当前位置:文档之家› 二维连续型随机变量及其概率分布

二维连续型随机变量及其概率分布

【免费下载】概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X 、Y 分别表示甲乙命中的次数,求(X,Y )联合分布律。2.袋中有两只白球,两只红球,从中任取两只以X 、Y 表示其中黑球、白球的数目,求(X,Y )联合分布律。3.设,且P{}=1,求()的X 1=(?1011/41/21/4) X 2=(011/21/2)X 1X 2=0X 1,X 2联合分布律,并指出是否独立。 X 1,X 24.设随机变量X 的分布律为Y=,求(X,Y )联合分布律。X 2X Y 01

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 5.设(X,Y )的概率分布为 且事件{X=0}与{X+Y=1}独立求a ,b 。6. 设某班车起点上车人数X 服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 (1)C 的值 (2), (3)P{X+Y ≤1}并判别X 与Y 是否独立。f z (x)f Y (y)9.设f(x,y)= 为(X,Y )的密度函数,求{10 |y |1/2|Y>0}(2) f Y|X (y|x ), f X|Y (x|y )10. 设f(x,y)= 为(X,Y )的密度函数,求 {12x 2y 0 1x ≤y ≤x,x ≥1 其它 f X|Y (x|y )11. 设f(x,y)= 为(X,Y )的密度函数,求的联合分布 {4xy 0 0≤x ≤1,0≤y ≤1 其它 (X,Y )

10.二维连续型随机变量

10.二维连续型随机变量 【教学内容】:高等教育出版社浙江大学盛骤,谢式千,潘承毅编的《概率论与数理统计》第三章第§1 中的二维连续型随机变量 【教材分析】:前一章我们已经研究了一维随机变量的一些有关概念、性质和计算,本节将这些内容推广到多维的情形,主要讲授二维的连续型随机变量,学习本节内容,要求学生掌握有关概念,并会对一些随机变量进行有关的计算。 【学情分析】: 1、知识经验分析 学生已经学习了一维随机变量的有关概念、性质和计算,掌握了随机变量的相关知识。 2、学习能力分析 学生虽然具备一定的基础的知识和理论基础,但概念理解不透彻,解决问题的能力不高,方法应用不熟练,知识没有融会贯通。 【教学目标】: 1、知识与技能 理解二维连续随机变量的联合密度函数的概念,会进行一些相关的计算,并熟练掌握几种常见的二维分布。 2、过程与方法 根据本节课的知识特点,教学中采用类比和启发式教学法,将一维连续型随机变量的概率密度函数转化二维连续随机变量的联合密度函数。 3、情感态度与价值观 将一维连续型随机变量的概率密度函数转化二维连续随机变量的联合密度函数的学习过程中,使得学生初步形成实事求是的科学态度和锲而不舍的求学精神 【教学重点、难点】: 重点:二维连续型随机变量的概念和性质,并对一些随机变量进行有关计算。 难点:对一些随机变量进行有关计算。 【教学方法】:讲授法启发式教学法 【教学课时】:1个课时 【教学过程】: 一、问题引入(复习)

定义 如果对于随机变量X 的分布函数)(x F ,存在非负可积函数)(x f ,使得对于任意实数x 有 .)(}{)(? ∞ -= ≤=x dt t f x X P x F 则称X 为连续型随机变量, 称)(x f 为X 的概率密度函数,简称为概率密度或密度函数。 密度函数)(x f 具有下述性质: (1)非负性0)(≥x f (1)规范性 ? ∞+∞ -=1)(dx x f (3)对于任意实数()1212,x x x x ≤ 1{}P x X x <≤11221(())()()()x x P x F x F x p y dy ξω≤<=-=? 2 1 )(x x dx x f (4)0}{0==x X p (5)若)(x f 在点x 处连续,则有 '()()F x f x = (由()()x F x f y dy -∞ = ? 式可知,对()f x 的连续点) 【设计意图】:采用类比的方法将一维连续型随机变量的概率密度函数转化二维连续随机变量的联合密度函数的问题,使学生掌握转化,类比的思想。 二、二维连续型随机变量 定义1 如果存在二元非负函数(,)f x y ,使得二维随机变量(,)X Y 的分布函数(,)F x y 可表示为 (,)(,),x y F x y f u v dvdu -∞-∞ =? ? 则称(,)X Y 为二维连续随机变量,称(,)f x y 为(,)X Y 的联合密度函数。 注 在偏导数存在的点上,有2(,)(,)p x y F x y x y ?=??。 联合密度函数的基本性质 2(,)012(,)1 (,)3(,)4((,))(,)G f x y f x y dxdy x y F f x y x y P x y f x y dxdy G ∞∞ -∞-∞ ≥=?=??∈=? ? ??()()() ()

