们就没有必要开启发动机,非烧着油走. 从热传递的三种方式来看,有辐射,对流,和传导. 对于我们来说,用上的是对流和传导这两方面为主。我们说所的热管的导热强度大, 指的是和热传导比,就是相同那么粗那么长的铜棒,如果维持

热管技术及原理

热管原理 热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。 从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。从热传递的三种方式:辐射、对流、传导,其中热传导最快。热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。一般热管由管壳、吸液芯和端盖组成。热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。管壁有吸液芯,其由毛细多孔材料构成。热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。这种循环是快速进行的,热量可以被源源不断地传导开来。 热管的基本工作 典型的热管由管壳、吸液芯和端盖组成,将管内抽成1?3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。如此循环不己,热量由热管的一端传至另—端。热管在实现这一热量转移的过程中,包含了以下六个相互关联的主要过程: (1)热量从热源通过热管管壁和充满工作液体的吸液芯传递到(液---汽)分界面; (2)液体在蒸发段内的(液--汽)分界面上蒸发; (3)蒸汽腔内的蒸汽从蒸发段流到冷凝段; (4)蒸汽在冷凝段内的汽?液分界面上凝结: (5)热量从(汽--液)分界面通过吸液芯、液体和管壁传给冷源: (6)在吸液芯内由于毛细作用使冷凝后的工作液体回流到蒸发段。 热管的基本特性 热管是依靠自身内部工作液体相变来实现传热的传热元件,具有以下基本特性。 (1)很高的导热性热管内部主要靠工作液体的汽、液相变传热,热阻很小,因此具有很高的导热能力。与银、铜、铝等金属相比,单位重量的热管可多传递几个数量级的热量。当然,高导热性也是相对而言的,温差总是存在的,可能违反热力学第

热管的换热原理及其换热计算

热管的换热原理及其换热计算 一热管简介 热管是近几十年发展起来的一种具有高导热性能的传热元件,热管最早应用于航天领域,时至今日,已经从航天、航天器中的均温和控温扩展到了工业技术的各个领域,石油、化工、能源、动力、冶金、电子、机械及医疗等各个部门都逐渐应用了热管技术。 热管一般由管壳、起毛细管作用的通道、以及传递热能的工质构成,热管自身形成一个高真空封闭系统,沿轴向可将热管分为三段,即蒸发段、冷凝段和绝热段。其结构如图所示: 热管的工作原理是:外部热源的热量,通过蒸发段的管壁和浸满工质的吸液芯的导热使液体工质的温度上升;液体温度上升,液面蒸发,直至达到饱和蒸气压,此时热量以潜热的方式传给蒸气。蒸发段

的饱和蒸汽压随着液体温度上升而升高。在压差的作用下,蒸气通过蒸气通道流向低压且温度也较低的冷凝段,并在冷凝段的气液界面上冷凝,放出潜热。放出的热量从气液界面通过充满工质的吸液芯和管壁的导热,传给热管外冷源。冷凝的液体通过吸液芯回流到蒸发段,完成一个循环。如此往复,不断地将热量从蒸发段传至冷凝段。绝热段的作用除了为流体提供通道外,还起着把蒸气段和冷凝段隔开的作用,并使管内工质不与外界进行热量传递。 在热管真空度达到要求的情况下,热管的传热能力主要取决于热管吸液芯的设计。根据热管的不同应用场合,我公司设计有多种不同的热管吸液芯,包括:轴向槽道吸液芯、丝网吸液芯和烧结芯等。基于热管技术的相变传热原理、热管结构的合理设计以及专业可靠的品质保证,多年实践证明,我公司生产的热管及热管组件正逐渐迈向越来越广阔的市场。 (1) 产品展示

