当前位置:文档之家› 热管的传热原理及其应用特点

热管的传热原理及其应用特点

热管的传热原理及其应用特点
热管的传热原理及其应用特点

热管的传热原理及其应用特点

在众多的传热元件中,热管是人们所知的最有效的传热元件之一,它可将大量的热量通过其很小截面积远距离地传输而无需外加动力。国际上对热管技术的研究和应用是在20世纪60年代开始的。我国在这方面的研究起始于上世纪70年代,当时主要侧重的方向为电子器件冷却和空间飞行器上的应用。80年代初,我国的热管研究和开发重点转向节能和能源的合理利用,相继开发了热管气—气换热器、热管余热锅炉、高温热管蒸汽发生器等各类热管产品。由于碳钢—水重力热管的结构简单、价格低廉、制造方便、易于推广,使得此类热管得到了广泛的应用。

随着科学技术的不断提高,热管研究和应用的领域也在不断拓宽。目前,热管及热管换热器已广泛应用于石油、化工、动力、冶金、建材、轻工等领域的高效传热设备,以及电子装置芯片冷却、笔记本电脑CPU冷却及电路控制板等的冷却。

目前,除微型热管已批量化、大规模生产外,工业中余热回收用的热管换热器由于各种设备规模、大小、使用情况的不同,几乎每台设备都根据设备的工艺条件、现场情况设计、制造。

一、热管工作原理

热管是一种具有高导热性能的传热元件,它通过在全封闭真空管壳内工质的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点。由热管组成的热管换热器具有传热效率高、结构紧凑、流体阻损小、有利于控制露点腐蚀等优点。目前已广泛应用于冶金、化工、炼油、锅炉、陶瓷、交通、轻纺、机械等行业中,作为废热回收和工艺过程中热能利用的节能设备,取得了显著的经济效益。

典型的重力热管如图所示,在密闭的管内先抽成真空,在此状态下充入适量工质,在热管的下端加热,工质吸收热量汽化为蒸汽,在微小的压差下,上升到热管上端,并向外界放出热量,凝结为液体。冷凝液在重力的作用下,沿热管内壁返回到受热段,并再次受热汽化,如此循环往复,连续不断的将热量由一端传向另一端。由于是相变传热,因此热管内热阻很小,

热管的高导热能力与银、铜、铝等金属相比,单位重量的热管可多传递几个数量级的热量,所以能以较小的温差获得较大的传热率,且结构简单,具有单向导热的特点,特别是由于热管的特有机理,使冷热流体间的热交换均在管外进行,这就可以方便地进行强化传热。此外,由于热管内部一般抽成真空,工质极易沸腾与蒸发,热管启动非常迅速。

热管这种传热元件,可以单根使用,也可以组合使用,根据用户现场的条件,配以相应的流通结构组合成各种形式换热器,热管换热器具有传热效率高、阻力损失小、结构紧凑、工作可靠和维护费用少等多种优点,它在空间技术、电子、冶金、动力、石油、化工等各种行业都得到了广泛的应用。

二、热管换热器的类型与基本结构

热管换热器属于热流体与冷流体互不接触的表面式换热器。热管换热器显著的特点是:结构简单,换热效率高,在传递相同热量的条件下,热管换热器的金属耗量少于其他类型的换热器。换热流体通过换热器时的压力损失比其他换热器小,因而动力消耗也小。由于冷、热流体是通过热管换热器不同部位换热的,而热管元件相互又是独立的,因此即使有某根热管失效、穿孔也不会对冷、热流体间的隔离与换热有多少影响。此外,热管换热器可以方便地调整冷热侧换热面积比,从而可有效地避免腐蚀性气体的露点腐蚀。热管换热器的这些特点正越来越受到人们的重视,其用途亦日趋广泛。

按照热流体和冷流体的状态,热管换热器可分为气—气式、气-汽式、气—液式、液—液式、液—气式。从热管换热器结构形式来看,热管换热器又分为整体式、分离式和组合式:

1、整体式热管换热器

该换热器是由许多单根热管组成。热管数量的多少取决于换热量的大小。为了提高气体的换热系数,往往采取在管外加翅片的方法,这样可使所需要的热管数目大大减少。整体式热管换热器主要分为气—气式、气—汽式、气—液式。

(1)、热管式气—气换热器主要由壳体、热管元件及冷、热流体进出接口组成。壳体是一个钢结构件,一侧为热流体通道,另一侧为冷流体通道,中间由管板分隔。壳体的上、下孔板与盖板间以及设备的两侧均设有保温层。上、下盖板是可拆卸结构,便于检修和更换热管。

(2)、热管式气—汽换热器(热管蒸汽发生器)系统

该系统由两部分组成:热管蒸汽发生器,汽水分离装置(汽包)。其中热管蒸汽发生器是一种新型的蒸汽发生装置,它以具有良好导热性能的热管作为传热元件。热管受热段采用高频焊接翅片来强化传热,因而整套装置传热效率高,设备结构紧凑,热流体流动阻力小,并且由于热管的存在使得水的受热及汽化均在烟道之外完成,而且汽水分离也在汽包中完成,这就不同于一般的烟道式余热锅炉。同时水套管与汽包之间用导管连接,管道可以任意调节长度,现场布置灵活,全套设备无转动部件,运行可靠,操作维修方便。

2、分离式热管换热器

(1)工作原理

分离式热管也是利用工质的汽化-凝结来传递热量,只是将受热部分与放热部分分离开来,用蒸汽上升管与冷凝液下降管相联接,可应用于冷、热流体相距较远或冷、热流体绝对不允许混合的场合。

