当前位置:文档之家› 原生QI成核中间相炭微球的结构

原生QI成核中间相炭微球的结构

原生QI成核中间相炭微球的结构
原生QI成核中间相炭微球的结构

 收稿日期:2000210213; 修回日期:2000211220 基金项目:天津市自然科学基金资助重点项目(000056)

 作者简介:王成扬(19552),男,天津人,工学博士,教授,主要从事沥青基炭材料的研究。

文章编号: 100728827(2000)0420009204

原生Q I 成核中间相炭微球的结构

王成扬, 姜 卉, 李 鹏, 郑嘉明

(天津大学化工学院,天津 300072)

摘 要: 以含有原生Q I 的煤沥青为原料,采用热缩聚方法制备出中间相炭微球。用扫描电子显微镜(SE M )观察了中间相炭微球的形貌和断面结构。经初步判断,在实验条件下原生Q I 成核煤沥青基中间相炭微球更倾向于“地球仪”型结构。并对以Q I 为核形成中间相微球的过程进行了分析。关键词: 原生喹啉不溶物;中间相炭微球;结构中图分类号: TQ 127.1+1 文献标识码: A

1 前言

中间相炭微球(M esocarbon M icrobeads 或

M C M B )于70年代由日本学者开始研究[1,2]

。近年来,它作为一种较为理想的锂离子电池负极材料而备受人们的重视[325]。M C M B 在电池中所表现出的良好充放电特性主要得益于其规整的平面炭层排列,使得锂离子容易嵌入和脱嵌。因此,结合制备原料和制备方法对中间相炭微球的结构形成进行研究并设法予以控制是十分必要的。

本研究采用热缩聚方法,以含有原生Q I 的煤沥青为原料制备中间相炭微球。利用扫描电子显微镜观察到中间相炭微球良好的球形度和有序的炭层结构。通过扫描电子显微镜(SE M )、X 2射线衍射仪(XRD )和真实密度分析,初步证实了这种炭微球具有较好的微结构取向和易石墨化性。同时对以原生喹啉不溶物(Q I )为核形成中间相微球的过程进行了讨论。

2 实验

2.1 原料

以经过溶剂分离方法除去部分原生喹啉不溶物的煤焦油沥青(PR 2CT P 01)作为制备中间相炭微球的原料,该沥青的基本性质如表1所示。2.2 热缩聚反应

将煤沥青PR 2CT P 01装入2L 不锈钢反应釜内,在封闭状态下,以一定升温速率升温至420℃,

恒温7h 。反应过程中持续搅拌,搅拌速率为450

r m in 。

恒温结束后,自然冷却至室温,获得含有中间相微球的沥青产物。

表1 煤沥青的基本性质

T ab le 1 P roperties of the coal tar p itch

Samp le Softening po int

t

℃So lubility W %H S H I 2T S T I 2Q S Q I PR 2CT P01

78

19.6

58.8

16.9

4.7

2.3 中间相微球的分离

将热缩聚反应所得沥青在索氏抽提器中用吡啶

分离出各向同性母体组分,再经丙酮洗涤、干燥,得到中间相微球。

2.4 中间相微球的炭化和石墨化

中间相微球放入管式炭化炉中,以1℃ m in ~3℃ m in 的升温速度加热到1000℃,恒温30m in 。自然冷却后取出,得到炭化样品。炭化后的中间相炭微球在石墨化炉中快速升温至2800℃,随即冷却并取出,得到石墨化样品。2.5 SE M 和XRD 分析

采用日立S 2450型扫描电子显微镜观察中间相微球的形貌;并将炭微球样品用玛瑙研钵捣碎,在电子显微镜下观察其断面;仪器加速电压为20kV 。

使用日本理学D m ax 27500型X 2射线衍射仪对炭化和石墨化中间相炭微球进行结构分析。仪器光源为CuK 2A lp ha 射线,管电压40kV ,管电流150mA 。

第15卷2000年第4期12月 新 型 炭 材 料N E W CA RBON M A T ER I AL S

V o l .15 N o.4

D ec .2000

3 结果与讨论

3.1 中间相炭微球的形貌和结构

对本研究得到的炭微球在扫描电镜下进行观察,其形貌和表面局部放大照片示于图1。

图1(a )显示出较为均匀的中间相炭微球形貌;图1(b )可观察到较为粗糙的球体表面。本作者认为,中间相微球的均匀性与球晶成核机理直接有关;反应体系中游离炭(或其它化学添加剂)的存在,常常可以得到较为均匀的中间相微球

图1 在不同倍率下中间相微球的SE M 照片

F ig .1 SE M i m ages of M CM B at different m agnificati on

在中间相研究中一般认为,中间相球晶的成核

过程可分为均相成核和游离炭成核两种。前者经过融并和中间相发展,比较容易形成均匀的易石墨化炭材料;后者在中间相发展阶段难于完成大范围择优取向,多形成镶嵌型炭材料。本研究以经过预处理

且含有一定原生Q I 的煤沥青为原料制备中间相微

球,球晶形成属游离炭成核过程。由于煤沥青中游离炭(可能包含焦粉、煤粉、炭黑、多环芳烃交联体等)组成和结构的不确定性,在一定程度上造成了中间相炭微球结构的不确定性

图2 M CM B (C 2M B 01)断面的SE M 照片

F ig .2 SE M pho tograph s on secti on of M CM B (C 2M B 01)

在扫描电子显微镜下观察中间相炭微球断面结

构(见图2(a ,b ))时注意到,大部分球体中炭层具有较好的平面度或稍有弯曲,且炭层平面与微球表面基本相垂直。规整的层片结构反映了炭微球的易石墨化性,这一点还可以从表2中炭微球在不同温度处理后的真实密度和结构参数变化情况看出。中间相炭微球作为锂离子电池的负极材料,这样的结构将有利于锂离子的顺利嵌入和脱嵌。

表2 炭微球的真实密度和结构参数

T ab le 2 R eal den sity and structu ral param eter of M C M B

Samp le H eat 2treatm ent

temperature t

℃R eal density

Θ g ?c m -3

d 002 nm

C 2M B 0110001.90.3550G 2M B 01

2800

2.2

0.3378

3.2 中间相微球结构形成过程分析

以前的研究者曾提出不同的中间相球体结构模

?01? 新 型 炭 材 料第15卷

型,最为典型的是B rook s 2T aylo r 和Honda 模型。B rook s 2T aylo r 模型

[6]

为“地球仪”型结构,均相成

核的沥青中间相球体基本属于这种类型。Honda 模型[7]为“洋葱”型结构,被认为出现在以炭黑或游离炭成核的中间相微球中。对本实验条件下制备的中间相炭微球在电子显微镜下进行观察,多数M C M B 断面属于或倾向于B rook s 2T aylo r 型结构,尚未观察到典型Honda 型结构的存在。本文作者在过去的工作中已证明游离炭有助于中间相微球的形成,并使成核的数量增加[8]。上述中间相微球的结构分析则初步证明了游离炭成核中间相微球形成“地球仪”型结构的可能性,并由此猜测煤沥青中游离炭是以层状结构的炭颗粒为主。由于中间相微球的成核和成长受到原料组成、缩聚条件以及所在力场和磁场等因素的影响,情况十分复杂,所以更深入的中间相微球形成机理分析,特别是“洋葱”型等结构形成机