(2) 产品参数说明

(3) 产品性能测试图例 图1 长度700mm的真空退火管最大传热功率测试 图2 热管等温性测试曲线

电力电子课l练习题答案

1.电力电子器件一般工作在__开关__状态。 2.在通常情况下,电力电子器件功率损耗主要为__通态损耗__,而当器件开关频率较高时,功率损耗主要为__开关损耗__。 3.电力电子器件组成的系统,一般由__控制电路__、_驱动电路_、_主电路_三部分组成,由于电路中存在电压和电流的过冲,往往需添加_保护电路__。 4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为_单极型器件_、_双极型器件_、_复合型器件_三类。 5.电力二极管的工作特性可概括为_承受正向电压导通,承受反相电压截止_。 6.电力二极管的主要类型有_普通二极管_、_快恢复二极管_、_肖特基二极管_。 7.肖特基二极管的开关损耗_小于_快恢复二极管的开关损耗。 8.晶闸管的基本工作特性可概括为__正向电压门极有触发则导通、反向电压则截止__。 9.对同一晶闸管,维持电流IH与擎住电流IL在数值大小上有IL__大于__IH 。 10.晶闸管断态不重复电压UDSM与转折电压Ubo数值大小上应为,UDSM_大于__Ubo。 11.逆导晶闸管是将_二极管_与晶闸管_反并联_(如何连接)在同一管芯上的功率集成器件。的__多元集成__结构是为了便于实现门极控制关断而设计的。 的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的_截止区_、前者的饱和区对应后者的__放大区__、前者的非饱和区对应后者的_饱和区__。 14.电力MOSFET的通态电阻具有__正__温度系数。 的开启电压UGE(th)随温度升高而_略有下降__,开关速度__小于__电力MOSFET 。16.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为_电压驱动型_和_电流驱动型_两类。 的通态压降在1/2或1/3额定电流以下区段具有__负___温度系数,在1/2或1/3额定电流以上区段具有__正___温度系数。 18.在如下器件:电力二极管(Power Diode)、晶闸管(SCR)、门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应管(电力MOSFET)、绝缘栅双极型晶体管(IGBT)中,属于不可控器件的是_电力二极管__,属于半控型器件的是__晶闸管_,属于全控型器件的是_GTO 、GTR 、电力MOSFET 、IGBT _;属于单极型电力电子器件的有_电力MOSFET _,属于双极型器件的有_电力二极管、晶闸管、GTO 、GTR _,属于复合型电力电子器件得有__ IGBT _;在可控的器件中,容量最大的是_晶闸管_,工作频率最高的是_电力MOSFET,属于

二极管的分类与特性参数(精)

二极管的分类与参数 一、半导体二极管 1.1二极管的结构 半导体二极管简称二极管,由一个PN 结加上相应的电极引线和管壳构成,其基本结构和符号如图1所示。 图1 二极管的结构及符号 1.2 二极管的分类 1、根据所用的半导体材料不同,可分为锗二极管和硅二极管。 2、按照管芯结构不同,可分为: (1)点接触型二极管 由于它的触丝与半导体接触面很小,只允许通过较小的电流(几十毫安以下),但在高频下工作性能很好,适用于收音机中对高频信号的检波和微弱交流电的整流,如国产的锗二极管2AP 系列、2AK 系列等。 (2)面接触型二极管 面接触型二极管PN 结面积较大,并做成平面状,它可以通过较大了电流,适用于对电网的交流电进行整流。如国产的2CP 系列、2CZ 系列的二极管都是面接触型的。 (3)平面型二极管 它的特点是在PN 结表面被覆一层二氧化硅薄膜,避免PN 结表面被水分子、气体分子以及其他离子等沾污。这种二极管的特性比较稳定可靠,多用于开关、脉冲及超高频电路中。国产2CK 系列二极管就属于这种类型。 3、根据管子用途不同,可分为整流二极管、稳压二极管、开关二极管、光电二极管及发光二极管等。 1.3 二极管的特性 引线 外壳线 触丝线 基片 二极管的电路符号: P N 阳极 阴极 点接触型