(2)设备的基本结构

由通过热流体的换热器、冷流体的换热器及蒸汽上升管、冷凝液下降管组合而成。换热器主要由壳体和管束组成。壳体是一个钢结构件,它分别是热流体和冷流体的流通通道,壳体的上顶下底、两侧均设有内保温层。为了便于检修和观察积灰情况,及时清除积灰,接口处设有人孔,设备顶盖也可打开,用于检修和更换管束。每台壳体内均装有若干片彼此独立的管束。受热段和放热段相对应的各片管束通过蒸汽上升管和冷凝液下降管连接,构成各自独立的封闭系统。

三、热管换热器的应用特点

1、整体式换热器特点:

(1)、传热效率高,热管的冷、热侧均可根据需要采用高频焊翅片强化传热,弥补一般气—气换热器换热系数低的弱点。

(2)、有效地避免冷、热流体的串流,每根热管都是相对独立的密闭单元,冷、热流体都在管外流动,并由中间密封板严密的将冷、热流体隔开。

(3)、有效的防止露点腐蚀,通过调整热管根数或调整热管冷热侧的传热面积比,使热管壁温提高到露点温度以上。

(4)、有效的防止积灰,换热器设计可采用变截面结构,保证流体进出口等流速流动,达到自清灰的目的。

(5)、无任何转动部件,没有附加动力消耗,不需要经常更换元件,即使有部分元件损坏,也不影响正常生产。

(6)、单根热管的损坏不影响其它的热管,同时对整体换热效果的影响也可忽略不计。

2、分离式热管换热器的特点:

(1)、装置的受热段和放热段可视现场情况而分开布置,可实现远距离传热,这就给工

艺设计带来了较大的灵活性,也给装置的大型化、热能的综合利用以及热能利用系统的优化创造了良好的条件。

(2)、工作介质的循环是依靠冷凝液的位差和密度差的作用,不需要外加动力,无机械运行部件,增加了设备的可靠性,也极大地减少了运营费用。

(3)、放热段与受热段彼此独立,易于实现流体分割、密封、因而能适用于易燃易爆等危险性流体的换热,并且也可实现一种流体与多种流体的同时换热。

(4)、受热段与放热段管束可根据冷、热流体的性能及工艺要求选择不同的结构参数和材质,从而可有效地解决设备的露点腐蚀和积灰问题。

(5)、根据工艺要求,可以将流体顺、逆流混合布置,以适应较宽的温度范围。

(6)、系统换热元件由多片热管管束组成,各片之间相互独立,因此,其中一片甚至几片损坏或失效不会影响整个系统的安全运行。

(寒西)

热管技术及原理

热管原理 热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。 从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。从热传递的三种方式:辐射、对流、传导,其中热传导最快。热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。一般热管由管壳、吸液芯和端盖组成。热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。管壁有吸液芯,其由毛细多孔材料构成。热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。这种循环是快速进行的,热量可以被源源不断地传导开来。 热管的基本工作 典型的热管由管壳、吸液芯和端盖组成,将管内抽成1?3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。如此循环不己,热量由热管的一端传至另—端。热管在实现这一热量转移的过程中,包含了以下六个相互关联的主要过程: (1)热量从热源通过热管管壁和充满工作液体的吸液芯传递到(液---汽)分界面; (2)液体在蒸发段内的(液--汽)分界面上蒸发; (3)蒸汽腔内的蒸汽从蒸发段流到冷凝段; (4)蒸汽在冷凝段内的汽?液分界面上凝结: (5)热量从(汽--液)分界面通过吸液芯、液体和管壁传给冷源: (6)在吸液芯内由于毛细作用使冷凝后的工作液体回流到蒸发段。 热管的基本特性 热管是依靠自身内部工作液体相变来实现传热的传热元件,具有以下基本特性。 (1)很高的导热性热管内部主要靠工作液体的汽、液相变传热,热阻很小,因此具有很高的导热能力。与银、铜、铝等金属相比,单位重量的热管可多传递几个数量级的热量。当然,高导热性也是相对而言的,温差总是存在的,可能违反热力学第

热管的换热原理及其换热计算

热管的换热原理及其换热计算 一热管简介 热管是近几十年发展起来的一种具有高导热性能的传热元件,热管最早应用于航天领域,时至今日,已经从航天、航天器中的均温和控温扩展到了工业技术的各个领域,石油、化工、能源、动力、冶金、电子、机械及医疗等各个部门都逐渐应用了热管技术。 热管一般由管壳、起毛细管作用的通道、以及传递热能的工质构成,热管自身形成一个高真空封闭系统,沿轴向可将热管分为三段,即蒸发段、冷凝段和绝热段。其结构如图所示: 热管的工作原理是:外部热源的热量,通过蒸发段的管壁和浸满工质的吸液芯的导热使液体工质的温度上升;液体温度上升,液面蒸发,直至达到饱和蒸气压,此时热量以潜热的方式传给蒸气。蒸发段

的饱和蒸汽压随着液体温度上升而升高。在压差的作用下,蒸气通过蒸气通道流向低压且温度也较低的冷凝段,并在冷凝段的气液界面上冷凝,放出潜热。放出的热量从气液界面通过充满工质的吸液芯和管壁的导热,传给热管外冷源。冷凝的液体通过吸液芯回流到蒸发段,完成一个循环。如此往复,不断地将热量从蒸发段传至冷凝段。绝热段的作用除了为流体提供通道外,还起着把蒸气段和冷凝段隔开的作用,并使管内工质不与外界进行热量传递。 在热管真空度达到要求的情况下,热管的传热能力主要取决于热管吸液芯的设计。根据热管的不同应用场合,我公司设计有多种不同的热管吸液芯,包括:轴向槽道吸液芯、丝网吸液芯和烧结芯等。基于热管技术的相变传热原理、热管结构的合理设计以及专业可靠的品质保证,多年实践证明,我公司生产的热管及热管组件正逐渐迈向越来越广阔的市场。 (1) 产品展示