2.1随机变量及其概率分布(1)

随机变量及其概率分布(1) 【教学目标】 1、在对具体问题的分析中,了解随机变量、离散型随机变量的意义,理解取有限值的离散性随机变量及其概率分布的概念。 2、会求出某些简单的离散型随机变量的概率分布,认识概率分布对于刻画随机现象的重要性。 3、提高学生的抽象概括能力,提高数学建模的能力,提高学生应用数学的意识。 4、随机变量是客观世界中极为普遍的,通过对各种现象及事件a 的分析,培养严谨的逻辑思维能力,激发学生学习兴趣,初步认识数学的应用价值、科学价值,并深刻体会数学是服务于实践的一门学科。 【教学过程】 1、相关知识回顾: (1)随机现象: 在一定条件下,某种现象可能发生,也可能不发生,事先也不能断定出现哪种结果的现象 (2)基本事件: 在一次试验中可能出现的每一个基本结果 (3)古典概型: 我们将具有:①试验中所有可能出现的基本事件只有有限个; ②每个基本事件发生的概率相等. 满足这两个特点的概率模型称为古典概率模型 2、新课引入: (1)在一块地里种下10棵树苗,成活的树苗棵数X 是0,1,…,10中的某个数; (2)抛掷一颗骰子,向上的点数Y 是1,2,3,4,5,6中的某一个数; (3)新生婴儿的性别,抽查的结果可能是男,也可能是女。如果将男婴用0表示, 女婴用1表示,那么抽查的结果Z 是0和1中的某个数; 上述问题有哪些共同特点? 上述问题中的X ,Y ,Z ,ε实际上是把每个随机试验的基本事件都对应一个确定的实数,即在试验结果(样本点)与实数之间建立了一个映射。 例如:上面的植树问题中成活的树苗棵数X : X=0,表示成活0棵; X=1,表示成活1棵;…… 思考:“X>7”表示什么意思? 3、新授: 知识点1:随机变量: 一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫随机变量。 通常用大写拉丁字母X ,Y ,Z (或小写希腊字母ζηε,,)等表示,而用小写拉丁字母z y x ,,(加上适当下标)等表示随机变量取得可能值。 引入随机变量后,随机试验中我们感兴趣的事件就可以通过随机变量的取值表达出来。 注:(1)随机试验中,可能出现的恶结果都可以用一个数来表示。如掷一枚硬币,“正

连续型随机变量

§3 连续型随机变量 除了离散型随机变量之外,还有非离散型的随机变量,这些随机变量的取值已不再是有限个或可列个。在这类非离散型随机变量中,有一类常见而重要的类型,即所谓连续型随机变量。粗略地说,连续型随机变量可以在某特定区间内任何一点取值。例如某种树的高度;测量的误差;计算机的使用寿命等等都是连续型随机变量。对于连续型随机变量,不能一一列出它可能取值,因此不能像对离散型随机变量那样用它取各个可能值的概率来描述它的概率分布,而是要考虑该随机变量在某个区间上取值的概率,我们是用概率密度函数来研究连续型随机变量的。 一. 概率密度和连续型随机变量定义: 对于随机变量X ,如果存在非负可积函数 ()()f x x -∞<<+∞,使得对于任意实数, ,()a b a b <都有 {}()b a P a X b f x dx <<= ? , 则称X 为连续型随机变量;称()f x 为X 的概率密度函数,简称概率密度或密度. 由定义可知,分布密度()f x 具有如下基本性质: (1).()0()f x x ≥-∞<<+∞; (2). ()()1f x dx P X +∞ -∞ =-∞<<+∞=? . 这两条性质的几何意义是:概率分布密度曲线不在x 轴下方,且该曲线与x 轴所围的图形面积为1。性质(1)、(2)可以作为判定一个函数是否可以作为一个连续型随机变量的分布密度的条件。 对于连续型随机变量X 可以证明,它在某一点a 处取值的概率为零,即 对于任意实数a ,有()0P X a ==. 即研究X 在某一点处取值的概率是没有什么实际意义的。从而可知,研究X 在某区间上取值的概率时,该区间含不含端点,不影响概率值。即 (3).对于任意实数, ,()a b a b <都有 {}{}{}{}()b a P a X b P a X b P a X b P a X b f x dx <<=≤<=<≤=≤≤=? 【例1】 设X 是连续型随机变量,已知X 的概率密度为 其中λ为正常数. 试 确定常数A .