1、正向特性 二极管正向连接时的电路如图所示。二极管的正极接在高电位端,负极接在低电位端,二极管就处于导通状态(灯泡亮),如同一只接通的开关。实际上,二极管导通后有一定的管压降(硅管0.6~0.7V,锗管0.2~0.3V)。我们认为它是恒定的,且不随电流的变化而变化。 但是,当加在二极管两端的正向电压很小的时候,正向电流微弱,二极管呈现很大的电阻,这个区域成为二极管正向特性的“死区”,只有当正向电压达到一定数值(这个数值称为“门槛电压”,锗二极管约为0.2V,硅二极管约为0.6V)以后,二极管才真正导通。此时,正向电流将随着正向电压的增加而急速增大,如不采取限流措施,过大的电流会使PN结发热,超过最高允许温度(锗管为90℃~100℃,硅管为125℃~200℃)时,二极管就会被烧坏。 2、反向特性 二极管反向连接时的电路如图所示。二极管的负极接在电路的高电位端,正极接在电路的低电位端,二极管就处于截止状态,如同一只断开的开关,电流被PN结所截断,灯泡不亮。 但是,二极管承受反向电压,处于截止状态时,仍然会有微弱的反向电流(通常称为反向漏电流)。反向电流虽然很小(锗二极管不超过几微安,硅二极管不超过几十纳安),却和温度有极为密切的关系,温度每升高10℃,反向电流约增大一倍,称为“加倍规则”。反向电流是衡量二极管质量好坏的重要参数之一,反向电流太大,二极管的单向导电性能和温度稳定性就很差,选择和使用二极管时必须特别注意。 图1-2-7 二极管的正向连接图1-2-8二极管的反向连接当加在二极管两端的反向电压增加到某一数值时,反向电流会急剧增大,这种状态称为二极管的击穿。对普通二极管来说,击穿就意味着二极管丧失了单向导电特性而损坏了。 3、伏安特性 1.在正向电压作用下,当正向电压较小时,电流极小。而当超过某一值时(锗管约为0.1V,硅管约为0.5V),电流很快增大。人们习惯地将锗二极管正向电压小于0.1,硅二极管正向电压小于0.5V的区域称为死区。而将0.1V称为锗

导热管的原理

热管工作原理图 ·管内吸液芯中的液体受热汽化; ·汽化了的饱和蒸汽向冷端流动; ·饱和蒸汽在冷端冷凝放出热量; ·冷凝液体在吸液芯毛细力作用下回到热端继续吸热汽化。 热管简介 热管是一种导热性能极高的被动传热元件。热管利用相变原理和毛细作用,使得它本身的热传递效率比同样材质的纯铜高出几百倍到数千倍。热管是一根真空的铜管,里面所注的工作液体是热传递的媒介。在电子散热领域里,最典型的工作液体就是水。使用圆柱形铜管制成的热管是最为常见的。热管壁上有吸液芯结构。依靠吸液芯产生的毛细力,使冷凝液体从冷凝端回到蒸发端。因为热管内部抽成真空以后,在封口之前再注入液体,所以,热管内部的压力是由工作液体蒸发后的蒸汽压力决定的。只要加热热管表面,工作液体就会蒸发。蒸发端蒸汽的温度和压力都稍稍高于热管的其它部分,因此,热管内产生了压力差,促使蒸汽流向热管内较冷的一端。当蒸汽在热管壁上冷凝的时候,蒸汽放出汽化潜热,从而将热传向了冷凝端。之后,热管的吸液芯结构使冷凝后液体再回到蒸发端。只要有热源加热,这一过程就会循环进行。 1963年,George M. Grover第一个发明并且制造出了热管。不过,通用汽车早在1935年就申请了类似元件的专利。直到20世纪60年代,热管才受到人们的重视。逐渐的,作为一种提高传热效率的元件,热管受到了众多国家实验室和商业实验室的重视,而不再仅仅是实验室的试验品。令人吃惊的是,第一个将热管作为传热元件而加以接受和运用的主要客户竟然是政府。因为,热管的第一个商业用途是用于卫星上的系统。由于热管较高的成本和较小的需求,使得热管进入商业领域的进程非常缓慢。在当时,大部分的电子元件散热问题,用简单的金属散热块就可以解决。高端的军用设备是个例外,因为这样的设备需要热管的高性能,而且可以承受较高的成本。20世纪80年代,作为高端电子产品的散热设备,热管逐渐被市场所接受。随着热管的普及,增长的需求降低了热管的制造成本。降低后的成本使得散热设计者们可以将热管应用于更多的产品。在20世纪90年代初,热管开始被用于大量的家用电器。今天,热管已经被运用于数千种电器产品之中。

二极管的特性与应用

二极管的特性与应用 几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si 管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称