(2) 产品参数说明

(3) 产品性能测试图例 图1 长度700mm的真空退火管最大传热功率测试 图2 热管等温性测试曲线

LED发光二极管工作原理、特性及应用演示教学

LED发光二极管工作原理、特性及应用 半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用 (一)LED发光原理 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。

理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性 1.极限参数的意义 (1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 (3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 2.电参数的意义 (1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长,其波长大体按图2所示。由图可见,该发光管所发之光中某一波长λ0的光强最大,该波长为峰值波长。 2)发光强度IV:发光二极管的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。由于一般LED的发光二强度小,所以发光强度常用坎德拉(mcd)作单位。 (3)光谱半宽度Δλ:它表示发光管的光谱纯度.是指图3中1/2峰值光强所对应两波长之间隔. (4)半值角θ1/2和视角:θ1/2是指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角。半值角的2倍为视角(或称半功率角)。 图3给出的二只不同型号发光二极管发光强度角分布的情况。中垂线(法线)AO的坐标为相对发光强度(即发光强度与最大发光强度的之比)。显然,法线方向上的相对发光强度为1,离开法线方向的角度越大,相对发光强度越小。由此图可以得到半值角或视角值。

化工原理课程设计管壳式换热器汇总

化工原理课程设计管壳式换热器汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

设计一台换热器 目录 化工原理课程设计任务书 设计概述 试算并初选换热器规格 1. 流体流动途径的确定 2. 物性参数及其选型 3. 计算热负荷及冷却水流量 4. 计算两流体的平均温度差 5. 初选换热器的规格 工艺计算 1. 核算总传热系数 2. 核算压强降 经验公式 设备及工艺流程图 设计结果一览表 设计评述 参考文献 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件: 1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 99000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。 4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 1.设计概述 热量传递的概念与意义 1.热量传递的概念 热量传递是指由于温度差引起的能量转移,简称传热。由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 2. 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为

导热管的原理

热管工作原理图 ·管内吸液芯中的液体受热汽化; ·汽化了的饱和蒸汽向冷端流动; ·饱和蒸汽在冷端冷凝放出热量; ·冷凝液体在吸液芯毛细力作用下回到热端继续吸热汽化。 热管简介 热管是一种导热性能极高的被动传热元件。热管利用相变原理和毛细作用,使得它本身的热传递效率比同样材质的纯铜高出几百倍到数千倍。热管是一根真空的铜管,里面所注的工作液体是热传递的媒介。在电子散热领域里,最典型的工作液体就是水。使用圆柱形铜管制成的热管是最为常见的。热管壁上有吸液芯结构。依靠吸液芯产生的毛细力,使冷凝液体从冷凝端回到蒸发端。因为热管内部抽成真空以后,在封口之前再注入液体,所以,热管内部的压力是由工作液体蒸发后的蒸汽压力决定的。只要加热热管表面,工作液体就会蒸发。蒸发端蒸汽的温度和压力都稍稍高于热管的其它部分,因此,热管内产生了压力差,促使蒸汽流向热管内较冷的一端。当蒸汽在热管壁上冷凝的时候,蒸汽放出汽化潜热,从而将热传向了冷凝端。之后,热管的吸液芯结构使冷凝后液体再回到蒸发端。只要有热源加热,这一过程就会循环进行。 1963年,George M. Grover第一个发明并且制造出了热管。不过,通用汽车早在1935年就申请了类似元件的专利。直到20世纪60年代,热管才受到人们的重视。逐渐的,作为一种提高传热效率的元件,热管受到了众多国家实验室和商业实验室的重视,而不再仅仅是实验室的试验品。令人吃惊的是,第一个将热管作为传热元件而加以接受和运用的主要客户竟然是政府。因为,热管的第一个商业用途是用于卫星上的系统。由于热管较高的成本和较小的需求,使得热管进入商业领域的进程非常缓慢。在当时,大部分的电子元件散热问题,用简单的金属散热块就可以解决。高端的军用设备是个例外,因为这样的设备需要热管的高性能,而且可以承受较高的成本。20世纪80年代,作为高端电子产品的散热设备,热管逐渐被市场所接受。随着热管的普及,增长的需求降低了热管的制造成本。降低后的成本使得散热设计者们可以将热管应用于更多的产品。在20世纪90年代初,热管开始被用于大量的家用电器。今天,热管已经被运用于数千种电器产品之中。

板式换热器结构及工作原理

板式换热器结构及工作原理 要了解板式换热器,首先看一下其结构图: 板式换热器是按一定的间隔,由多层波纹形的传热板片,通过焊接或由橡胶垫片压紧构成的高效换热设备。按其加工工艺分为可拆式换热器和全焊接不可拆式换热器,办焊接式换热器是介于两者之间的结构,即两种流体作为相对独立的结构体进行组装的。板片的焊接或组装遵循两两交替排列原则组装时,两组交替排列。为增加换热板片面积和刚性,换热板片被冲压成各种波纹形状,目前多为v型沟槽,当流体在低流速状态下形成湍流,从而强化传热的效果,防止在板片上形成结垢。板上的四个角孔,设计成流体的分配管和泄集管,两种换热介质分别流入各自流道,形成逆流或并流通过每个板片进行热量的交换。 板式换热器的特点: (1)由于采用0.6mm—0.8mm不锈钢片,传热效率得以极大的提高。 (2)体积小,是管壳式换热器体积的1/3——1/5,既节省了金属材料,又减少了占地面积。 (3)组装灵活,便于推行标准作业,从而为进一步降低生产成本带来可能。