理的分析还有待于进一步的理论和实验研究。本研究还发现,通过对炭微球断面结构进行扫

描电镜观察,可以研究中间相球体的融并和变形行为。图3(a ,b )为一个中间相炭微球完整的断面及其局部放大照片。从照片上清晰的炭层轮廓可以推测,这一球体的成长经历了融并但没有完成全部重排过程,因而产生了结构缺陷。对图3做进一步分析可知,融并前两个微球大小不等,且融并是在两球C 2轴角度不相同的情况下进行的,不属于典型的等C 2轴角度融并。由于中间相微球的成长和融并在沥青缩聚过程中可同时进行,所以炭微球中势必存在一部分因融并而造成结构缺陷的球体。过去,对中间相球体的结构和融并行为的研究主要借助于偏光显微镜来完成。本研究结果显示,用扫描电子显微镜来观察中间相炭微球断面,不失为研究中间相球体结构及球体融并过程的一种较直观和有效的方法

图3 不同倍率下M CM B (G 2M B 01)断面的SE M 照片

F ig .3 SE M i m ages on secti on of M CM B (

G 2M B 01)at different m agnificati on

4 结论

在本实验条件下,原生Q I 成核煤沥青基中间相微球更倾向于“地球仪”型结构,而不是“洋葱”型结构。

致谢:中间相炭微球的石墨化处理在湖南大学新型炭材料研

究所徐仲榆教授的帮助下完成,特此表示诚挚的谢意。参考文献:

[1] Yam ada Y ,Honda H .T anso ,1974,(77):161.

[2] Yam ada Y ,I m am ura T ,Kak iyam a H ,et al

.Characteristics of m eso 2carbon m icrobeads separated from p itch [J ].Carbon ,

1974,12(3):3072319.

[3] 吕永根,凌立成,刘朗,等.原生吡啶不溶物在煤焦油聚合制

备中间相炭微球过程中的作用[J ].新型炭材料,1998,13(1):

38241.

[4] 薛锐生,沈曾民,宋怀河.热缩聚工艺条件对中间相炭微球形

成的影响[J ].炭素,1999,(3):8213.

[5] 杨清欣,王伯良,张泽波,等.M CM B 粒度及分布对锂离子蓄

电池性能的影响[J ].电源技术,1999,23(5):2492251.

[6] B rook s J D ,Taylo r G H .The fo r m ati on of graphitizing carbons from

the liquid phase [J ].Carbon ,1965,3:1852193.

[7] M atsumo to S ,O i S ,I m am ura T ,et al

.In Extended A bstracts of 13th B iennial Conference on Carbon ,1977,2012203.[8] 姜卉,王成扬,郑嘉明.煤焦油系中间相炭微球的制备[A ].中

国电工技术学会炭 石墨材料专业委员会第十八届学术交流会论文集[J ],2000.3842389.

?11?

第4期王成扬等:原生Q I 成核中间相炭微球的结构 

STRUCTURE OF M ES OCARB ON M I CROBEAD S FOR M ED W ITH

OR IGINAL QI AS SEED CRY STAL

W AN G Cheng 2yang , J I AN G H u i , L I Peng , ZH EN G J ia 2m ing

(Colleg e of Che m ical E ng ineering ,T ianj in U niversity ,T ianj in 300072,Ch ina )

ABSTRACT : M esocarbon m icrobeads (M C M B )w ere p rep ared from coal tar p itch con tain ing o riginal Q I

by therm al conden sati on .Scann ing electron m icro scop e (SE M )w as u sed to ob serve m o rp ho logy and sec 2ti on of the M C M B ,and i m ages show ing fine sp hericity and regu lar layer structu re of the sam p le w ere ob 2tained .A s a resu lt of p ri m ary exam inati on ,it w as con sidered that the M C M B p rep ared from coal tar p itch con tain ing o riginal Q I under p resen t exp eri m en tal conditi on tended to be the “globe ”shap ed tex tu re .T he p rocess of M C M B fo rm ati on w ith o riginal Q I as the seed crystal w as also discu ssed .KEY WORD S : O riginal Q I ;M esocarbon m icrobeads ;Structu re

Foundation ite m :N atural Science Foundati on of T ianjin (000056)

Author i n truduction :WAN G Cheng 2yang ,m ale ,Ph .D .,P rofesso r ,engaged m ainly in the research of p itch 2based carbon m aterials .

欢迎订阅《新型炭材料》

《新型炭材料》创刊于1985年,由中国科学院主管,中国科学院山西煤炭化学研究所主办,科学出版社出版,是向国内外公开发行的炭材料方面综合性学术刊物。创刊至今已出版15卷62期。

本刊刊载内容为有关炭材料及其分支学科的基础科学、技术科学和与炭材料有关的边缘学科领域研究的最新成果,设有研究论文、研究简报、综述、专论、学术活动信息等栏目。

本刊已入选《材料科学技术百科全书》

(中国大百科全书出版社,1995,8)中材料科学类刊物的主要期刊;《中国科技期刊研究》载文“中文材料科学核心期刊的筛选”[1995年,6(1)],我刊被录选为核心期刊。

本刊从1999年起列入《中国科技论文统计源》期刊,《中国科学引文数据库》来源期刊,《中国学术期刊综合评价数据库》来源期刊,被美国化学文摘(CA )收录,同时被评为1999年度山西省一级期刊。

刊物被《中国期刊网》、《中国学术期刊(光盘版)》全文收录,同时加入《万方数据资源系统(Ch ina Info )数字化期刊群》。

刊物发稿总篇数的80%论文被《中国化学文献数据库》(CCDOC ),《中国化学化工文摘》、《炭素文摘》等文摘、索引类刊物收录。

本刊主要读者对象是从事与新型炭材料的研究、制造、应用、教学有关的广大科技工作者和高等院校师生。

订阅办法: 本刊邮发代号:222164,读者可到当地邮局办理订阅,也可以与本编辑部联系订阅,订价每期10元,全年40

元。

编辑部地址: 太原市桃园南路11号邮 编: 030001电 话: (0351)2025254

E 2m ail : tcl @sx icc .ac .cn xx tcl @https://www.doczj.com/doc/9915741525.html,

欢迎订阅 欢迎来稿 欢迎刊登广告

?21? 新 型 炭 材 料第15卷

中间相炭微球项目可行性研究分析报告

中间相炭微球项目可行性研究分析报告 报告说明: 泓域咨询机构编写的投资可行性报告咨询服务分为政府审批核准用可行性研究报告和融资用可行性研究报告。审批核准用的可行性研究报告侧重关注项目的社会经济效益和影响;融资用报告侧重关注项目的盈利能力。具体概括为:政府立项审批、产业扶持、银行贷款、融资投资、投资建设、境外投资、上市融资、中外合作、股份合作、组建公司、征用土地、申请高新技术企业等各类可行性报告。 《中间相炭微球项目可行性研究报告》通过对中间相炭微球项目的市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等方面的研究,从技术、经济、

工程等角度对中间相炭微球项目进行调查研究和分析比较,并对中间相炭微球项目建成以后可能取得的经济效益和社会环境影响进行科学预测,为中间相炭微球项目决策提供公正、可靠、科学的投资咨询意见。具体而言,本报告体现如下几方面价值:——作为向中间相炭微球项目建设所在地政府和规划部门备案的依据; ——作为筹集资金向银行申请贷款的依据; ——作为建设中间相炭微球项目投资决策的依据; ——作为中间相炭微球项目进行工程设计、设备订货、施工准备等基本建设前期工作的依据; ——作为中间相炭微球项目拟采用的新技术、新设备的研制和进行地形、地质及工业性试验的依据; ——作为环保部门审查中间相炭微球项目对环境影响的依据。