热管技术概述

第一章热管技术概述 1、发展现状 迄今为止,在众多的传热元件中,热管(heat pipe)是最有效的传热元件之一,它可以将大量热量通过很小的截面远距离地传输而无须辅助动力。热管原理首先是由美国俄亥俄州通用发动机公司的R·S·Gauger与1944年在美国专利(N0.2350348)中提出的;1963年GMGrover在美国《应用物理》公开发表了一篇命名为“Heat Pipe”的学术论文;在1965年Cotter首次提出了比较完善的热管理论,为以后的热管理论研究奠定了基础;1967年第一根不锈钢——水热管首次被送入卫星轨道并运行成功;1969年前苏联与日本开始将热管表面通过物理办法缠绕翅片,并应用到控制恒温技术领域;1970年在美国已经开始出来商用热管,例如;横穿阿拉斯加输油管线永冻层就是用热管技术支撑的;1974年后,热管开始用于节约能源与新能源开发利用领域。我国是70年代开展热管热管热性能研究以及热管在电子器件冷却和空间飞行器方面的应用研究。80年代初我国的热管研究及开发的重点转向节能及能源的合理利用,相继开发了热管气气换热器、热管余热锅炉、热管蒸发器、热管热风炉、热管省煤器等节能热回收设备。 2、热管用语 热管:以毛吸结构的抽吸作用来驱动工作介质完循环流动的蒸发、凝结传热元件。 无机高效热管:无机传热元件是以多种无机元素为传热载体,注入到各类金属(或非金属)管状、夹板空腔内,经抽真空密封处理后,形成具有高效热传导特性的元件。 管芯:管芯是指无机传热元件中为液态工质提供毛细抽吸力及流动通道的结构。 管壳:管壳是指包容了管芯和工质的热管壳体。 有效长度:有效长度是指计算热管传热能力的折合后的长度。

热管散热器解决方案的优点和限制

热管散热器解决方案的7大优点和5大限制 来源;大比特商务网 今天的大功率LED灯具(300瓦以上)主要采用热管散热器进行散热,但这种散热技术目前也面临着PC处理器散热沿袭下来的均温板和复合槽群散热技术的挑战,下文会帮助您明白为什么超频三科技如此钟爱热管散热技术。 大功率(300瓦以上)LED户外灯具散热除了可考虑采用目前市场很受欢迎的热管散热器以外,还可以考虑采用从PC高速处理器散热传承下来的均温板和复合槽群散热器,下文先为大家介绍热管散热技术的工作原理和优缺点,接下来再为大家介绍均温板和复合槽群散热技术。 我们都知道热的传递方式有三种:传导、对流与辐射,任何的散热设计都是这几种方式的综合应用。目前行业内常用的散热方法主要有以下三种:自然散热、强制对流散热、热管散热。而热管散热是目前效果最好而且性能稳定的散热装置,其传导热量的速度高出传统金属几十到上百倍,这一特点对LED来说再好不过,它能迅速将LED产生的热量以最快的方式传到别处,这比其它任何方法都要快捷有效,缺点是成本较高,若我们实现热管散热的标准化、模组化后,其成本也将不是问题。 那么这项新的技术具有哪些特点呢? 从使用角度看,热管具有热传递速度极快的优点,安装至散热器中可以有效的降低热阻值,增加散热效率。热管,又称“热之超导体”,其核心作用是导热。它通过在全封闭真空管内工质的汽、液相变来传递热量,具有极高的导热性,高达纯铜导热能力的上百倍。 从技术角度看,热管的核心作用提高热传递的效率,将热量快速从热源带离,而非一般意义上所说的“散热”——这则涵括与外界环境进行热交换的过程。热管的工作原理很简单,热管分为蒸发受热端和冷凝端两部分。受热端受热时,管壁周围液体汽化,产生蒸气,此时这部分压力变大,蒸气向冷凝端流动,到达冷凝端后冷凝成液体,同时放出热量,最后借助毛细力回到受热端完成一次循环。

晶闸管的结构以及工作原理

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。

二极管的特性与应用及英文代码含义

二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1. 正向特性。 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2. 反向特性。