(4)不易结构,清洗方便,便于日常维护。 (5)由于体积小、响应迅速,运行热损失小。 (6)焊接式板式换热器的缺点是焊接工艺要求高、带来成本的增加:可拆卸换热器运行温度受密封材料制约,一般在200摄氏度以 下,耐压能力也较差。 实际应用中,根据不同用户的要求,选择不同的换热器。一般工矿企业、社区楼宇集中供热换热站采用可拆式换热器,家庭生活用热水、室内空调等小功率用户采用全焊接式板式换热器。随着焊接技术和工艺的不断改进和提高,大功率换热器采用全焊接工艺将日益普及,结构更趋经凑合理。 发展展望:据统计,在现代石油化工企业中,换热器投资占30% ~40%。在制冷机中,蒸发器和冷凝器的重量占机组重量的30% ~40%,动力消耗占总动力消耗的20% ~30%。可见换热器对企业投资、金属耗量以及动力消耗有着重要的影响。大力发展板式换热器更替原有效率低下、材料消耗惊人的陈旧换热器是节能降耗有效途径,行业发展也将迎来新的机遇。

热管散热器解决方案的优点和限制

热管散热器解决方案的7大优点和5大限制 来源;大比特商务网 今天的大功率LED灯具(300瓦以上)主要采用热管散热器进行散热,但这种散热技术目前也面临着PC处理器散热沿袭下来的均温板和复合槽群散热技术的挑战,下文会帮助您明白为什么超频三科技如此钟爱热管散热技术。 大功率(300瓦以上)LED户外灯具散热除了可考虑采用目前市场很受欢迎的热管散热器以外,还可以考虑采用从PC高速处理器散热传承下来的均温板和复合槽群散热器,下文先为大家介绍热管散热技术的工作原理和优缺点,接下来再为大家介绍均温板和复合槽群散热技术。 我们都知道热的传递方式有三种:传导、对流与辐射,任何的散热设计都是这几种方式的综合应用。目前行业内常用的散热方法主要有以下三种:自然散热、强制对流散热、热管散热。而热管散热是目前效果最好而且性能稳定的散热装置,其传导热量的速度高出传统金属几十到上百倍,这一特点对LED来说再好不过,它能迅速将LED产生的热量以最快的方式传到别处,这比其它任何方法都要快捷有效,缺点是成本较高,若我们实现热管散热的标准化、模组化后,其成本也将不是问题。 那么这项新的技术具有哪些特点呢? 从使用角度看,热管具有热传递速度极快的优点,安装至散热器中可以有效的降低热阻值,增加散热效率。热管,又称“热之超导体”,其核心作用是导热。它通过在全封闭真空管内工质的汽、液相变来传递热量,具有极高的导热性,高达纯铜导热能力的上百倍。 从技术角度看,热管的核心作用提高热传递的效率,将热量快速从热源带离,而非一般意义上所说的“散热”——这则涵括与外界环境进行热交换的过程。热管的工作原理很简单,热管分为蒸发受热端和冷凝端两部分。受热端受热时,管壁周围液体汽化,产生蒸气,此时这部分压力变大,蒸气向冷凝端流动,到达冷凝端后冷凝成液体,同时放出热量,最后借助毛细力回到受热端完成一次循环。

热管技术及其工程应用传热极限计算

热管技术及其工程应用 热管的传热极限 声速极限:热管管蒸汽流动,由于惯性力的作用,在蒸发端出口处蒸汽速度可能达到声速或者超声速,而出现堵塞现象,这时的最大传热量被称为声速极限。 毛细极限:热管正常工作的必要条件是△P cap≥△P v+△P l±△P g 。如果加热量超过了某一数值,由毛细力作用抽回的液体就不能满足蒸发所需的量,于是便会出现蒸发段的吸液芯干涸,蒸发段管壁温度剧烈上升,甚至出现烧坏管壁的现象,这就是所谓的毛细传热极限。 沸腾极限:热管蒸发段的主要传热机理是导热加蒸发。当热管处于低热流量的情况下,热量的一部分通过吸液芯和液体传导到汽-液分界面上,另一部分则通过自然对流到达汽-液分界面,并形成液体的蒸发。如果热流量增大,与管壁接触的液体将逐渐过热,并会在核化中心生成气泡。热管工作时应避免气泡的生成,因为吸液芯中一旦形成气泡后,如果不能顺利穿过吸液芯运动到液体表面,就将引起表面过热,以致破坏热管的正常工作。因此将热管蒸发段在管壁处液体生成气泡时的最大传热量称作沸腾传热极限。 粘性极限:当蒸汽的压力由于粘性力的作用在热管冷凝段的末端降为零,如液态金属热管,在这种情况下,热管传热极限将受到限制,热管的工作温度低于正常温度时将遇到这种极限,它又被称为蒸汽压力极限。 携带极限:当热管中的蒸汽速度足够高时,液汽交界面存在的剪切力可能将吸液芯表面液体撕裂将其带入蒸汽流。这种现象减少了冷凝回流液,限制了传热能力。 以下就以氨为工质展开五种传热极限的相关计算,氨的物性参数如下表所示: 例:工质氨的热管,直径φ=3mm,壁厚 =0.3mm,长度L=300mm,工作温度240K, l为150mm。试确定该热管的传热功率。 有效长度 eff 一、声速极限 NH在240K时的有关物理参数如下: 解: 3 蒸汽密度ρ=0.8972 kg/m3

