当前位置:文档之家› 随机变量及其概率分布

随机变量及其概率分布

随机变量及其概率分布
随机变量及其概率分布

【免费下载】概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X 、Y 分别表示甲乙命中的次数,求(X,Y )联合分布律。2.袋中有两只白球,两只红球,从中任取两只以X 、Y 表示其中黑球、白球的数目,求(X,Y )联合分布律。3.设,且P{}=1,求()的X 1=(?1011/41/21/4) X 2=(011/21/2)X 1X 2=0X 1,X 2联合分布律,并指出是否独立。 X 1,X 24.设随机变量X 的分布律为Y=,求(X,Y )联合分布律。X 2X Y 01

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 5.设(X,Y )的概率分布为 且事件{X=0}与{X+Y=1}独立求a ,b 。6. 设某班车起点上车人数X 服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 (1)C 的值 (2), (3)P{X+Y ≤1}并判别X 与Y 是否独立。f z (x)f Y (y)9.设f(x,y)= 为(X,Y )的密度函数,求{10 |y |1/2|Y>0}(2) f Y|X (y|x ), f X|Y (x|y )10. 设f(x,y)= 为(X,Y )的密度函数,求 {12x 2y 0 1x ≤y ≤x,x ≥1 其它 f X|Y (x|y )11. 设f(x,y)= 为(X,Y )的密度函数,求的联合分布 {4xy 0 0≤x ≤1,0≤y ≤1 其它 (X,Y )

多维随机变量及其分布

第三章多维随机变量及其分布 随机向量的定义: 随机试验的样本空间为S={w},若随机变量X1(w),X2(w),…,X n(w)定义在S上,则称(X1(w),X2(w),…,X n(w))为n维随机变量(向量)。简记为(X1,X2,…,X n)。 二维随机向量(X,Y),它可看作平面上的随机点。 对(X,Y)研究的问题: 1.(X,Y)视为平面上的随机点。

研究其概率分布——联合分布率、联合分布函数、联合概率密度;Joint 2.分别研究各个分量X,Y的概率分布——边缘(际)分布律、边缘分布函数、边缘概率密度; marginal 3.X与Y的相互关系; 4.(X,Y)函数的分布。 §二维随机变量的分布

一.离散型随机变量 1.联合分布律 定义若二维随机变量(X,Y)可能取的值(向量)是有限多个或可列无穷多个,则称(X,Y) 为二维离散型随机变量。 设二维离散型随机变量(X,Y)可能取的值(x i,y j), i,j=1,2…,取这些值的概率为 p ij=P{(X,Y)=(x i,y i)}=p{X=x i,Y=y i}i ,j=1,2,… ——

称式为(X,Y)的联合分布律。 (X,Y)的联合分布律可以用表格的形式表示如下:

性质: (1) p ij 3 0,i, j=1,2,… (2) j i ij p ,=1 2.边缘分布律 设二维离散型随机变量(X,Y) 的联合分布律为 p ij = P{X=x i ,Y=y i } i, j=1,2,… 分量X 和Y 的分布律分别为 p i.=P{X=x i } i=1,2,… 满足①p i.30②S p i.=1 = p{Y=y i }j=1,2, (30)

二维随机变量及其分布题目

一、单项选择题 1 ,那么下列结论正确的是 ()A B C D.以上都不正确 2设X与Y相互独立,X 0—1分布,Y 0—1分布,则方程 t 有相同实根的概率为 (A(B(C (D 3.设二维随机变量(X,Y)的概率密度为 则k的值必为 (A(B(C (D 4.设(X,Y)的联合密度函数为 (A (B(C(D 5.设随机变量X与Y相互独立,而且X服从标准正态分布N(0,1),Y服从二项分布B(n,p),0