二极管特性

二极管伏安特性曲线的研究 一、实验目的 通过对二极管伏安特性的测试,掌握锗二极管和硅二极管的非线性特点,从而为以后正确设计使用这些器件打下技术基础。 二、伏安特性描述 对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时(锗管为0.2V左右,硅管为0.7V左右),电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 对上述二种器件施加反向偏置电压时,二极管处于截止状态,其反向电压增加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二极管使用中应竭力避免出现击穿观察,这很容易造成二极管的永久性损坏。所以在做二极管反向特性时,应串入限流电阻,以防因反向电流过大而损坏二极管。 二极管伏安特性示意图1-1,1-2 图1-1锗二极管伏安特性图1-2硅二极管伏安特性 三、实验设计 图1-3 二极管反向特性测试电路 1、反向特性测试电路 二极管的反向电阻值很大,采用电流表内接测试电路可以减少测量误差。测试电路如图1-3,电阻选择510Ω

2、正向特性测试电路 二极管在正向导道时,呈现的电阻值较小,拟采用电流表外接测试电路。电源电压在0~10V内调节,变阻器开始设置470Ω,调节电源电压,以得到所需电流值。 图1-4 二极管正向特性测试电路 四、数据记录 见表1-1、1-2 表1-1 反向伏安曲线测试数据表 表1-2 正向伏安曲线测试数据表 注意:实验时二极管正向电流不得超过20mA。 五、实验讨论 1、二极管反向电阻和正向电阻差异如此大,其物理原理是什么? 2、在制定表1-2时,考虑到二极管正向特性严重非线性,电阻值变化范围很大,在表1-2中加一项“电阻修正值”栏,与电阻直算值比较,讨论其误差产生过程。

晶闸管直流调速系统参数和环节特性的测定

晶闸管直流调速系统参数和环节特性的测定一、实验目的 (1)熟悉晶闸管直流调速系统的组成及其基本结构。 (2)掌握晶闸管直流调速系统参数及反馈环节测定方法。 二、实验原理 晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发动机组等组成。 在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变U g的大小即可改变控制角α,从而获得可调直流电压,以满足实验要求。实验系统的组成原理如图1所示。 图1 晶闸管直流调速试验系统原理图

三、实验内容 (1) 测定晶闸管直流调速系统主电路总电阻值R 。 (2) 测定晶闸管直流调速系统主电路电感值L 。 (3) 测定直流电动机-直流发电机-测速发电机组的飞轮惯量GD 2。 (4) 测定晶闸管直流调速系统主电路电磁时间常数T d 。 (5) 测定直流电动机电势常数C e 和转矩常数C M 。 (6) 测定晶闸管直流调速系统机电时间常数T M 。 (7) 测定晶闸管触发及整流装置特性()ct d U f U =。 (8) 测定测速发电机特性()n f U TG =。 四、实验仿真 晶体管直流调速实验系统原理图如图1所示。该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。图2是采用面向电气原理图方法构成的晶闸管直流调速系统的仿真模型。下面介绍各部分的建模与参数设置过程。 4.1 系统的建模和模型参数设置 系统的建模包括主电路的建模与控制电路的建模两部分。 (1)主电路的建模与参数设置 由图2可见,开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机等部分组成。由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以将触发器归到主电路进行建模。 ①三相对称交流电压源的建模和参数设置。首先从电源模块组中选取一个交流电压源模块,再用复制的方法得到三相电源的另两个电压源模块,并用模块标题名称修改方法将模块标签分别改为“A 相”、“B 相”、“C 相”,然后从元件模块

二极管的基本特性与应用(精)

几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平 面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固 地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流” 电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1、正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电 压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2、反向特性 在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当 二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。 二极管的主要参数 用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数: 1、额定正向工作电流 是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。 2、最高反向工作电压 加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工