二极管的基本特性与应用(精)

几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平 面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固 地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流” 电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1、正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电 压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2、反向特性 在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当 二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。 二极管的主要参数 用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数: 1、额定正向工作电流 是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。 2、最高反向工作电压 加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工

换热器原理介绍

换热器基础知识 简单计算板式换热器板片面积 选用板式换热器就是要选择板片的面积的简单方法: Q=K×F×Δt, Q——热负荷 K——传热系数 F——换热面积 Δt——传热对数温差 传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。最后算出的板换的面积要乘以一定的系数如1.2。 换热器的分类与结构形式 换热器作为传热设备被广泛用于耗能用量大的领域。随着节能技术的飞速发展,换热器的种类越来越多。适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下: 一、换热器按传热原理可分为: 1、表面式换热器 表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。表面式换热器有管壳式、套管式和其他型式的换热器。 2、蓄热式换热器 蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。 3、流体连接间接式换热器 流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。 4、直接接触式换热器 直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。 二、换热器按用途分为: 1、加热器 加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。 2、预热器 预热器预先加热流体,为工序操作提供标准的工艺参数。 3、过热器 过热器用于把流体(工艺气或蒸汽)加热到过热状态。

肖特二极管的工作原理是什么.doc

肖特二极管的工作原理是什么 SBD是肖特基势垒二极管(Schottky Barrier Diode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。 肖特基二极管是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。 典型的肖特基二极管基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极使用钼或铝等材料制成阻档层。用二氧化硅(SiO2)来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,N型基片和阳极金属之间便形成肖特基势垒,当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,

换热器原理及设计大纲.pdf

《换热器原理及设计》教学大纲 Principles and Design of Heat Exchanger 一、课程类别和教学目的 课程类别:专业课 课程教学目标:通过该门课程的学习,使学生了解各种常用热交换器(也称换热器)的工作原理,掌握以满足流动和传热为条件的热交换器的设计方法,了解热交换器的实验研究方法、强化技术和性能评价,为以后的学习、创新和科学研究打下扎实的理论和实践基础。 二、课程教学内容 (一)绪论 介绍热交换器的重要性、分类及其在工业中的应用,换热器设计计算的内容。 (二)热交换器计算的基本原理 介绍传热方程式、热平衡方程式的应用;讲授流体比热或传热系数变化时的平均温差的 计算方法、传热有效度、热交换器计算方法的比较、流体流动计算方法的比较。 (三)管壳式热交换器 介绍管壳式热交换器的类型、标准与结构;讲授管壳式热交换器的结构计算、传热计算和流动阻力计算、管壳式热交换器的设计程序、管壳式冷凝器与蒸发器的工作特点。 (四)高效间壁式热交换器 介绍螺旋板式热交换器、板式热交换器、板翅式热交换器、翅片管热交换器、热管热交 换器、蒸发(冷却)器、微尺度热交换器的结构、工作原理及其设计计算。 (五)混合式热交换器 讲授冷水塔的热力计算、通风阻力计算与设计计算,汽-水喷射式热交换器的相关计算、水-水喷射式热交换器的相关计算;介绍混合式热交换器的分类。 (六)蓄热式热交换器 介绍回转型蓄热式热交换器和阀门切换型蓄热式热交换器的构造和工作原理;讲授蓄热式热交换器的计算、蓄热式热交换器与间壁式热交换器中气流及材料的温度变化比较。 (七)热交换器的试验与研究 介绍传热系数的测定方法、阻力特性实验的测定方法;讲授增强传热的基本途径、热交换器的结垢类型与腐蚀方法、热交换器的优化设计与性能评价方法。 三、课程教学基本要求 (一)绪论

齐纳二极管稳压二极管工作原理及主要全参数

齐纳二极管(稳压二极管)工作原理及主要参数 齐纳二极管也叫稳压二极管.一般二极管处于逆向偏压时,若电压超过PIV(逆向峰值电压)值时二极管将受到破坏,这是因为一般二极管在两端的电位差既高之下又要通过大量的电流,此时所产生的功率所衍生的热量足以使二极管烧毁。 齐纳二极管就是专门被设计在崩溃区操作,是一个具有良好的功率散逸装置,可以当做电压参考或定电压组件。若利用齐纳二极管作为电压调节器,将使附载电压保持在Vz附近且几乎唯一定值,不受附载电流或电源上电压变动影响。一般二极管之崩溃电压,在制作时可以随意加以控制,所以一般齐纳二极管之崩电压(Vz)从数伏特至上百伏特都有。一般齐纳二极管在特性表或电路上除了标住Vz外,均会注明Pz也就是齐纳二极管所能承受之做大功率,也可由Pz=Vz*Iz 换算出奇纳二极管可通过最大电流Iz。dz3w上有个在线计算器,电路设计时可以用来计算稳压二极管的相关参数. 齐纳二极管工作原理 齐纳二极管主要工作于逆向偏压区,在二极管工作于逆向偏压区时,当电压未达崩溃电压以前,二极管上并不会有电流产生,但当逆向电压达到崩溃电压时,每一微小电压的增加就会产生相当大的电流,此时二极管两端的电压就会保持于一个变化量相当微小的电压值(几乎等于崩溃电压),下图为齐纳二极管之电压电流曲线,可由此应证上述说明。 齐纳二极管(又叫稳压二极管)它的电路符号是:此二极管是一种直到临界反