二、填空题 2 若(X ,Y )的联合密度 , 3 4 ,则 且区域 5 。 6 . 7

=? ∞+∞ -)(x f X . 8 如果随机变量),(Y X 的联合概率分布为 X 1 2 3 1 61 91 181 2 3 1 α β 则βα,应满足的条件是 ;若X 与Y 相互独立,则=α ,=β . 9 设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度 =),(y x f ,Y X Z +=的概率密度=)(Z f Z . 10、 设 ( 、 ) 的 联 合 分 布 函 数 为 ()()()()?? ??? ≥≥+-+-+++= y x y x y x A y x F 00,0111111,2 22则 A =_____。 11设X 服从参数为1的泊松分布,Y 服从参数为2的泊松分布,而且X 与Y 相互独立,则 (max(,)0)_______. (min(,)0)_______.P X Y P X Y ≠=≠= 12 设X 与Y 相互独立,均服从[1,3]上的均匀分布,记(),A X a =≤(),B Y a => 7 ()9 P A B ?= 且,则a=_______. 13 二维随机变量(X ,Y )的联合概率密度为 221()21sin sin (,)(,),2x y x y f x y e x y π -++= -∞<<+∞ 则两个边缘密度为_________. 三.解答题 1 一个袋中有三个球,依次标有数字 1, 2, 2,从中任取一个, 不放回袋中 , 再任取一个, 设每次取球时,各球被取到的可能性相等,以 X , Y 分别记第一次和第二次取到的球上标有的数字 ,求 ( X , Y ) 的分布律与分布函数. 2.箱子里装有12件产品,其中2件是次品,每次从箱子里任取一件产品,共取2次,定义随机变量12,X X 如下:

第二章__随机变量及其概率分布_考试模拟题答案范文

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

第三章__多维随机变量及其分布总结

第三章 多维随机变量及其分布 第一节 二维随机变量 一、二维随机变量的分布函数 设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量. 一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究. 首先引入(X , Y )的分布函数的概念. 定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数 F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y } 称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数. 分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率.. 由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为 P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) (1) 与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质: 1? F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2? 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3? F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ). 4? 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0. 注: 二元分布函数具有性质1?~ 4?, 其逆也成立(2?中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1?~ 4?, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4?是必不可少的, 即它不能由1?~ 3?推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量 如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量. 设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0; 111 =∑∑∞=∞ =i j ij p . 我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为 = ),(y x F ∑∑≤≤==x x y y j i i j y Y x X P },{= ∑∑≤≤x x y y ij i j p 这里 ∑∑ ≤≤x x y y i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和. 例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数.. 解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}= 3 12231=?.

联合概率分布:离散与连续随机变量

Joint Distributions,Discrete Case In the following,X and Y are discrete random variables. 1.Joint distribution(joint p.m.f.): ?De?nition:f(x,y)=P(X=x,Y=y) ?Properties:(1)f(x,y)≥0,(2) x,y f(x,y)=1 ?Representation:The most natural representation of a joint discrete distribution is as a distribution matrix,with rows and columns indexed by x and y,and the xy-entry being f(x,y).This is analogous to the representation of ordinary discrete distributions as a single-row table.As in the one-dimensional case,the entries in a distribution matrix must be nonnegative and add up to1. 2.Marginal distributions:The distributions of X and Y,when considered separately. ?De?nition: ?f X(x)=P(X=x)= y f(x,y) ?f Y(y)=P(Y=y)= x f(x,y) ?Connection with distribution matrix:The marginal distributions f X(x)and f Y(y) can be obtained from the distribution matrix as the row sums and column sums of the entries.These sums can be entered in the“margins”of the matrix as an additional column and row. ?Expectation and variance:μX,μY,σ2 X ,σ2 Y denote the(ordinary)expectations and variances of X and Y,computed as usual:μX= x xf X(x),etc. https://www.doczj.com/doc/9914379323.html,putations with joint distributions: ?Probabilities:Probabilities involving X and Y(e.g.,P(X+Y=3)or P(X≥Y)can be computed by adding up the corresponding entries in the distribution matrix:More formally,for any set R of points in the xy-plane,P((X,Y)∈R))= (x,y)∈R f(x,y). ?Expectation of a function of X and Y(e.g.,u(x,y)=xy):E(u(X,Y))= x,y u(x,y)f(x,y).This formula can also be used to compute expectation and variance of the marginal distributions directly from the joint distribution,without?rst computing the marginal distribution.For example,E(X)= x,y xf(x,y). 4.Covariance and correlation: ?De?nitions:Cov(X,Y)=E(XY)?E(X)E(Y)=E((X?μX)(Y?μY))(Covariance of X and Y),ρ=ρ(X,Y)=Cov(X,Y) σXσY (Correlation of X and Y) ?Properties:|Cov(X,Y)|≤σXσY,?1≤ρ(X,Y)≤1 ?Relation to variance:Var(X)=Cov(X,X) ?Variance of a sum:Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)(Note the analogy of the latter formula to the identity(a+b)2=a2+b2+2ab;the covariance acts like a “mixed term”in the expansion of Var(X+Y).) 1