热管工作原理图文稿

热管工作原理 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

热管工作原理图 · 管内吸液芯中的液体受热汽化;· 汽化了的饱和蒸汽向冷端流动;· 饱和蒸汽在冷端冷凝放出热量;· 冷凝液体在吸液芯毛细力作用下回到热端继续吸热汽化。 热管简介 热管是一种导热性能极高的被动传热元件。热管利用相变原理和毛细作用,使得它本身的热传递效率比同样材质的纯铜高出几百倍到数千倍。热管是一根真空的铜管,里面所注的工作液体是热传递的媒介。在电子散热领域里,最典型的工作液体就是水。使用圆柱形铜管制成的热管是最为常见的。热管壁上有吸液芯结构。依靠吸液芯产生的毛细力,使冷凝液体从冷凝端回到蒸发端。因为热管内部抽成真空以后,在封口之前再注入液体,所以,热管内部的压力是由工作液体蒸发后的蒸汽压力决定的。只要加热热管表面,工作液体就会蒸发。蒸发端蒸汽的温度和压力都稍稍高于热管的其它部分,因此,热管内产生了压力差,促使蒸汽流向热管内较冷的一端。当蒸汽在热管壁上冷凝的时候,蒸汽放出汽化潜热,从而将热传向了冷凝端。之后,热管的吸液芯结构使冷凝后液体再回到蒸发端。只要有热源加热,这一过程就会循环进行。 1963年,George M. Grover第一个发明并且制造出了热管。不过,通用汽车早在1935年就申请了类似元件的专利。直到20世纪60年代,热管才受到人们的重视。逐渐的,作为一种提高传热效率的元件,热管受到了众多国家实验室和商业实验室的重视,而不再仅仅是实验室的试验品。令人吃惊的是,第一个将热管

作为传热元件而加以接受和运用的主要客户竟然是政府。因为,热管的第一个商业用途是用于卫星上的系统。由于热管较高的成本和较小的需求,使得热管进入商业领域的进程非常缓慢。在当时,大部分的电子元件散热问题,用简单的金属散热块就可以解决。高端的军用设备是个例外,因为这样的设备需要热管的高性能,而且可以承受较高的成本。20世纪80年代,作为高端电子产品的散热设备,热管逐渐被市场所接受。随着热管的普及,增长的需求降低了热管的制造成本。降低后的成本使得散热设计者们可以将热管应用于更多的产品。在20世纪90年代初,热管开始被用于大量的家用电器。今天,热管已经被运用于数千种电器产品之中。 吸液芯示意图 吸液芯性能比较 小热管常用工作液体及管材 CPU散热器

晶闸管的基本检测方法

晶闸管的基本检测方法 1.判别单向晶闸管的阳极、阴极和控制极 脱开电路板的单向晶闸管,阳极、阴极和控制极3个引脚一般没有特殊的标注,识别各个脚主要是通过检测各个引脚之间的正、负电阻值来进行的。晶闸管各个引脚之间的阻值都较大,当检测出现唯一一个小阻值时,此时黑表笔接的是控制极(G),红表笔接的是阴极(K),另外一个引脚就是阳极(A)。 2.判别单向晶闸管的好坏 脱开电路板的单向晶闸管,阳极(A)、阴极(K)和控制极(G)明确标示;正常的单向闸管,阳极(A)、阴极(K)两个引脚之间的正、反向电阻,阳极(A)、控制极(G)两个引脚之间的正、反向电阻的阻值应该都很大,阴极(K)、控制极(G)两个引脚之间的正向电阻应该远小于反向电阻。并且阳极(A)、阴极(K)两个引脚之间的正向电阻越大,单向晶闸管阳极的正向阻断特性越好;反向电阻越大,单向晶闸管阳极的反向阻断特性越好。 3.判别双向晶闸管的好坏 脱开电路板的双向晶闸管,第一电极(T1)、第二电极(T2)、控制极(G)明确。判断双向晶闸管的好坏,主要是看短路前第二电极(T2)和第一电极(T1)之间阻值接近无穷大,第二电极(T2)与控制极(G)引脚短路,短路后晶闸管触发导通,第二电极(T2)·和第一电极(T1)之间的电阻变小,有固定值。可以断定该双向晶闸管具备双向触发能力,性能基本良好。 4.晶闸管的代换原则 晶闸管的品种繁多,不同的电子设备与不同的电子电路,采用不同类型的晶闸管。选用与代换晶闸管时,主要应考虑其额定峰值电压、额定电流、正向压降、门极触发电流及触发电压、开关速度等参数,额定峰值电压和额定电流均应高于工作电路的最大工作电压和最大工作电流1.5~2倍,代换时最好选用同类型、同特性、同外形的晶闸管替换。 普通晶闸管一般被用于交直流电压控制、可控整流、交流调压、逆变电源,开关电源保护等电路。 双向晶闸管一般被用于交流开关、交流调压、交流电动机线性凋速、灯具线性调光及固态继电器、固态接触器等电路。 逆导晶闸管一般被用于电磁灶、电子镇流器、超声波电路、超导磁能贮存系统及开关电源等电路。 光控晶闸管一般被用于光电耀合器、光探测器、光报警器、光计数器、光电逻辑电路及自动生产线的运行监控电路等。 BTC晶体管一般被用于锯齿波发生器、长时间延时器、过电压保护器及大功率晶体管触发电路等。 门极关断晶闸管一般被用于交流电动机变频调速、斩波器、逆变电源及各种电子开关电路等。