向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 在通常情况下,反向偏置的PN结中只有一个很小的电流。这个漏电流一直保持一个常数,直到反向电压超过某个特定的值,超过这个值之后PN结突然开始有大电流导通(图1.15)。这个突然的意义重大的反向导通就是反向击穿,如果没有一些外在的措施来限制电流的话,它可能导致器件的损坏。反向击穿通常设置了固态器件的最大工作电压。然而,如果采取适当的预防措施来限制电流的话,反向击穿的结能作为一个非常稳定的参考电压。 图1.15 PN结二极管的反向击穿。 导致反向击穿的一个机制是avalanche multiplication。考虑一个反向偏置的PN结。耗尽区随着偏置上升而加宽,但还不够快到阻止电场的加强。强大的电场加速了一些载流子以非常高的速度穿过耗尽区。当这些载流子碰撞到晶体中的原子时,他们撞击松的价电子且产生了额外的载流子。因为一个载流子能通过撞击来产生额外的成千上外的载流子就好像一个雪球能产生一场雪崩一样,所以这个过程叫avalanche multiplication。 反向击穿的另一个机制是tunneling。Tunneling是一种量子机制过程,它能使粒子在不管有任何障碍存在时都能移动一小段距离。如果耗尽区足够薄,

换热器原理与设计(答案)

广东海洋大学 2013年清考试题 《换热器原理与设计》课程试题 课程号: 1420017 √ 考试 □ A 卷 □ 闭卷 □ 考查 □ B 卷 √ 考试 一.填空题(10分。每空1分) 1.相比较沉浸式换热器和喷淋式换热器,沉浸式换热器传热系数 较低。 2.对于套管式换热器和管壳式换热器来说, 套管式换热器 金属耗量多,体积大,占地面积大,多用于传热面积不大的换热器。 3.在采用先逆流后顺流<1-2>型热效方式热交换器时,要特别注意温度交叉问题,避免的方法是 增加管外程数 和两台单壳程换热器串联。 4.在流程的选择上,腐蚀性流体宜走 管程,流量小或粘度大的流体宜走壳程,因折流档板的作用可使在低雷诺数(Re >100)下即可达到湍流。 5.采用短管换热,由于有入口效应,边界层变薄,换热得到强化。 6. 相对于螺旋槽管和光管,螺旋槽管的换热系数高. 7. 根据冷凝传热的原理,层流时,相对于横管和竖管,横管 传热系数较高。 8.减小管子的支撑跨距能增加管子固有频率,在弓形折流板缺口处不排管,将 减小 管子的支撑跨距 9. 热交换器单位体积中所含的传热面积的大小大于等于700m 2/m 3,为紧凑式换热器。 10. 在廷克流动模型中ABCDE5股流体中,真正横向流过管束的流路为B 股流体,设置旁路挡板可以改善C 股流体对传热的不利 GDOU-B-11-302 班级: 姓 名: 学号: 试题共 4 页 加白纸3 张 密 封 线

影响。

二.选择题(20分。每空2分) 1.管外横向冲刷换热所遵循侧传热准则数为(C ) A. 努赛尔准则数 B. 普朗特准则数 C. 柯尔本传热因子 D. 格拉肖夫数 2.以下哪种翅片为三维翅片管( C ) A. 锯齿形翅片 B. 百叶窗翅片 C. C管翅片 D. 缩放管 3.以下换热器中的比表面积最小( A ) A.大管径换热器B.小管径换热器 C.微通道换热器 D. 板式换热器 4. 对于板式换热器,如何减小换热器的阻力(C ) A.增加流程数B.采用串联方式 C.减小流程数 D. 减小流道数。 5.对于板翅式换热器,下列哪种说法是正确的( C ) A.翅片高度越高,翅片效率越高 B.翅片厚度越小,翅片效率越高 C.可用于多种流体换热。 D. 换热面积没有得到有效增加。 6.对于场协同理论,当速度梯度和温度梯度夹角为( A ),强化传热效果最好。 A.0度B.45度 C.90度 D. 120度 7. 对于大温差加热流体(A ) A.对于液体,粘度减小B.对于气体,粘度减小 C.对于液体,传热系数减小 D. 对于气体,传热系数增大8. 对于下列管壳式换热器,哪种换热器不能进行温差应力补偿( B ) A.浮头式换热器B.固定管板式换热器 C.U型管换热器 D. 填料函式换热器。 9. 对于下列管束排列方式,换热系数最大的排列方式为( A ) A.正三角形排列B.转置三角形排列 C.正方形排列 D. 转正正方形排列。 10. 换热器内流体温度高于1000℃时,应采用以下何种换热器(A )

热管工作原理图文稿

热管工作原理 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

热管工作原理图 · 管内吸液芯中的液体受热汽化;· 汽化了的饱和蒸汽向冷端流动;· 饱和蒸汽在冷端冷凝放出热量;· 冷凝液体在吸液芯毛细力作用下回到热端继续吸热汽化。 热管简介 热管是一种导热性能极高的被动传热元件。热管利用相变原理和毛细作用,使得它本身的热传递效率比同样材质的纯铜高出几百倍到数千倍。热管是一根真空的铜管,里面所注的工作液体是热传递的媒介。在电子散热领域里,最典型的工作液体就是水。使用圆柱形铜管制成的热管是最为常见的。热管壁上有吸液芯结构。依靠吸液芯产生的毛细力,使冷凝液体从冷凝端回到蒸发端。因为热管内部抽成真空以后,在封口之前再注入液体,所以,热管内部的压力是由工作液体蒸发后的蒸汽压力决定的。只要加热热管表面,工作液体就会蒸发。蒸发端蒸汽的温度和压力都稍稍高于热管的其它部分,因此,热管内产生了压力差,促使蒸汽流向热管内较冷的一端。当蒸汽在热管壁上冷凝的时候,蒸汽放出汽化潜热,从而将热传向了冷凝端。之后,热管的吸液芯结构使冷凝后液体再回到蒸发端。只要有热源加热,这一过程就会循环进行。 1963年,George M. Grover第一个发明并且制造出了热管。不过,通用汽车早在1935年就申请了类似元件的专利。直到20世纪60年代,热管才受到人们的重视。逐渐的,作为一种提高传热效率的元件,热管受到了众多国家实验室和商业实验室的重视,而不再仅仅是实验室的试验品。令人吃惊的是,第一个将热管