第3章多维随机变量及其分布习题及答案

第三章 多维随机变量及其分布 一、填空题 1、随机点),(Y X 落在矩形域],[2121y y y x x x ≤<≤<的概率为 ),(),(),(),(21111222y x F y x F y x F y x F -+-. 2、),(Y X 的分布函数为),(y x F ,则=-∞),(y F 0 . 3、),(Y X 的分布函数为),(y x F ,则=+),0(y x F ),(y x F 4、),(Y X 的分布函数为),(y x F ,则=+∞),(x F )(x F X 5、设随机变量),(Y X 的概率密度为 ? ? ?<<<<--=其它 04 2,20) 6(),(y x y x k y x f ,则=k 8 1 . / 6、随机变量),(Y X 的分布如下,写出其边缘分布. > 7、设),(y x f 是Y X ,的联合分布密度,)(x f X 是X 的边缘分布密度,则=? ∞+∞ -)(x f X 1 . 8、二维正态随机变量),(Y X ,X 和Y 相互独立的充要条件是参数=ρ 0 . ,

9、如果随机变量),(Y X 的联合概率分布为 X 1 2 3 《 1 61 91 181 2 3 1 α β 则βα,应满足的条件是 18 = +βα ;若X 与Y 相互独立,则=α 184 ,=β 182 . 10、设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度 { =),(y x f 2 2 221y x e +- π ,Y X Z +=的概率密度=)(Z f Z 4 22 2x e - π . 12、 设 ( ) 的 联 合 分 布 函 数 为 ()()()() ?? ??? ≥≥+-+-+++= y x y x y x A y x F 00,0111111,2 22则 A =__1___。 二、证明和计算题 1、袋中有三个球,分别标着数字1,2,2,从袋中任取一球,不放回,再取一球,设第一次取的球 上标的数字为X ,第二次取的球上标的数字Y ,求),(Y X 的联合分布律. 解:031 }1,1{?= ==Y X P 31 131}2,1{=?===Y X P 31 2132}1,2{=?===Y X P 3 1 2132}2,2{=?===Y X P 《 2、三封信随机地投入编号为1,2,3的三个信箱中,设X 为投入1号信箱的信数,Y 为投入2 号信箱的信数,求),(Y X 的联合分布律. X Y 1 2 , 1 31 2 3 1 3 1

1多维随机变量及其联合分布

3.1多维随机变量及其分布 教学目标:本节讲解的是多维随机变量及其分布.通过本节的教学,要求学生正确理解多维随机变量及其分布,掌握多维随机变量及其分布的计算方法,运用定义和性质解决有关问题. 教学重点:多维随机变量及其分布的定义与性质. 教学难点:多维随机变量及其分布的证明与计算. 二维随机变量 定义1 设E 是随机试验,则由定义在E 的样板空间Ω上的随机变量X 与Y 构成的有序对),(Y X 称为二维随机变量(或二维随机向量)。 定义2 对任意实数y x ,,二元函数 },{)}(){(),(y Y x X P y Y x X P y x F ≤≤≡≤≤= 称为二维随机变量),(Y X 的分布函数,或称为随机变量X 和Y 的联合分布函数。 若把二维随机变量),(Y X 看成平面上随机点),(Y X 的坐标,则分布函数 ),(y x F 就表示随机点落在以点),(y x 为顶点的左下方的无限矩形域内的概率。 ),(),(),(),(},{111221222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤< 分布函数具有以下基本性质: (1)1),(0≤≤y x F ,且 对任意固定的y ,0),(=-∞y F , 对任意固定的x ,0),(=-∞x F , 0),(=-∞-∞F ,1),(=∞∞F 。 (2)),(y x F 分别是x 和y 的不减函数。 (3)),(),0(y x F y x F =+,),()0,(y x F y x F =+,即),(y x F 关于x 或y 均右连续。