二维随机变量及其分布题目

一、单项选择题 1 ,那么下列结论正确的是 ()A B C D.以上都不正确 2设X与Y相互独立,X 0—1分布,Y 0—1分布,则方程 t 有相同实根的概率为 (A(B(C (D 3.设二维随机变量(X,Y)的概率密度为 则k的值必为 (A(B(C (D 4.设(X,Y)的联合密度函数为 (A (B(C(D 5.设随机变量X与Y相互独立,而且X服从标准正态分布N(0,1),Y服从二项分布B(n,p),0

二、填空题 2 若(X ,Y )的联合密度 , 3 4 ,则 且区域 5 。 6 . 7

=? ∞+∞ -)(x f X . 8 如果随机变量),(Y X 的联合概率分布为 X 1 2 3 1 61 91 181 2 3 1 α β 则βα,应满足的条件是 ;若X 与Y 相互独立,则=α ,=β . 9 设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度 =),(y x f ,Y X Z +=的概率密度=)(Z f Z . 10、 设 ( 、 ) 的 联 合 分 布 函 数 为 ()()()()?? ??? ≥≥+-+-+++= y x y x y x A y x F 00,0111111,2 22则 A =_____。 11设X 服从参数为1的泊松分布,Y 服从参数为2的泊松分布,而且X 与Y 相互独立,则 (max(,)0)_______. (min(,)0)_______.P X Y P X Y ≠=≠= 12 设X 与Y 相互独立,均服从[1,3]上的均匀分布,记(),A X a =≤(),B Y a => 7 ()9 P A B ?= 且,则a=_______. 13 二维随机变量(X ,Y )的联合概率密度为 221()21sin sin (,)(,),2x y x y f x y e x y π -++= -∞<<+∞ 则两个边缘密度为_________. 三.解答题 1 一个袋中有三个球,依次标有数字 1, 2, 2,从中任取一个, 不放回袋中 , 再任取一个, 设每次取球时,各球被取到的可能性相等,以 X , Y 分别记第一次和第二次取到的球上标有的数字 ,求 ( X , Y ) 的分布律与分布函数. 2.箱子里装有12件产品,其中2件是次品,每次从箱子里任取一件产品,共取2次,定义随机变量12,X X 如下:

第二章__随机变量及其概率分布_考试模拟题答案范文

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

联合概率分布:离散与连续随机变量

Joint Distributions,Discrete Case In the following,X and Y are discrete random variables. 1.Joint distribution(joint p.m.f.): ?De?nition:f(x,y)=P(X=x,Y=y) ?Properties:(1)f(x,y)≥0,(2) x,y f(x,y)=1 ?Representation:The most natural representation of a joint discrete distribution is as a distribution matrix,with rows and columns indexed by x and y,and the xy-entry being f(x,y).This is analogous to the representation of ordinary discrete distributions as a single-row table.As in the one-dimensional case,the entries in a distribution matrix must be nonnegative and add up to1. 2.Marginal distributions:The distributions of X and Y,when considered separately. ?De?nition: ?f X(x)=P(X=x)= y f(x,y) ?f Y(y)=P(Y=y)= x f(x,y) ?Connection with distribution matrix:The marginal distributions f X(x)and f Y(y) can be obtained from the distribution matrix as the row sums and column sums of the entries.These sums can be entered in the“margins”of the matrix as an additional column and row. ?Expectation and variance:μX,μY,σ2 X ,σ2 Y denote the(ordinary)expectations and variances of X and Y,computed as usual:μX= x xf X(x),etc. https://www.doczj.com/doc/1c9372554.html,putations with joint distributions: ?Probabilities:Probabilities involving X and Y(e.g.,P(X+Y=3)or P(X≥Y)can be computed by adding up the corresponding entries in the distribution matrix:More formally,for any set R of points in the xy-plane,P((X,Y)∈R))= (x,y)∈R f(x,y). ?Expectation of a function of X and Y(e.g.,u(x,y)=xy):E(u(X,Y))= x,y u(x,y)f(x,y).This formula can also be used to compute expectation and variance of the marginal distributions directly from the joint distribution,without?rst computing the marginal distribution.For example,E(X)= x,y xf(x,y). 4.Covariance and correlation: ?De?nitions:Cov(X,Y)=E(XY)?E(X)E(Y)=E((X?μX)(Y?μY))(Covariance of X and Y),ρ=ρ(X,Y)=Cov(X,Y) σXσY (Correlation of X and Y) ?Properties:|Cov(X,Y)|≤σXσY,?1≤ρ(X,Y)≤1 ?Relation to variance:Var(X)=Cov(X,X) ?Variance of a sum:Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)(Note the analogy of the latter formula to the identity(a+b)2=a2+b2+2ab;the covariance acts like a “mixed term”in the expansion of Var(X+Y).) 1