作为传热元件而加以接受和运用的主要客户竟然是政府。因为,热管的第一个商业用途是用于卫星上的系统。由于热管较高的成本和较小的需求,使得热管进入商业领域的进程非常缓慢。在当时,大部分的电子元件散热问题,用简单的金属散热块就可以解决。高端的军用设备是个例外,因为这样的设备需要热管的高性能,而且可以承受较高的成本。20世纪80年代,作为高端电子产品的散热设备,热管逐渐被市场所接受。随着热管的普及,增长的需求降低了热管的制造成本。降低后的成本使得散热设计者们可以将热管应用于更多的产品。在20世纪90年代初,热管开始被用于大量的家用电器。今天,热管已经被运用于数千种电器产品之中。 吸液芯示意图 吸液芯性能比较 小热管常用工作液体及管材 CPU散热器

特种热管及传热介质

特种热管及传热介质 一. 概述 热能工程一直以来是人类关注的焦点技术领域.早在二十世纪四十年代.国外首先发明了以液体为介质的进行热能传递的元件--热管.作为一种特种传热元件.他以很小的温差传送大量热量.其特性基本上可以归纳为两 :(一)导热性好(二)均热效果高.在所有的金属非金属材料中.就传热性能而言.几乎没有哪种材料能够与热管元件相比.热管的工作介质或称工体流体(Working Fluid)可有多种.主要是采用水或油.乙醇等液体有机化合物为传热介质.在封闭的真空金属管中通过快速循环的相变达到传热的目的.即先在吸热端接受热能.使介质受热后由液态变为气态.到冷端(即放热端)释放出热能后.介质冷凝还原为液态再返回吸热端.完成一次相变循环.我们通常将这种热管称为常规热管. 常规碳钢--水热管可以在30℃~200℃的温度范围内工作.并有较高的传热效率.可以快速进行热能传递.并达到一定的节能效果.所以在一些工业部门得到了应用.但是.由于有机介质热管工作时管内存在较大压强.而压强大小与温度密切相关.温度过高.就会爆管.此外还存在载体材料与其内部工质材料不相容.产生不凝性气体而腐蚀管壁的问题.容易导致热管失效.进入九十年代以后.随着现代科学技术的迅猛发展.许多尖端设备对温度的传递范围.传热效率.使用寿命等提出了更高的技术要求.使得普通热管已无法满足工作需要.我公司科研人员从八十年代后期.就一直关注热管工业的发展.在传统热管(Heat pipe)的基础上.经过十余年的潜心研究和不管实验.开发并研制出一种优于传统热管的新型热管--特种热管. 二. 特种热管 特种热管采用的是无机介质作为热传导的一种高效传热技术.这是材料科学领域内的一项新的技术发明.其新颖性和独创性目前在国内外有关文献的检索中未见报道.属我国首创的一项领先技术. 特种热管的技术原理为:独立的(管状.夹层板状及组合状等)系统内加入A.B两种工质后.(管径≥3mm.板状间距≥1mm以上)经过真空处理密封等等工序就构成了特种传热原件.特种传热元件是一个独立的真空系统.在热能传导过程中介质受热激发产生振荡.可将热能迅速由热端向冷端快速传递并发生摩擦.众所周知.所有材料(金属和非金属).其自身均存在不同程度的热阻.决定并制约了材料的导热及热交换能力.热管的应用.减除了传热过程中的热阻.使热能更加适应远距离传递和各种形式的热能交换.特种热管具有较高的传热能力.中国科学院一位从事化学和热物理研究30余年的科学家谭志城教授经过深入研究后说.特种热管传热机理及与传热介质传热方式的异同点.使其不仅可以在热管上应用.而且可以在所有涉及热交换和热传递的设备系统中使用.特别是适用于一些有特殊要求的传热系统.这种无机传热材料的推广.应用将影响所有热量传递的领域.对提高热能利用率.节约能源将产生重大影响.尤其将为取之不尽的太阳能的利用和用之不竭的地热开发几低品位热能的回收开辟一条高速通道. 三. 特种传热介质及其载体技术参数 特种传热介质为固体.液体两种.其中固体介质在常温下为灰黑色粉末.由多种无机元素组成.当与液体介质一同灌注在密闭的载体内.并形成一定真空度时.即可实现热能高速传递.传热介质所灌注的载体(管子或夹层片状体)经密闭后.即形成高效热管.热管材料不受材质限制.可采用金属(如碳钢.不锈钢.铜)或玻璃.塑料等材料.并可采用盘旋管.弯曲板.同时可采用多管(板)组合形成.特种热管其轴向的导热是以分子告诉运动的特定方式来实现其热能传导的.