泓域企划机构(简称“泓域企划”)成立于2011年,是一家专注于产业规划咨询、项目管理咨询、、商业品牌推广,并提供全方位解决方案的项目战略咨询及营销策划机构,在全行业中首创了“互联网+咨询策划”的服务模式,通过信息资源整合,可为客户定制提供“行业+项目+产品+品牌”的全案策划方案。 泓域企划是领先的信息咨询服务机构,主要针对企业单位、政府组织和金融机构,在产业研究、投资分析、市场调研等方面提供专业、权威的研究报告、数据产品和解决方案。作为一家专业的投资信息咨询机构,泓域咨询及其合作机构拥有国家发展和改革委员会工程咨询资格,其编写的可行性报告以质量高、速度快、分析详细、财务预测准确、服务好而在国内享有盛誉,已经累计完成上千个项目可行性研究报告、项目申请报告、资金申请报告的编写,可为企业快速推动投资项目提供专业服务。 泓域企划机构有国家工程咨询甲级资质,其中间相炭微球项

葡萄糖水热法制备纳米碳球

葡萄糖水热法制备纳米碳球 1 目的要求 (1)熟悉葡萄糖水热法制备纳米碳球的方法,熟练掌握高温高压反应釜的组装与应用。 (2)熟悉并理解水热法的基本原理、特性,熟练使用反应釜,关注反应釜使用的注意事项。 2 实验原理 碳微球材料由于其具有高密度、高强度、高比表面积以及在锂离子电池方面的应用前景,已经引起许多研究人员的兴趣。碳微球的形状和大小显著影响着其电学性能。 葡萄糖在水热条件下会发生许多化学反应,实验结果表明:碳微球的增长似乎符合LaMer模型(见图1),当0.5 molL-1的葡萄糖溶液在低于140?C或反应时间小于1h时不会形成碳球,在此条件下反应后溶液呈橙色或红色并且粘度增强,表明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。当反应条件为0.5molL-1、160?C、3h时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。从现有的研究结果表明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响碳球的粒径分布,其中反应时间对颗粒粒径影响很大,随着反应时间的延长,这些纳米碳球粒径从150nm(最初核的大小,实验所得到的最小的尺寸)生长到1500nm。 由葡萄糖水热法制备纳米碳球具有绿色环保无污染的特点,实验过程中没有引入任何引发剂以及有毒溶剂,制备得到的碳球粒径均匀,大小可控,同时表面含有大量活性官能团,具有优良的亲水性和表面反应活性,可应用于生物化学、生物诊断以及药物传输领域,也可以作为制备核壳结构材料或者多孔材料的模板等等,具有令人欣喜的应用前景。

炭气凝胶吸附性能研究

介孔碳材料特异性吸附低密度脂蛋白的研究 二O一O年11月 介孔碳材料特异性吸附

低密度脂蛋白的研究 【摘要】 【关键字】 一、背景 碳是自然界储量丰富和存在形式变化最多的元素。与其它无机非金属材料相比,碳元素的特点之一是存在着众多的同素异形体,其原子间除单键外,还能形成稳定的双键和叁键,从而形成许多结构和性质完全不同的物质,人们所熟知的就有金刚石、石墨和不同石墨化程度的各种过渡态炭,近年来又发现了以C60为代表的富勒烯和碳纳米管。由于炭元素键合方式的多样化,炭材料的特性几乎可包括地球上所有物质的各种性质甚至相对立的性质,如从最硬到极软,全吸光到全透光,绝缘到半导体直至高导体,绝热到良导体,铁磁体到高临界温度的超导体等。从特性来看,炭材料可以是兼有金属、陶瓷和高分子材料三者性能于一身的独特材料。近年来对炭材料的认识又有飞跃性的发展,发现炭在纳米尺度的不同组装或排列方式对炭材料的性能有本质的影响。由于纳米孔结构炭材料有良好的结构可设计性,表面积、孔结构及表面物理化学性质的可控制性,可根据不同应用对其结构的要求设计出相应的纳米孔结构炭材料,因此纳米孔结构炭材料的结构设计与可控制备及其在能源、催化和生物领域的应用成为该领域的一个重要研究方向。 (一)、多孔材料概述 从20世纪60年代美国对高比表面积活性炭的研究开始,多孔材料第一次作为一门新兴的材料学跃上了材料研究的舞台,并发挥了重要的作用,成为材料研究领域不可缺少的一部分。随着科学技术的迅速发展,多孔材料的发展也更加迅猛,不仅局限于某一方面,而且逐步面向工业生产和日常生活的每一个方面。与一般材料不同,多孔材料不仅能和原子、离子和分子在材料的表面发生作用,而且这种作用还能贯穿于整个材料的体相内的微观空间。由于这种独特的性能,多孔材料在多相催化、吸附分离、传感器、天然气和氢气储存、电化学电极材料等众多领域有广泛的应用前景,一直受到人们的关注,全世界有上千个实验室开展相关研究。 根据国际纯粹和应用化学联合会(IUPAC)的规定,孔径小于2 nm称为微孔材料(microporous materials),孔径介于2-50 nm为中孔或介孔材料(mesoporous materials),而孔径大于50 nm 称为大孔材料(macroporous materials)。其中常见的微孔材料有沸石、活性炭以及有机金属调和

活性炭用量与寿命计算

活性炭 1、活性炭基本介绍 活性炭又称活性炭黑。是黑色粉末状或颗粒状的无定形碳。活性炭主成分除了碳以外还有氧、氢等元素。活性炭在结构上由于微晶碳是不规则排列,在交叉连接之间有细孔,在活化时会产生碳组织缺陷,因此它是一种多孔碳,堆积密度低,比表面积大。 2、活性炭净水原理 活性炭是一种很细小的炭粒,有很大的表面积,而且炭粒中还有更细小的孔——毛细管。这种毛细管具有很强的吸附能力,由于炭粒的表面积很大,所以能与杂质充分接触。这些杂质碰到毛细管被吸附,起净化作用。 3、活性炭的要求 好的净水机净水器使用的活性炭必须具有吸附容量大、使用寿命长、机械强度高、灰份低、易冲洗、出水水质好等特点,它不但能除去异臭、异味、提高色度,而且对水中的各种有毒有害物质如: 氯、酚、汞、铅、砷、氯化物、洗涤剂、农药、化肥等污染物具有很高的去除率。 具体主要技术指标如下: 1、粒度(10—24目2.0—0.8 mm): ≥95% ; 说明: 通常来说,颗粒越小的活性炭,比外表积越大,也就是吸附效果越好,但是颗粒越小,损耗也会越大,粉尘也会越多。 2、碘吸附值: ≥1000 mg / g ;

一般来说碘吸附值越高,活性炭的吸附能力越强 3、比表面积:1000---1200 m2/ g ; 说明: 若取1克活性炭,将里面所有的孔壁都展开成一个平面,这个面积将达到1000平方米(既比表面积为1000g/m2)!影响活性炭吸附性的主要因素就取决于内部孔隙结构的发达程度。(及比表面积越大,活性炭的吸附效果越好)。 4、xx脱色力: ≥10 ml/g; 说明: 除色能力。 5、耐磨强度: ≥95% ; 说明: 即耐磨损或抗磨擦的性能;强度越高,活性炭性能越好。 6、干燥减量: ≤10% ; 说明: 干燥减量及指水分,此值越低,活性炭质量越好。 7、灼烧残渣: ≤3% ;