(4)若2121,y y x x <<,则 0),(),(),(),(11122122≥+--y x F y x F y x F y x F 如果二维随机变量),(Y X 可能取的值是有限对或可列无限对,则称),(Y X 是二维离散型随机变量。),(Y X 的分布律或X 和Y 的联合分布律为 ij j i p y Y x X P ===},{, ,2,1,=j i 。 其中 ij p 满足 (1) ; 0≥ij p (2) 111 =∑∑∞=∞ =i j ij p 。 X 和Y 的联合分布律也可用表格表示: ij j j j i i i p p p y p p p y p p p y x x x X Y 2122212212111121\ X 和Y 的联合分布函数为 ∑∑≤≤= x x y y ij i j p y x F ),(。 【例1】吴书p.66.例1。 一箱子装有5件产品,其中2件正品,3件次品.每次从中取1件产品检验质量,不放回地抽取,连续抽取两次.定义随机变量X 和Y 如下: 试求),(Y X 的分布律和分布函数。 解 10X ?=? ?,第一次取到次品,第一次取到正品10Y ?=? ?,第二次取到次品 ,第二次取到正品

随机变量及其概率分布

第二章 随机变量及其概率分布 【内容提要】 一、随机变量及其分布函数 设()X X ω=是定义于随机试验E 的样本空间Ω上的实值函数,且x R ?∈, {}()X x ωω≤是随 机事件,则称()X X ω=为随机变量,而称()()()F x P X x ω=≤为其概率分布函数。 随机变量()X X ω=的概率分布函数()()()F x P X x ω=≤具有如下性质: ⑴.非负性: x R ?∈,有0()1F x ≤≤; ⑵.规范性: ()0,()1F F -∞=+∞=; ⑶.单调性: 若12x x ≤,则12()()F x F x ≤; ⑷.右连续性: x R ?∈,有(0)()F x F x +=。 二、离散型随机变量 1.离散型随机变量及其概率分布律 若随机变量()X X ω=只取一些离散值12n x x x -∞<<=其中而。 三、连续型随机变量

第三章-多维随机变量及其分布--习题

第三章 多维随机变量及其分布 习题1 §3.1 二维随机变量的概率分布 一、填空题 1. 设(Y X ,)的分布函数为 ?? ?≥≥+--=----其它, ,,),( 00 03331y x y x F y x y x ,则 (Y X ,)的联合概率密度),(y x f = ; 2设随机变量(Y X ,)的分布函数为 )3 (2(y arctg C x arctg B A y x F ++=)),(, 则A = , B = , C = ,(0≠A ); 3. 用),(Y X 的联合分布函数),(y x F 表示概率),(c Y b X a P ≤≤<= ),(),(c a F c b F -; 4.设),(Y X 在区域G 上服从均匀分布,G 为y x =及2 y x =所围成的区域,),(Y X 的概率密度为 5. 设 (Y X ,) 联合密度为?? ?? ?>>=--其它,),( ,00 ,0y x Ae y x f y x ,则系数A = ; 6. 设二维随机变量(Y X ,)的联合概率密度为()4,01,01 ,0, xy x y f x y <<<

第二章随机变量及其函数的概率分布

第二章 随机变量及其函数的概率分布 §2.1 随机变量与分布函数 §2.2 离散型随机变量及其概率分布 一、 填空题 1. 某射手每次命中目标的概率为0.8,若独立射击了三次,则三次中命中目标次数为k 的概率==)(k X P 3,2,1,0,) 2.0()8.0(33=-k C k k k ; 2. 设随机变量X 服从泊松分布,且)2()1(===X P X P ,则==)4(X P 0.0902 ; 3. 设X 服从参数为p 的两点分布,则X 的分布函数为 ?? ? ??≥<≤-<=1 ,110 ,10 ,0)(x x p x x F ; 4. 已知随机变量X 的概率分布:P(X =1)=0.2, P(X =2)=0.3, P(X =3)=0.5, 则其分布 函数)(x F = 0 10.2 120.5 231 3x x x x =λ==则且,0),,2,1()(b k b k X P k 为(B ) (A) λ>0的任意实数; (B) ;11+=b λ (C) λ=b +1; (D) 1 1 -=b λ. 三、 计算下列各题 1. 袋中有10个球,分别编号为1~10,从中任取5个球,令X 表示取出5个球的最大号码,试求X 的分布列。 解 X 的可能取值为5,6,7,8,9,10 且10,9,8,7,6,5 ,)(5 10 41 ===-k C C k X P k 所以X 的分布列为