微热管及其传热理论分析

微热管及其传热理论分析 摘要:随着微电子制造技术的快速发展,微热管在航天器热控系统、微电子元器件散热等领域中有着广泛的应用。微热管是利用密封在管内工质相变进行热量传输的器件,具有体积小、重量轻、传热效率高、成本低、易于集成、无需外加动力等显著优点,能有效解决目前微小型器件和芯片的散热问题,具有广泛的应用前景。作者综述了微热管的发展与当前研究现状,详细介绍了微热管的工作原理,并指出微热管与常规微热管的区别,对槽道式平板微热管进行理论分析,最后展望了该领域的未来研究方向。 关键词:微热管,工作原理,平板微热管, 引言 随着电子科技技术的进步,许多电子产品向着高性能化、高功率化和小型化方向发展,同时产品的高集成度使其散热空间更为狭小,导致了电子元器件单位面积的热量急剧上升,如高性能微处理器的热流密度已达到100W/cm2[1]。元器件的温度每升高10℃,系统的可靠性降低50%[2],所以必须采用高效的传热技术对电子元器件进行散热。 微热管是一种利用相变传热的高效传热元件,其导热能力大大超越了铜、铝材料的空气强制对流散热方案[3-4],因此,具有高导热率、良好的等温性,以及结构简单等优点[1,5]的微热管成为微电子散热领域的关键元件,并广泛应用于各种电子产品。其中平板微热管由于其良好的蒸发吸热特性和形状易于与芯片贴合等优点被越来越多地应用于高效散热中。而微热管或热管内微结构具有强化传热传质的作用,引起研究者越来越多的关注。 1. 微热管的发展与国内外研究现状 微热管是利用密封在管内工质相变进行热量传输的器件,具有体积小、重量轻、传热效率高、成本低、易于集成、无需外加动力等显著优点,能有效解决目前微小型器件和芯片的散热问题,具有广泛的应用前景。 1944 年Gaugler第一次提出了热管的工作原理;1963 年美国《应用物理》杂志报道了世界上的第一根热管;1984 年Cotter等人提出了热管微型化的设想,为微热管的研究开辟了道路;1984年,T.P.Cotter在第五届国际热管会议上首次提出了微热管的概念,并指出微热管在用于电子芯片冷却散热领域具有广阔的应用前景。 关于微热管的研究,最初集中于几个厘米长,工质通道横截面为带有尖角区域的图形,通道的水力半径在10μm~100μm 的单根微热管。工质回流主要靠的是横截面尖角区域所形成的毛细力。这种单根微热管主要应用在传输热量不是很大,但要求温度分布均匀稳定的领域。随后微热管的研究分别从实验研究和理论研究两方面逐步展开,研究结果均体现出这一传热元件相比其它传热手段具有效率高而无需外加动力的优点。而关于微热管结构的研究也从单根微热管逐步发展到微热管阵列,即在固体基板上开出一簇簇微型槽道,这样的方式大大提高了微热管的传热能力,但这只是单根微热管的一种简单的并列组合。进一步的改进是具有连通蒸汽腔的平板微热管。平板微热管通过连通蒸汽腔降低了气液界面高速对流产生的界面摩擦力,使热管的传热能力进一步提高,从而成为目前微热管领域的研究热点。 2. 微热管工作原理 图l所示为微热管工作原理示意图。根据微热管内部蒸汽流动情况,沿其轴向可分为蒸发段、绝热段和冷凝段。从结构上分析,微热管包括管壳、毛细吸液芯和工作介质(液流)。为降低热阻和工作介质沸点,提高微热管工作效率,管壳内部需保持一定的真空度。在微热管工作时,工作介质在蒸发段吸收热源热量发生相变,蒸汽流经过绝热段到达冷凝段释放热量并凝结为液体,冷凝液流在毛细吸液芯的毛细作用下回流到蒸发段,如此循环下去,微热管不断

功率二极管结构和工作原理

功率二极管结构和工作原理 功率二极管结构和工作原理 在本征半导体中掺入P型和N型杂质,其交界处就形成了PN结,在PN结的两端引出两个电极,并在外面装上管壳,就成为半导体二极管。如果一杂质半导体和金属形成整流接触,并在两端引出两个电极,则成为肖特基二极管。 二极管的结构和工作原理: PN结的形成及二极管的单向导电性描述如下:如下图1所示,对于一块纯净的半导体,如果它的一侧是P区,另一侧为N区,则在P区和N 区之间形成

一交界面。N区的多子(电子)向P 区运动,P区的多子(空穴)向N区运动,这种由于浓度差异而引起的运动称为"扩散运动”。扩散到P区的电子不断地与空穴复合,同时P 区的空穴向N区扩散,并与N区中的电子复合交界面两侧多子复合的结果就出现了由不能移动的带电离子组成的“空间电荷区”。N区一侧出现正离子区,P区一侧出现负离子区,正负离子在交界面两侧形成一个内电场。这个内电场对多子的扩散运动起阻碍作用的同时,又有利于N 区的少子(空穴)进入P区,P区的少子(电子)进入N区,这种在内电场作用下少子的运动称为"漂移运动”。扩散运动有助于内电场的加强,内电场的加强将阻碍多子的扩散,而有助于少子的漂移,少子漂移运动的加强又将削弱内电场,又有助于多子的扩散,最终扩散运动和漂移运动必在一定

温度下达到动态平衡。即在单位时间内P区扩散到N 区的空穴数量等于由P区漂移到N区的自由电子数量,形成彼此大小相等,方向相反的漂移电流和扩 散电流,交界面的总电流为 零。在动态平衡时,交界面两侧缺少载流子的区 域称为“耗尽层“,这就形成了PN结。 囹!PN结空间电荷区 如图2所示,当PN结处于正偏,即P区接电源正端,N区接电源负端时,外加电场与PN结内电场方向相反,内电场被削弱,耗尽层变宽,打破了PN 结的平衡状态,使扩散占优势。多子形成的扩散电流通过回路形成很大的正向电流,此时PN结呈现的正向电阻很小,称为“正向导逋”。当PN结上流过

相关主题
文本预览
相关文档 最新文档