碳微球的制备

碳微球的制备 洪毅杰材料0703 200722093 摘要:总结了近年来碳微球的多种制备技术,重点说明几种使用较为广泛的制备方法的工艺,优点及缺点。 关键词:碳微球制备 The Preparation of Carbon Spheres Abstract: This paper reviews the recent development of the preparation of carbon spheres. Several methods widely adopted for preparing carbon spheres, with their preparing ways, advantages and disadvantages. Key words: carbon spheres, preparation 自从1973年Honda等[1]通过对沥青进行分离从而发现微米级的中间相碳微球以来,由于其优异的性能及广阔的利用前景,碳微球得到了科研人员的重点研究。碳微球是由石墨片层在玻璃相的石墨结构间断分布而构成,由于其具有高比表面,优异的化学稳定性及热稳定性等,可以制备高强度高密度C/C复合材料、高性能液相色谱柱填料、高比表面积活性炭材料、锂离子电池负极材料等一系列高性能碳材料。而作为碳微球的制备,经过近几年的研究,已经有较大的进展。总体看来,根据制备环境的不同,主要分为缩聚法,液相法及气象沉积法三种。 1 缩聚法 缩聚法主要用于中间相碳微球的制备。利用原料沥青经过热缩聚得到中间相沥青后分离得到中间相沥青微球,再通过预氧化和炭化过程即得到产物。Esumi等[2]对煤沥青QS进行热缩聚后经分离得到C/H为 2.314,直径为2-15μm的碳微球,从而得到从沥青得到碳微球的工业方法。今年以来,各国科学家分别以不同来源的沥青,包括煤焦油沥青等。缩聚法条件简单,操作容易,易于工业化连续生产。但也存在

中间相沥青碳微球的制备

中间相沥青碳微球的制备 姓名:张雪萍 学号:201202020322 班级:2012级化药3班 学院:材料与化学化工学院

中间相沥青碳微球的制备 张雪萍成都理工大学材料与化学化工学院摘要:本文将采用热缩聚法制备中间相沥青碳微球,往煤焦油沥青中加入一次QI,可促进中间相小球的快速生成并防止其融并,提取时采用四氢呋喃做溶剂,能得到可以得到球形度好、收率高、中间相含量高的中间相炭微球。 关键词:煤焦油沥青碳微球制备 1 引言 中间相碳微球(MCMB)由于具有层片分子平行堆砌的结构,又兼有球形的特点,球径小而分布均匀[1],已经成为很多新型炭材料的首选基础材料,如锂离子二次电池的电极材料、高比表面活性炭微球,高密度各向同性炭一石墨材料、高效液相色谱柱的填充材料[2]。制备收率高球型好的MCMB成为近几年研究的热点。MCMB的制备方法主要有热缩聚法、乳化法、悬浮法[1,6]。但乳化法和悬浮法由于工艺复杂,应用有限。热缩聚法缩聚法具有工序简单、制备条件容易控制、易实现连续生产等优点,但由于热缩聚法在反应过程中发生小球体融并现象从而使得小球的尺寸分布宽且粒径不均匀,从而限制了中间相碳微球的收率[3]。 热缩聚法是是通过直接热处理使稠环芳烃原料首先缩聚形成中间相小球,然后采用适当的手段将小球从母液沥青中提取出来[4]。在该法制备中间相炭微球过程中, 影响MCMB 质量和产量的热缩聚条件主要有升温速率、恒温时间、恒温温度、搅拌速度以及力场、磁场

等, 其中温度和时间是最主要的影响因素[5]。反应恒定温度对制备MCMB 的影响最大, 随温度升高, 中间相小球体收率明显增加。 2 实验部分 2.1实验原料 以煤焦油沥青为原料,外加物为一次QI,以四氢呋喃(化学纯)作为提取微球时的分离溶剂。 2.2反应步骤 将煤焦油沥青料装入一定容量的反应釜中,外加一定量的一次QI,密封以隔绝空气, 然后在纯N2保护下以一定的升温速率升到250℃,加热搅拌1h,将体系压强增大到30Mpa,将温度升到600℃,在该温度下持续搅拌一段时间后,自然冷却至室温,得到中间相沥青。选择四氢呋喃作溶剂分离,对所得中间相沥青作多次进行溶剂分离处理,采用过滤方法从四氢呋喃溶液中分离出来,并用苯冲洗。 2.3 分析方法 2.2.1 形貌分析 采用扫描电镜主来对合成的碳微球进行形貌分析,观察样品的形态,主要观察中间相碳微球的形貌以及球体球径的大小,得到电镜下CMBC的形貌图。 2.3.2 粒度分析 利用激光光度仪测量碳微球的散射角,利用激光衍射法,来计算CMBC的粒径大小,绘制中间相碳微球的球径分布曲线图。

中间相碳微球项目投资分析报告

中间相碳微球项目投资分析报告 第一章项目总论 一、项目基本情况 (一)项目名称 1、项目名称:中间相碳微球项目 (二)项目建设单位 xx有限公司 二、项目拟建地址及用地指标 (一)项目拟建地址 该项目选址在xx工业园区。 (二)项目用地规模 1、该项目计划在xx工业园区建设。 2、项目拟定建设区域属于工业项目建设占地规划区,建设区总用地面积116667.3 平方米(折合约175.0 亩),代征地面积1050.0 平方米,净用地面积115617.3 平方米(折合约173.4 亩),土地综合利用率100.0%;项目建设遵循“合理和集约用地”的原则,按照中间相碳微球行业生产规范和要求进行科学设计、合理布局,符合中间相碳微球制造和经营的规划建设需要。

(三)项目用地控制指标 1、该项目实际用地面积115617.3 平方米,建筑物基底占地面积79313.5 平方米,计容建筑面积130532.0 平方米,其中:规划建设生产车间106136.7 平方米,仓储设施面积14567.8 平方米(其中:原辅材料库房8786.9 平方米,成品仓库5780.9 平方米),办公用房5087.2 平方米,职工宿舍2890.4 平方米,其他建筑面积(含部分公用工程和辅助工程)1849.9 平方米;绿化面积7630.7 平方米,场区道路及场地占地面积28673.1 平方米,土地综合利用面积115617.3 平方米;土地综合利用率100.0%。 2、该工程规划建筑系数68.6%,建筑容积率1.1 ,绿化覆盖率6.6%,办公及生活用地所占比重5.2%,固定资产投资强度3205.5 万元/公顷,场区土地综合利用率100.0%;根据测算,该项目建设完全符合《工业项目建设用地控制指标》(国土资发【2008】24号)文件规定的具体要求。 三、项目背景分析 充分认识智能制造的意义,重塑发展理念。目前,我国传统制造业总体上处于转型升级的过渡阶段,相当多的企业在产业分工中处于中低端环节,但很多企业仍满足于低成本竞争,使用智能设备的动力不足。即使一些引入智能设备的企业,也仅停留在初级应用阶段。应充分认识智能制造对产业发展的颠覆性意义,树立以智能制造整合价值链和商业模式的理念,借助传感器、物联网、大数据、云计算等新技术,对原有生产技术和