二极管的结构及性能特点

PN结主要的特性就是其具有单方向导电性,即在PN加上适当的正向电压(P 区接电源正极,N区接电源负极),PN结就会导通,产生正向电流。若在PN结上加反向电压,则PN结将截止(不导通),正向电流消失,仅有极微弱的反向电流。当反向电压增大至某一数值时,PN结将击穿(变为导体)损坏,使反向电流急剧增大。 (二)普通二极管 1.二极管的基本结构 二极管是由一个PN结构成的半导体器件,即将一个PN结加上两条电极引线做成管芯,并用管壳封装而成。P型区的引出线称为正极或阳极,N型区的引出线称为负极或阴极,如图所示。 普通二极管有硅管和锗管两种,它们的正向导通电压(PN结电压)差别较大,锗管为0.2~0.3V,硅管为0.6~0.7V。 2.点接触型二极管 如图所示,点接触型二极管是由一根根细的金属丝热压在半导体薄片上制成的。在热压处理过程中,半导体薄片与金属丝接触面上形成了一个PN结,金属丝为正极,半导体薄片为负极。

点接触型二极管的金属丝和半导体的金属面很小,虽难以通过较大的电流,但因其结电容较小,可以在较高的频率下工作。点接触型二极管可用于检波、变频、开关等电路及小电流的整流电路中。 3.面接触型二极管 如图所示,面接触型二极管是利用扩散、多用合金及外延等掺杂质方法,实现P型半导体和N型半导体直接接触而形成PN结的。 面接触型二极管PN结的接触面积大,可以通过较大的电流,适用于大电流整流电路或在脉冲数字电路中作开关管。因其结电容相对较大,故只能在较低的频率下工作。 二极管的分类及其主要参数 一.半导体二极管的分类

半导体二极管按其用途可分为:普通二极管和特殊二极管。普通二极管包括整流二极管、检波二极管、稳压二极管、开关二极管、快速二极管等;特殊二极管包括变容二极管、发光二极管、隧道二极管、触发二极管等。 二.半导体二极管的主要参数 1.反向饱和漏电流I R 指在二极管两端加入反向电压时,流过二极管的电流,该电流与半导体材料 和温度有关。在常温下,硅管的I R 为纳安(10-9A)级,锗管的I R 为微安(10-6A) 级。 2.额定整流电流I F 指二极管长期运行时,根据允许温升折算出来的平均电流值。目前大功率整 流二极管的I F 值可达1000A。 3. 最大平均整流电流I O 在半波整流电路中,流过负载电阻的平均整流电流的最大值。这是设计时非常重要的值。 4. 最大浪涌电流I FSM 允许流过的过量的正向电流。它不是正常电流,而是瞬间电流,这个值相当大。 5.最大反向峰值电压V RM 即使没有反向电流,只要不断地提高反向电压,迟早会使二极管损坏。这种能加上的反向电压,不是瞬时电压,而是反复加上的正反向电压。因给整流器 加的是交流电压,它的最大值是规定的重要因子。最大反向峰值电压V RM 指为避 免击穿所能加的最大反向电压。目前最高的V RM 值可达几千伏。 6. 最大直流反向电压V R 上述最大反向峰值电压是反复加上的峰值电压,V R 是连续加直流电压时的值。用于直流电路,最大直流反向电压对于确定允许值和上限值是很重要的. 7.最高工作频率f M

相关主题
文本预览
相关文档 最新文档