第三章_多维随机变量及其分布测试题答案11

第三章 多维随机变量及其分布答案 一、填空题(每空3分) 1.设二维随机变量(X,Y)的联合分布函数为 222 13,0,0(1)(1)(1)(,)0,A x y x y x y F x y ? +-≥≥?++++=???其他,则A=_____1____. 2.若二维随机变量(X,Y)的分布函数为F(x,y)则随机点落在矩形区域[x 1 《 b )与B=(Y>b )相互独立,且3 ()4 P A B ?= ,则

6.在区间(0,1)内随机取两个数,则事件“两数之积大于 1 4 ”的概率为_ _ 31 ln 444 - . 7. 设X 和Y 为两个随机变量,且34 (0,0),(0)(0)77 P X Y P X P Y ≥≥=≥=≥=, 则(max{,}0)P X Y ≥=_ 5 7 . 8.(1994年数学一)设相互独立的两个随机变量,X Y 具有同一分布律,且X 的分布律为 则随机变量max{,}Z X Y =的分布律为 . 9.(2003年数学一)设二维随机变量(),X Y 的概率密度为 6,01, (,)0,x x y f x y ≤≤≤?=? ? 其它. 则{1}P x y +≤= 1/4 . 二、单项选择题(每题4分) 1.下列函数可以作为二维分布函数的是( B ). A .???>+=.,0,8.0,1),(其他y x y x F B .?? ?? ?>>??=--.,0,0,0,),(00其他y x dsdt e y x F y x t s C . ??= ∞-∞---y x t s dsdt e y x F ),( D .?? ???>>=--.,0,0,0,),(其他y x e y x F y x 2.设平面区域D 由曲线1 y x = 及直线20,1,x y y e ===围成,二维随机变量在区域D 上服从均匀分布,则(X,Y)关于Y 的边缘密度函数在y=2处的值为(C ). A .12 B .1 3 C .14 D .12 -

概率论与数理统计随机变量及其分布问题

随机变量及其分布问题 1、假设随机变量X 的绝对值不大于1,1(1),8P X =-= 1 (1).4 P X ==在事件(11)X -<<出现的条件下,X 在(1,1)-内的任一子区间上取值的条件概率与该子区间的长度成正比。试求X 的分布函数()()F x P X x =≤ 解:当1x <-时,()0F x =。 当1x =-时,()()(1)(1)F x P X x P X P x x =≤=≤-+-<≤ 1 (1)8 P X x = +-<≤ 而 5(11)1(1)(1)8 P X P X P X -<<=-=--==, 因此 (1)(1,11)P X x P X x X -<≤=-<≤-<< (11)(111)P X P X x X =-<<-<<-<< 5155 8216 x x ++=?= , 于是,得 5155 ()8216 x x F x ++=?= 当1x ≥-时,()1F x =。 故所求分布函数为 0, 1 55(), 11161, 1 x x F x x x <-??+? =-≤≤??≥?? 评述 分由函数可以完整地描述任何类型随机变量的取值规律,这里的随机变量包括离散 型、连续型和混合型在类。 2、一汽车沿一街道行驶,需要通过三个均设有红绿号灯的路口,每个路口的信号灯为红或绿与其他路口的信号灯为红或绿相互独立,且红、绿两 种信号显示的时间相等。以X 表示该汽车遇到红灯前已通过的路口的个数,求X 的概率分布。 解 设i A =“汽车在第i 个路口首次遇到红灯”(i =1,2,3)。依题意,1A ,2A ,3A 相互独立。X 的可能取值是0,1,2,3。于是,得X 的概率分布为 11 (0)(),2 P X P A ===

二维随机变量及其概率分布

1 第三章二维随机变量及其概率分布 一.二维随机变量与联合分布函数 1.定义若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量. 对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质 (1)F(x,y)分别关于x 和y 单调不减. (2)0≤F(x,y)≤1,F(x,-∞)=0,F(-∞,y)=0,F(-∞,-∞)=0,F(∞,∞)=1.(3)F(x,y)关于每个变量都是右连续的,即F(x+0,y)=F(x,y),F(x,y+0)=F(x,y).(4)对于任意实数x 1