活性炭的制备

活性炭的制备 1 活性炭的制备原料 (1) 2 活性炭的制备方法 (1) 3 煤基活性炭的制备方法 (2) 4 煤基活性炭中的粘结剂 (3) 1 活性炭的制备原料 活性炭的结构特性依赖于前躯体的性质、原料的炭化、活化和化学的调整条件[22]。选择合适的原料是影响活性炭性质的一个重要因素,活性炭可用各种类型的碳质材料来制备,来源非常广泛,大体可以分为以下几类: ①有机高分子聚合物,如萨兰树脂、酚醛树脂、聚糖醇等; ②植物类,主要是利用植物的坚果壳或核,如核桃壳、杏核、椰壳等; ③煤及煤的衍生物,如各种不同煤化度的煤及其混合物。 原料的选择一般以低灰分、高含碳量以及尽可能低的挥发分为最佳。较好的原料主要是煤(褐煤、长焰煤、烟煤、无烟煤)、木材、果壳。由于煤来源广泛、价格低廉、制备工艺相对简单而应用较多。煤的主要成分是碳,表面化学性质活泼,孔隙率高、比表面积大,其多孔结构有利于制成活性吸附材料。在以煤为原料制备活性炭的技术开发方面,德国、日本、美国、俄罗斯和中国已做了大量的研究工作,并取得了一定成果。 2 活性炭的制备方法 活性炭的制备方法主要可以分为:碳化法、活化法、碳沉积法、热收缩等方法。碳化法是将碳质原料置于惰性气氛中,以适当的热解条件得到碳化产品的方法。其基本原理是基于加热过程中各基团、桥键、自由基和芳环等复杂的分解聚合反应,表现为碳化产物的孔隙发展、孔径的扩大和收缩。在碳化过程中,碳质原料中的热不稳定组分以挥发分形式脱出,从而在半焦上留下孔隙。碳化法适用于高挥发分原料,是所有其他方法的基础。影响碳化过程的主要因素是升温速率、碳化温度与恒温时间。采用的升温速率一般在5~15°C/min,碳化温度多在500~

用于超级电容器电极材料的球形炭气凝胶

第34卷第6期 2007年北京化工大学学报 JOURNAL OF BEI J IN G UN IV ERSIT Y OF CHEMICAL TECHNOLO GY Vol.34,No.6 2007 用于超级电容器电极材料的球形炭气凝胶 蒋亚娴 陈晓红3 宋怀河 (北京化工大学材料科学与工程学院,北京 100029) 摘 要:以2,42二羟基苯甲酸(D )和甲醛(F )为原料,碳酸钾(C )为催化剂,采用溶胶2凝胶和乳液聚合的方法合成出球形炭气凝胶。利用SEM 、粒径分布和BET 测试法对样品的形貌和孔结构进行了分析。以制备的球形炭气凝胶作为超级电容器电极材料,利用恒流充放电研究其电容特性,考察了干燥方式和n D /n C 对比电容的影响。结果表明,超临界干燥下,n D /n C 为100的样品具有467m 2/g 的比表面积,孔径主要分布在215nm 左右,在充放电电流密度为50mA/g 时的比电容可达142F/g ,该电极具有较好的循环性能和功率特性。关键词:球形炭气凝胶;超级电容器;比电容中图分类号:TM53 收稿日期:2007203221 基金项目:北京市科技新星计划(2003B09);教育部留学回 国人员启动基金(200405) 第一作者:女,1981年生,硕士生3通讯联系人 E 2mail :chenxh @https://www.doczj.com/doc/9915741525.html, 引 言 电化学双层电容器(electrochemical double 2layer capacitors ),又称为超级电容(supercapacitors ),是介于传统电容器和二次电池之间的一种新型储能装置,它具有循环寿命长、比容量高、能快速充放电等优点[1]。双电层的工作原理[223]是基于电极/电解液界面的双电层在外加电场下,正负离子发生定向迁移,并在活性物质/电解液界面上形成“双电层”,实现电荷和能量的储存。因此,电极材料应该有很高的比表面积,在充电过程中就可以形成更多的空间电荷层来储存能量[4]。活性炭[5]以其较高的比表面积而被广泛用作双电层电容器的电极材料。活性炭中超微孔(<1nm )的比例较高,其存在尽管对比表面积有贡献,但因它们的孔径太小而往往使电解液无法进入形成双电层。活性炭的微孔也不利于电解质离子快速、有效的传输,从而降低电容器快速充放电的能力[6]。因此,比表面积大、孔径分布较窄的炭气凝胶成为超级电容器[729]的理想电极材料之一。 炭气凝胶(carbon aerogels )是一种新型的轻质纳米多孔性非晶炭材料,最先由Pekala [10]用间苯二 酚和甲醛为原料,通过溶胶2凝胶法制备。它具有高比表面积、低密度、高孔隙率、均一纳米结构、强耐腐蚀性、低电阻系数和良好的导电性等特点。用传统工艺制备出的炭气凝胶的形态以柱状、块状和粉末状为主。最近几年,球形炭气凝胶的制备逐渐引起人们的关注,这是因为球形炭气凝胶具有滚动性,易于流动,在实际使用中容易均匀装填于容器,实现紧密堆积,利于制备出高密度的电极。目前,已有人将球形炭气凝胶作为色谱柱的填充材料[11]和金属氧化物的载体[12]使用,但将其作为超级电容器电极材料的研究鲜有报道。 本文以2,42二羟基苯甲酸(D )[13214]和甲醛(F )为原料,碳酸钾为催化剂(C ),通过溶胶2凝胶法和反相乳液聚合法制备出球形炭气凝胶。通过SEM 、粒径分析和B ET 测试对样品的形貌和孔结构进行了分析;利用恒流充放电测试其电容特性,讨论了干燥方式、D 和C 的摩尔比对其比电容的影响,以考察球形炭气凝胶作为超级电容器电极材料的性能,拓展炭气凝胶的应用范围。 1 实验部分 111 原料 2,42二羟基苯甲酸,化学纯,北京化学试剂厂; 甲醛,分析纯,济南鲁康化学工业有限公司;司班80,化学纯,广东西陇化工厂;环己烷,分析纯,北京 化工厂;丙酮,分析纯,北京化工厂;石油醚,分析纯,北京化工厂;10%聚四氟乙烯乳液,自制;泡沫镍,长沙力元新材料有限公司。

万吨年中间相炭微球项目建议书

1万吨/年中间相炭微球项目建议书

1项目背景 1.1 项目名称 中间相炭微球项目 1.2 项目建设规模 建设规模:1万吨/年 1.3 项目建设地址 黑龙江省七台河新兴煤化工循环经济产业园区 1.4 项目提出背景 2011年七台河市焦炭产能达到1000万吨,可以产生总量为25亿立方米的剩余煤气、4 5万吨煤焦油、12万吨粗苯。如果从黑龙江省范围考虑,按黑龙江省焦炭产量1500万吨计算,可以产生37.5亿立方米剩余煤气、67.5万吨煤焦油、18万吨粗苯。已经具备了向产品品种结构上深度开发的条件。目前生产的多数是化工的基础原料,是化工产品产业链的基础产品,是精细化工产品的“粮食”。要改变现有“只卖原粮”的局面,向精细化工领域迈进。 七台河市煤化工产业下步发展要继续以建立完善循环经济体系为重点,按照“稳煤、控焦、兴化”的总体发展思路,依托煤焦油、焦炉剩余煤气、粗苯这三条线,整合资源、集中优势,继续寻求延伸产业链条,搞好资源综合利用和延伸转化,实现资源循环利用、综合开发、高效增值,不断扩大煤化工产业的整体规模,形成全市工业经济加快发展新的增长极。 新兴煤化工产业园区位于七台河市新兴区辖区内,园区现有面积约4.7平方公里,一期增加2.9平方公里,达到7.6平方公里;二期将长兴乡马鞍村整村搬迁至长兴村,增加5.5平方公里,总体达到13.1平方公里;三期增加8.7平方公里,最终园区面积将达到21.8多平方公里,新兴煤化工产业园区是一个以煤焦化及下游产品为主体的产业园区。园区功能齐备,水、电、路等基础设施建设基本到位。 基于上述政策和资源条件,提出一系列煤焦油项目,1万吨/年中间相炭微球项目是其中之一。