几种常用连续型随机变量

几种常用的连续型随机变量 给出一个新概念:广义概率密度函数。 设连续型随机变量ξ的概率密度函数为φ(x ), 那么任何与之成正比的函数f (x )∝φ(x ), 都叫做ξ的广义概率密度函数, 或者说, 一个函数f (x )是ξ的广义概率密度函数, 说明存在着一实数a , 使得 φ(x )=af (x ) (1) 而知道了广义概率密度函数, ξ的概率密度函数就可以根据性质1)(=?+∞ ∞ -dx x ?, 求出 将(1)式代入得: 1)()(??+∞ ∞ -+∞ ∞ -==dx x af dx x ? 则?∞+∞ -= dx x f a )(1 因此, 知道了广义概率密度函数就等于知道了一般的概率密度函数, 我们只需关心函数的形状就可以了解概率密度的性质了. 因此也不必关于那个常数是什么. 4.4 指数分布 指数分布的概率密度函数为 ?? ?>=-其它 )(x e x x λλ? 它的图形如下图所示: 它的期望和方差如下计算: () λ λ λ?ξλλλλλ1 1 )(0 =- =+-=-= = = ∞ +-∞+-∞ +-+∞ -+∞ -+∞ ∞ -????x x x x x e dx e xe e xd dx e x dx x x E

() 2 20 202 2 2 2 2 2)(|λξλ λ?ξλλλλ= = +-=-= = = ????∞+-∞+-+∞ -+∞ -+∞∞ -E dx xe e x e d x dx e x dx x x E x x x x 2 2 2 221 1 2 )(λ λ λ ξξξ= - = -=E E D 指数分布常用来作为各种"寿命"分布的近似. 4.5 Γ-分布 如果一个随机变量ξ只取正值, 且在正半轴的广义概率密度函数的形式是x 的某次方x k 乘上指数函数e -λx , 即 ?? ?>->>=-其它 ) 0,1(0)(λλk x e x x f x k 那么就称ξ服从Γ-分布了. 上式中之所以要求k >-1, λ>0, 是因为广义积分 ?? +∞ -+∞ ∞ -= )(dx e x dx x f x k λ 只有在这种条件下才收敛. 此外, 传统上为了方便起见, 用另一个常数r =k +1, 因此广义概率密度函数写为 ?? ?>>>=--其它 ) 0,0(0)(1λλr x e x x f x r 而真实的概率密度函数φ(x )=af (x ), 可以给出常数a 由下式计算: ?∞ +--= 11 dx e x a x r λ 这样, 计算的关键就是要计算广义积分 ?+∞ --0 1dx e x x r λ, 作代换t =λx , 则x =t /λ, dx =dt /λ, 则???+∞ --+∞ --+∞ --= ? ?? ? ?=0 101 011 1 dt e t dt e t dx e x t r r t r x r λ λ λλ, 问题就转成怎样计算广义积分? +∞ --0 1dt e t t r , 这个积分有一个参数r >0, 在r 为一些特定 的参数时, 如当r =1时, 上面的广义积分还是可以计算的, 但是当r 为任意的正实数时, 此广 义积分就没有一般的公式, 一般的原函数表达式. 在这种情况下数学家常用的办法就是定义一个新的函数. 比如说, 在中学学的三角函数就无法用一个加减乘除的公式表示, 因此就发明了sin , cos 这样的记号来代表三角函数. 同样, 上面的广义积分的取值只依赖于参数r , 每给定一个r 值就有一个积分值与之对应, 因此也可以定义一个函数, 叫Γ-函数, 定义为