随机变量的概率分布

随机变量的概率分布 一、填空题 1.某射手射击所得环数X 的概率分布为 解析 P (X >7)=P (X =8)+P (X =9)+P (X =10)=0.28+0.29+0.22=0.79. 答案 0.79 2.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于________. 解析 由已知得X 的所有可能取值为0,1, 且P (X =1)=2P (X =0),由P (X =1)+P (X =0)=1, 得P (X =0)=1 3. 答案 1 3 3.(优质试题·常州期末)设X 是一个离散型随机变量,其概率分布为: 则q 的值为________解析 由概率分布的性质知??? ?? 2-3q ≥0, q 2 ≥0, 13+2-3q +q 2 =1, 解得q =32-33 6. 答案 32-33 6 4.设离散型随机变量X 的概率分布为

解析由概率分布的性质,知 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 由Y=2,即|X-2|=2,得X=4或X=0, ∴P(Y=2)=P(X=4或X=0) =P(X=4)+P(X=0) =0.3+0.2=0.5. 答案0.5 5.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则“放回5个红球”事件可以表示为________. 解析“放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6. 答案ξ=6 6.(优质试题·南通调研)从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是________. 解析如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布 问题,故所求概率为P=C23C14 C37= 12 35. 答案12 35 7.已知随机变量X只能取三个值x1,x2,x3,其概率依次成等差数列,则公差d 的取值范围是________. 解析设X取x1,x2,x3时的概率分辊为a-b,a,a+d,则(a-d)+a+(a

考研数学多维随机变量及其分布复习要点

考研数学:多维随机变量及其分布复习要点 考研将第一时间整理发布考研相关信息,希望对2016考研考生有所帮助。 本篇考研小编跟大家一起学习的是概率论与数理统计的第三章多维随机变量及其分布内容,希望大家牢固掌握相关概念及公式。 一、考试内容 1.多维随机变量及其分布 2.二维离散型随机变量的概率分布、边缘分布和条件分布 3.二维连续型随机变量的概率密度、边缘概率密度和条件密度 4.随机变量的独立性和不相关性 5.常用二维随机变量的分布 6.两个及两个以上随机变量简单函数的分布 二、考试要求 1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率. 2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件. 3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义. 4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布. 三、复习要点 1. 二维离散型随机变量 同一维离散型随机变量类似,二维离散型随机变量也是要求考生通过题目的信息,解决两个问题,一、两随机变量分别可以取哪些值;二、随机变量取对应值的概率是怎么计算的.应该说,只要考生会写一维离散型随机变量的分布律,那写出二维离散型随机变量的联合分布律难度应该也不是很大.至于边缘分布律和条件分布律,可以在联合分布律的基础上写出.部分考生理解起来觉得抽象的是条件分布律,其实道理仍然是一样的,需要考虑在一个随机变量取定某一值的条件下,另一个随机变量可以取哪些值.另外,在计算一个随机变量X=a 时,另一个随机变量Y=b的概率是多少时,无需记忆新的公式,直接带入第一章学习的随机事件的条件概率公式即可. 2. 二维连续型随机变量 联合概率密度,重点掌握:一、概率密度在整个平面上积分是1,它的作用也主要是确定概率密度中的未知参数;二、求二维连续型随机变量落在一个平面区域内的概率,即联合概率密度在该区域上进行二重积分.虽然公式与一维类似,但从计算的难度上讲,二维的会更复杂一点,要求考生会计算二重积分.在此,考生也应该充分地意识到概率与高数还是存在紧密联系的,概率的部分计算需要有一定的高数基础. 边缘概率密度和条件概率密度的公式推导可以不要求考生掌握,但是要求会用相应的公式,也就是会带公式计算边缘概率和条件概率密度.如边缘概率密度,求关于x的边缘概率密度,积分变量是y.需要注意的是,如果联合概率密度是一个分段函数,那么边缘概率密度也一定是一个分段函数.另外,在计算的时候,考生要求会通过图形,确定积分的上下限,函数的定义域.条件概率密度的计算,需要注意的是有没有前提条件,在某个前提条件下,概率密度计算的公式是什么.关于边缘概率密度和条件概率密度,是概率解答题常考的知识点,这些知识,需要大家先理解,然后做一定量的配套练习,巩固方法。

相关主题
文本预览
相关文档 最新文档