活性炭吸附原理

活性炭吸附原理 活性炭又称活性炭黑。是黑色粉末状或颗粒状的无定形碳。活性炭主成分除了碳以外还有氧、氢等元素。活性炭在结构上由于微晶碳是不规则排列,在交叉连接之间有细孔,在活化时会产生碳组织缺陷,因此它是一种多孔碳,堆积密度低,比表面积大。 根据吸附过程中,活性炭分子和污染物分子之间作用力的不同,可将吸附分为两大类;物理吸附和化学吸附(又称活性吸附)。在吸附过程中,当活性炭分子和污染物分子之间的作用力是范德华力(或静电引力)时称为物理吸附;当活性炭分子和污染物分子之间的作用力是化学键时称为化学吸附。物理吸附的吸附强度主要与活性炭的物理性质有关,与活性炭的化学性质基本无关。由于范德华力较弱,对污染物分子的结构影响不大,这种力与分子间内聚力一样,故可把物理吸附类比为凝聚现象。物理吸附时污染物的化学性质仍然保持不变。由于化学键强,对污染物分子的结构影响较大,故可把化学吸附看做化学反应,是污染物与活性炭间化学作用的结果。化学吸附一般包含电子对共享或电子转移,而不是简单的微扰或弱极化作用,是不可逆的化学反应过程。物理吸附和化学吸附的根本区别在于产生吸附键的作用力。 吸附过程是污染物分子被吸附到固体表面的过程,分子的自由能会降低,因此,吸附过程是放热过程,所放出的热称为该污染物在此固体表面上的吸附热。由于物理吸附和化学吸附的作用力不同,它们在吸附热、吸附速率、吸附活化能、吸附温度、选择性、吸附层数和吸附光谱等方面表现出一定的差异。 其中:活性炭的吸附容量是有限的,吸附饱和后的活性炭不具有吸附净化有机废气的功能,因此须定期及时更换吸附饱和后的活性炭或进行再生,在本方案中,活性炭吸附系统未配套活性炭再生装置,可选择与具有回收、处理固体废物的资质单位签署一个协议,由其代为回收、处理该吸附饱和后的活性炭,即将更换下来的活性炭交由有处理资质的第三方公司进行处理。

以PS为模板的RF气凝胶空心微球制备

第43卷第4期原子能科学技术Vol.43,No.4 2009年4月Atomic Energy Science and Technology Apr.2009 以PS为模板的RF气凝胶空心微球制备 侯海乾1,2,王朝阳1,唐永建1,3,付志兵1,刘淼1,关峰1 (1.中国工程物理研究院激光聚变研究中心,四川绵阳 621900; 2.西南科技大学材料科学与工程学院,四川绵阳 621010) 摘要:采用聚苯乙烯(PS)空心微球为模板,间苯二酚/甲醛(RF)为前驱体溶液,邻苯二甲酸二丁酯为分散剂,以界面聚合反应为基础合成PS2RF核壳双层球,用丙酮去除模板,制得RF空心微球。分别采用红外光谱、X光显微分析、透射电镜(TEM)、N2吸附2脱附和原子力显微分析,对RF空心微球成分、形貌、孔径、表面粗糙度等进行表征。结果表明:RF为单层空心球壳,具有典型的气凝胶多孔结构,由粒径约为10nm且粒度分布较为均匀的纳米粒子构成,平均孔径约为17nm,球形度和同心度达到95%以上,表面光洁度小于10nm,达到了快点火靶的基本要求。 关键词:惯性约束聚变;模板法;界面聚合;RF空心微球 中图分类号:TQ639.11 文献标志码:A 文章编号:100026931(2009)0420311205 F abrication of R esorcin2Formaldehyde Aerogel H ollow Microspheres Using Polystyrene as T emplate HOU Hai2qian1,2,WAN G Chao2yang1,TAN G Y ong2jian1,3, FU Zhi2bing1,L IU Miao1,GUAN Feng1 (1.Research Center of L aser Fusion,China A cadem y of Engineering Physics,M iany ang621900,China; 2.School of M aterial Science and Engineering,S outhwest Universit y of Science and Technology, M iany ang621010,China) Abstract: Based on interfacial polymerization reaction,PS2RF double shell microsp heres were synt hesized by using polystyrene(PS)hollow microsp heres as template,RF as precursory solution and dibutyl p ht halate as dispersant.Then basing on t he former step,RF hollow microsp here was cranked out t hrough t hrowing off template,which was done t hrough acetone.The component,morp hology,apert ure,and surface rough2 ness of RF hollow microsp here were characterized by inf rared spectrum,X2ray,TEM, A FM and nit rogen adsorption2desorption,respectively.The result s show t hat RF hol2 low micro sp here is monolayered hollow sp here,and has a typical st ruct ure of t he porous aerogel,and consist s of particle size about10nm and uniform particle size dist ribution 收稿日期:2008203220;修回日期:2008205206 基金项目:国家自然科学基金资助项目(10475069);中国工程物理研究院基金资助项目(2007B13001) 作者简介:侯海乾(1982—),男,陕西宝鸡人,硕士研究生,气凝胶材料制备及应用专业 3通信作者:唐永建(1955—),研究员,博士,主要从事ICF靶材料研究,E2mail:tangyongjian2000@https://www.doczj.com/doc/9915741525.html,

中间相炭微球(MCMB)生产技术与市场技术文献

中间相炭微球(MCMB)生产技术与市场技术文献 大连科技局信息中心创新专题 中间相炭微球(MCMB)因其具有良好的化学稳定性、热稳定性和优良的导电、导热等特性,广泛用于锂离子二次电池负极材料、高密高强C/C复合材料、高性能液相色谱柱填料、高比表面活性炭材料等领域¨。 特别是20世纪9o年代研制出以MCMB为负极材料的锂离子二次电池,大大地推动了MCMB的工业化应用,MCMB已成为一种具有良好应用前景和开发潜力的炭材料。 中间相炭微球(Mesocarbon Microbeads ,简称为MCMB) 是随着中间相的发现、研究而发展起来的。最早发现MCMB 的时间可追溯到1961 年,Taylor 在研究煤焦化时发现在镜煤质中有一些光学各向异性的小球体生成、长大进而融并的现象,最终生成了镶嵌结构。实际上,这些各向异性的小球体就是MCMB 的雏形。1964 ~ 1965 年,Brooks 和Taylor 发现在沥青液相炭化初期有液晶状各向异性的小球体的生成,此小球体不溶于喹啉等溶剂中,该小球体即为MCMB 的前驱体(沥青中间相球体) ,这为中间相研究奠定了基础。这时人们对MCMB 的认识还很不足,直到1973 年,才从液相炭化沥青中分离出MCMB ,并开始利用球晶制造无粘结剂各向同性高密度炭材料。在此以后,对MCMB 的研究快速发展起来。1978 年,Lewis 在热台显微镜上发现了中间相的可溶热变特征,并最终认定中间相可以包括溶剂不溶的高分子量组分及溶剂可溶的低分子量组分。此后,日本学者也先后发现了可溶中间相,并对其结构进行了阐述。1985 年持田勋、山田和本田发表了题为《溶剂可溶中间相和溶剂不溶中间相》的文章,发展了炭质中间相理论,为研究MCMB 提供了更有力的理论指导。从中间相炭微球发现至今近40 年来,对MCMB 结构、形成机理、球晶分离技术、应用等领域进行了广泛研究,初步得出了MCMB 的结构模型(“地球仪”型和“洋葱”型) 、形成机理, 并提出了几种生产MCMB 的方法。MCMB 已在诸如高密度高强度炭材料、高性能液相色谱柱填料、高比表面积活性炭、催化剂载体、阳离子交换剂及锂离子二次电池电极等领域得到了应用。 目录扫描结果 D:\J\专题报告\2008\中间相炭微球 C0611、炭微球的制备及应用.doc MCMB 的发展过程.doc MCMB超细粉末特性及其成型工艺对烧结体性能的影响.doc MCMB超细粉末特性及其成型工艺对烧结体性能的影响[1].pdf