讲连续型随机变量分布与随机变量的函数的分布

第七讲 连续型随机变量(续)及 随机变量的函数的分布 3. 三种重要的连续型随机变量 (1)均匀分布 设连续型随机变量X 具有概率密度 )5.4(,, 0,,1 )(??? ??<<-=其它b x a a b x f 则称X 在区间(a,b)上服从均匀分布, 记为X~U(a,b). X 的分布函数为 )6.4(. , 1,, ,,0)(???? ???≥<≤--<=b x b x a a b a x a x x F (2)指数分布 设连续型随机变量X 的概率密度为 )7.4(, , 0,0,e 1)(/?????>=-其它x x f x θ θ 其中θ>0为常数, 则称X 服从参数为θ的指数分布. 容易得到X 的分布函数为 )8.4(. , 0,0,1)(/?? ?>-=-其它x e x F x θ 如X 服从指数分布, 则任给s,t>0, 有 第二章 随机变量及其分布 §4 连续型随机变量 及其概率密度 1 =2

P{X>s+t | X > s}=P{X > t} (4.9) 事实上 }. {e e e )(1)(1}{}{} {)} (){(}|{//)(t X P s F t s F s X P t s X P s X P s X t s X P s X t s X P t s t s >===-+-=>+>= >>?+>=>+>--+-θ θθ 性质(4.9)称为无记忆性. 指数分布在可靠性理论和排队论中有广泛的运用. (3)正态分布 设连续型随机变量X 的概率密度为 ) 10.4(,,e 21)(2 22)(∞<<-∞= -- x x f x σμσ π其中μ,σ(σ>0)为常数, 则称X 服从参数为 μ,σ的正态分布或高斯(Gauss)分布, 记为 X~N(μ,2σ). 显然f(x)≥0, 下面来证明 1d )(=? +∞ ∞ -x x f 令t x =-σμ/)(, 得到 dx e dx e t x 2 2)(22 22121- ∞ +∞ --- ∞ +∞ -? ? = π σ πσμ . 1d 21d 21 ) 11.4(π 2d d e ,, d d ,d e 2 2)(20 2 22 /)(2 2 /2 2 22 222== ====? ??? ? ? ?∞ ∞ -- ∞ ∞ ---∞ - +∞∞-+∞ ∞ -+-∞∞ --x e x e r r I u t e I t I t x r u t t π σ πθσ μπ 于是 得转换为极坐标则有记f(x)具有的性质: f (x )的图形: 1.5 0.5

连续型随机变量的分布与例题讲解

连续型随机变量的分布 (一)连续型随机变量及其概率密度函数 1.定义:对于随机变量X 的分布函数 F(X) ,若存在非负函数f(x), 使对于 任意的实数 x,有F ( x)x f(x) 称为 X f (t)dt ,则称X为连续性随机变量, 的概率密度函数,简称概率密度。 注: F(x)表示曲线下x 左边的面积,曲线下的整个面积为1。 2 .密度函数f(x) 的性质:注: f( x)不是概率。 1) f( x)≥ 0 + f ( x) dx = 1 2) ò-x 2 3)P{x 1 < X ? x 2 }òx1 f (x) dx = F (x 2 ) - F (x 1 ) 特别地,连续型随机变量在某一点的概率为零,即 P{ X = x} = 0. (但 { X=x} 并不一定是不可能事件) 因此P(a≤X ≤ b)= P(a< X

连续型随机变量

江苏科技大学 毕业论文(设计) 题目:连续型随机变量在实际生活中的应用 姓名:顾苗 学号:1140503102 教学院:数理学院 专业班级:11级统计一班 指导教师:王康康 完成时间:2015年06月10日 二零一伍年六月

连续型随机变量在实际生活中的应用Continuous random variables applied in real life

江苏科技大学毕业设计(论文) 江苏科技大学 毕业设计(论文)任务书 学院名称:数理学院专业:统计学 学生姓名:顾苗学号:1140503102 指导教师:王康康职称:讲师