炭气凝胶为电极的超级电容器的研究

炭气凝胶为电极的超级电容器的研究Ξ 孟庆函,刘 玲,宋怀河,凌立成 (北京化工大学可控化学反应科学与技术基础教育部重点实验室,北京100029) 摘 要: 采用低分子线性酚醛树脂2糠醛为原料通过溶液2溶胶2凝胶途径成功合成了炭气凝胶,探讨了结构对电化学性能的影响。采用直流循环法测定炭气凝胶为电极的超级电容器的电化学性能,结果表明,炭气凝胶电极在0.5mA充放电时电极的比电容为121F/g,充放电效率为95%,具有性能稳定、充放电效率高等优良性能。 关键词: 炭气凝胶;超级电容器;电化学性能 中图分类号: T M53 文献标识码:A 文章编号:100129731(2004)0420457203 1 引 言 超级电容器是一种介于物理电容和蓄电池之间的新型储能装置,其电容值是传统电容器的20~200倍,集高能量密度、高功率密度、长寿命等特性于一身。由于具有快速贮存、释放能量的优点,超级电容器在以绿色电源为动力的电动汽车研究领域中,为加速和爬坡提供能量而受到了广泛的关注[1]。超级电容器根据储能机理的不同,主要分为活性炭基以及金属氧化物和聚合物超电容等。研究最早和技术最成熟的是炭材料,其发展先后主要出现了活性炭材料、活性碳纤维,以及新近出现的炭气凝胶、碳纳米管等[2]。炭气凝胶是一种新型轻质纳米级多孔性非晶炭素材料,其孔隙率高达80%~98%,典型孔隙尺寸< 50nm,网络胶体颗粒尺寸3~20nm,比表面积高达600~1000m2/ g,密度为0.05~0.80g/cm3,是一种具有许多优异性能(如导电性、光导性和机械性能等)和广阔的应用前景的新型材料[2,3]。炭气凝胶与活性炭相比,导电性要高1~2个数量级。1994年,美国LLN L预言利用炭气凝胶作为电极材料能制备出高容量和高功率密度的超级电容器[4]。对炭气凝胶的电学性能测试结果表明[5]炭气凝胶的电导率很高(约25S/cm),且在一个很宽的温度范围内(50~300K)保持基本不变,因此用炭气凝胶作为电极材料制作的超级电容器可选择使用适当的电解液。但目前研究的重点主要是炭气凝胶的合成,其应用于电极的报道很少。本文采用低分子线性酚醛树脂2糠醛为原料通过溶液2溶胶2凝胶途径成功合成了炭气凝胶,并探讨了结构对电化学性能的影响。 2 实 验 2.1 炭气凝胶的制备 将酚醛树脂PR(线性软化点75℃)、糠醛(摩尔比1∶2)和催化剂(0.005mm ol/100gPR)混合配成一定浓度的丙醇溶液,在80℃下反应7d形成醇凝胶,在超临界石油醚中干燥1h形成酚醛气凝胶,将该气凝胶在800℃炭化3h产生炭气凝胶。2.2 炭气凝胶的孔结构及电镜表征 2.2.1 孔结构测试 采用意大利公司生产的S orptomatic1990物理吸附仪测定炭气凝胶的BET比表面积和孔结构分布。 2.2.2 透射电镜表征 把样品放在玛瑙研钵中在无水乙醇介质中研磨,用超声波分散20min,把悬浮溶液点滴于铜网上,用日立H6000电子显微镜观察拍照。 2.3 炭气凝胶电极的制备 炭气凝胶电极的制造:炭气凝胶∶聚四氟乙烯=98%∶2%;将混合物充分混合均匀压在泡沫镍上制成厚约0.4mm的圆片状电极,炭气凝胶用量为15mg。电解液为30%K OH溶液。 2.4 电化学测量与比电容的计算 超级电容器的电化学测量采用直流循环法测定,所有测定工作在美国Arbin公司生产的BT24+型电池测试仪上完成。测量时温度保持在25℃。 炭气凝胶比电容C(F/g)按公式(1)进行计算[6]: C=2 i×Δt ΔV×m(1) i为放电电流(A),Δt(second)是在放电时电压变化ΔV (v olt)时的放电时间,m为单个电极中炭气凝胶的用量(g)。 3 结果与讨论 3.1 炭气凝胶的结构 将所制备炭气凝胶进行透射电镜表征,结果如图1所示。炭气凝胶具有珍珠串式的纳米网络结构,炭化后炭气凝胶基本继承了气凝胶的显微结构,网络结构更加致密。图2为所制炭气凝胶样品的低温氮气吸脱附等温线。从中可以看出,按照B2 D2D2T法分类属于Ⅳ型等温线。吸附等温线的初始部分代表活性炭的微孔充填,在较高相对压力下平台的斜率或“拖尾”则是非微孔表面(如中孔或大孔以及外表面)上的多层吸附所致。从图中可以看出,样品的等温线有拖尾现象,且其脱附等温线在高压区与吸附等温线不重合,说明该样品中有大量中孔的存在。根据吸附量计算出比表面积为654m2/g,孔容1.45cm3/g,平均孔径8.89nm。图3是炭气凝胶的孔结构分布图。炭气凝胶的孔径主要分布在1~11nm之间,特别是在10nm附近有较强的分布。这部分孔容对于炭气凝胶电极比电容的上升有比较重要的作用,有利于电解液和炭电极充分接触,增加炭电极的电化学有效表面积。 754 孟庆函等:炭气凝胶为电极的超级电容器的研究 Ξ基金项目:国家自然科学基金资助项目(50272070);北京化工大学青年教师基金资助项目(QN0249)收稿日期:2003209205 通讯作者:孟庆函 作者简介:孟庆函 (1973-),男,山东郯城县人,博士,讲师,从事超级电容器电极材料的研究。

活性炭吸附原理

活性炭吸附原理 吸附活性炭吸附的特性不但取决于其孔隙结构,而且取决于其表面化学性质——表面的化学官能团、表面杂原子和化合物。不同的表面官能团、杂原子和化合物对不同的吸附质有明显的吸附差别。在活化过程中,活性炭的表面形成大量的羟基、羧基、酚基等含氧表面络合物,不同种类的含氧基团是活性炭上的主要活性位,它们能使活性炭的表面呈现微弱的酸性、碱性、氧化性、还原性、亲水性和疏水性等。这些构成了活性炭性能的多样性,同时影响活性炭与活性组分的结合能力。一般而言,活性炭表面含氧官能团中的酸性化合物越丰富,吸附极性化合物的效率越高;而碱性化合物较多的活性炭易吸附极性较弱的或非极性的物质。 目前,为增强活性炭的吸附能力,常常对其进行改性处理。通过化学氧化、还原以及负载等改性方法可使活性炭表面的化学性质发生改变,增加酸、碱基团的相对含量可选择吸附极性不同的物质,或通过增加特定的表面杂原子或化合物来增强对特定吸附质的吸附。 1、活性炭中的C-C键是非极性键,活性炭分子可看成非极性的; 活性炭表面虽然也存在羧基、羟基等极性键,但相对于C-C键而言少得多。 2、水为极性分子,气体大部分为非极性分子。 “相似相容原理”运用到这里的话,可理解为:活性炭对非极性的气体和非极性杂质的吸附作用更强,而对水等极性分子的吸附作用较弱。(活性炭对极性分子的吸附主要通过活性炭表面极性键) 3、水溶液中的水分子有个很特殊的性质:氢键。水分子间通过氢键相互结合,氢键的强度非常大;水分子-水分子作用力>>活性炭-水分子作用力。 4、活性炭置于水溶液时:水分子之间通过氢键相互吸引,使非极性杂质分子和活性炭被相对孤立;活性炭通过吸附杂质分子来减低表面过剩的自由能。(活性炭内部的C分子受到四面八方的力,受

原生QI成核中间相炭微球的结构

收稿日期:2000210213; 修回日期:2000211220 基金项目:天津市自然科学基金资助重点项目(000056)  作者简介:王成扬(19552),男,天津人,工学博士,教授,主要从事沥青基炭材料的研究。 文章编号: 100728827(2000)0420009204 原生Q I 成核中间相炭微球的结构 王成扬, 姜 卉, 李 鹏, 郑嘉明 (天津大学化工学院,天津 300072) 摘 要: 以含有原生Q I 的煤沥青为原料,采用热缩聚方法制备出中间相炭微球。用扫描电子显微镜(SE M )观察了中间相炭微球的形貌和断面结构。经初步判断,在实验条件下原生Q I 成核煤沥青基中间相炭微球更倾向于“地球仪”型结构。并对以Q I 为核形成中间相微球的过程进行了分析。关键词: 原生喹啉不溶物;中间相炭微球;结构中图分类号: TQ 127.1+1 文献标识码: A 1 前言 中间相炭微球(M esocarbon M icrobeads 或 M C M B )于70年代由日本学者开始研究[1,2] 。近年来,它作为一种较为理想的锂离子电池负极材料而备受人们的重视[325]。M C M B 在电池中所表现出的良好充放电特性主要得益于其规整的平面炭层排列,使得锂离子容易嵌入和脱嵌。因此,结合制备原料和制备方法对中间相炭微球的结构形成进行研究并设法予以控制是十分必要的。 本研究采用热缩聚方法,以含有原生Q I 的煤沥青为原料制备中间相炭微球。利用扫描电子显微镜观察到中间相炭微球良好的球形度和有序的炭层结构。通过扫描电子显微镜(SE M )、X 2射线衍射仪(XRD )和真实密度分析,初步证实了这种炭微球具有较好的微结构取向和易石墨化性。同时对以原生喹啉不溶物(Q I )为核形成中间相微球的过程进行了讨论。 2 实验 2.1 原料 以经过溶剂分离方法除去部分原生喹啉不溶物的煤焦油沥青(PR 2CT P 01)作为制备中间相炭微球的原料,该沥青的基本性质如表1所示。2.2 热缩聚反应 将煤沥青PR 2CT P 01装入2L 不锈钢反应釜内,在封闭状态下,以一定升温速率升温至420℃, 恒温7h 。反应过程中持续搅拌,搅拌速率为450 r m in 。 恒温结束后,自然冷却至室温,获得含有中间相微球的沥青产物。 表1 煤沥青的基本性质 T ab le 1 P roperties of the coal tar p itch Samp le Softening po int t ℃So lubility W %H S H I 2T S T I 2Q S Q I PR 2CT P01 78 19.6 58.8 16.9 4.7 2.3 中间相微球的分离 将热缩聚反应所得沥青在索氏抽提器中用吡啶 分离出各向同性母体组分,再经丙酮洗涤、干燥,得到中间相微球。 2.4 中间相微球的炭化和石墨化 中间相微球放入管式炭化炉中,以1℃ m in ~3℃ m in 的升温速度加热到1000℃,恒温30m in 。自然冷却后取出,得到炭化样品。炭化后的中间相炭微球在石墨化炉中快速升温至2800℃,随即冷却并取出,得到石墨化样品。2.5 SE M 和XRD 分析 采用日立S 2450型扫描电子显微镜观察中间相微球的形貌;并将炭微球样品用玛瑙研钵捣碎,在电子显微镜下观察其断面;仪器加速电压为20kV 。 使用日本理学D m ax 27500型X 2射线衍射仪对炭化和石墨化中间相炭微球进行结构分析。仪器光源为CuK 2A lp ha 射线,管电压40kV ,管电流150mA 。 第15卷2000年第4期12月 新 型 炭 材 料N E W CA RBON M A T ER I AL S V o l .15 N o.4 D ec .2000

活性炭的吸附原理

活性炭的吸附原理 活性炭的吸附可分为物理吸附和化学吸附。 一、物理吸附 主要发生在活性炭去除液相和气相中杂质的过程中。活性炭的多孔结构提供了大量的表面积,从而使其非常容易达到吸收收集杂质的目的。就象磁力一样,所有的分子之间都具有相互引力。正因为如此,活性炭孔壁上的大量的分子可以产生强大的引力,从而达到将介质中的杂质吸引到孔径中的目的。 必须指出的是,这些被吸附的杂质的分子直径必须是要小于活性炭的孔径,这样才可可能保证杂质被吸收到孔径中。这也就是为什么我们通过不断地改变原材料和活化条件来创造具有不同的孔径结构的活性炭,从而适用于各种杂质吸收的应用。 二、物理吸附 除了物理吸附之外,化学反应也经常发生在活性炭的表面。活性炭不仅含碳,而且在其表面含有少量的化学结合、功能团形式的氧和氢,例如羧基、羟基、酚类、内脂类、醌类、醚类等。这些表面上含有地氧化物或络合物可以与被吸附的物质发生化学反应,从而与被吸附物质结合聚集到活性炭的表面。 活性炭的吸附正是上述二种吸附综合作用的结果。 当活性炭在溶液中的吸附速度和解吸速度相等时,即单位时间内活性炭吸附的数量等于解吸的数量时,此时被吸附物质在溶液中的浓度和在活性炭表面的浓度均不再变化,而达到了平衡,则此时的动平

衡称为活性炭吸附平衡,此时被吸附物质在溶液中的浓度称为平衡浓度。 三、影响活性炭吸附性能的因素 选择的活性炭质量达不到要求标准 活性炭中的酸碱度、氯化物、硫酸盐不合格或炭粒过细使溶液染色不易滤清,影响制剂的质量。 活性炭中锌盐、铁盐不合格,如铁盐含量较高,可使输液中某些药物如维生素c、对氨基水杨酸钠等变色。 脱色力差或不合格,导致制剂杂质含量增加。活性炭质量差,本身所含杂质较多能污染药液,往往导致制剂澄明度和微粒不合格,而且还影响制剂的稳定性,所以在配制大输液时,一定要选用一级针用活性炭。 四、活性炭的用法对制剂质量的影响 活性炭分次加入比一次加入吸附效果好,这是因为活性炭吸附杂质到一定程度后吸附与脱吸附处于平衡状态时,吸附效力已减弱所致。所以,大输液生产时分2~3次加入活性炭效果最佳,能使制剂质量明显提高。 甘露醇的原料常污染热原,尤其是当所配制料液颜色较深时,更是不祥的预兆。由于甘露醇不宜用高温处理,一般多用吸附法去除。但是,又因为甘露醇注射液的浓度高,热原去除常不完全,在临床使用过程中的热原反应率高于其他品种。作者在配制实践中发现,使用二次吸附法制备的甘露醇注射液可以解决以上问题,具有很大优势。

相关主题
文本预览
相关文档 最新文档