江苏科技大学毕业设计(论文) 毕业设计(论文)题目: 连续型随机变量在实际生活中的应用 一、毕业设计(论文)内容及要求(包括原始数据、技术要求、达到的指标和应做的实验等) 连续型随机变量在现实生活中有广泛的应用,许多物理过程和社会现象均可以由各种常见的随机过程来刻画。如泊松过程、正态过程、马氏过程等等,其应用非常广泛。在实际运用时,我们考虑它们在各种经济模型中的应用和计算,它们种类繁多,形式各异。具有很强的现实意义。 1、给出连续型随机变量的基本概念。 2、给出几种常见的连续型随机变量的理论意义。 3、给出几种常见的连续型随机变量在各种经济模型中的应用。 二、完成后应交的作业(包括各种说明书、图纸等) 1、至少6000字以上的论文 2、教师指定阅读的外文文献原文 3、指定外文文献的译文6000字以上

三、完成日期及进度 2015.2.25~2015.3.16 文献检索与资料收集; 2015.3.16~2015.4.12 文献阅读及撰写开题报告; 2015.4.12~2015.5.8 论文构思与内容; 2015.5.8~2015.5.24 撰写论文; 2015.5.24~2015.6.9 论文评阅及答辩。

随机变量及其概率分布

第二章 随机变量及其概率分布 【内容提要】 一、随机变量及其分布函数 设()X X ω=是定义于随机试验E 的样本空间Ω上的实值函数,且x R ?∈, {}()X x ωω≤是随 机事件,则称()X X ω=为随机变量,而称()()()F x P X x ω=≤为其概率分布函数。 随机变量()X X ω=的概率分布函数()()()F x P X x ω=≤具有如下性质: ⑴.非负性: x R ?∈,有0()1F x ≤≤; ⑵.规范性: ()0,()1F F -∞=+∞=; ⑶.单调性: 若12x x ≤,则12()()F x F x ≤; ⑷.右连续性: x R ?∈,有(0)()F x F x +=。 二、离散型随机变量 1.离散型随机变量及其概率分布律 若随机变量()X X ω=只取一些离散值12n x x x -∞<<=其中而。 三、连续型随机变量

连续型随机变量及其分布(精)

连续型随机变量及其分布 知识要点 1.分布函数 随机变量的分布可以用其分布函数来表示,随机变量X 取值不大于实数x 的概率 ()P X x ≤称为随机变量X 的分布函数,记作()F x , 即 ()(),F x P X x x =≤-∞<<∞. 2.分布函数()F x 的性质 (1) 0()1;F x ≤≤ (2) ()F x 是非减函数,即当12x x <时,有12()()F x F x ≤; (3) ()0,()1lim lim x x F x F x →-∞ →+∞ ==; (4) ()F x 是右连续函数,即0()()lim x a F x F a →+=. 由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率 ()()();P a X b F b F a <≤=- 也可以求得 ()()(0)P X a F a F a ==--. 3.联合分布函数 二维随机变量(,)X Y 的联合分布函数规定为随机变量X 取值不大于x 实数的概率,同时随机变量Y 取值不大于实数y 的概率,并把联合分布函数记为(,)F x y ,即 (,)(,),,F x y P X x Y y x y =≤≤-∞<<+∞-∞<<+∞. 4.联合分布函数的性质 (1) 0(,)1F x y ≤≤; (2) (,)F x y 是变量x (固定y )或y (固定x )的非减函数; (3) (,)0,(,)0 lim lim x y F x y F x y →-∞ →-∞ ==, (,)0,(,)1 lim lim x x y y F x y F x y →-∞ →+∞→-∞ →+∞ ==; (4) (,)F x y 是变量x (固定y )或y (固定x )的右连续函数; (5) 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+. 5.连续型随机变量及其概率密度 设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有 ()()x F x f x dx -∞ =? 成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度. 6.概率密度()f x 及连续型随机变量的性质 (1)()0;f x ≥ (2) ()1 f x dx +∞ -∞ =? ;

连续型随机变量的分布与例题讲解

连续型随机变量的分布 (一)连续型随机变量及其概率密度函数 1.定义:对于随机变量X的分布函数F(X),若存在非负函数f(x),使 对于任意的实数x,有F(W(M,则称X为连续性随机变量,f(x)称 为X的概率密度函数,简称概率密度。 注:尺劝表示曲线下x左边的面积,曲线下的整个面积为 lo 2 .密度函数f(x)的性质:注:不是概率。 1)??f(x)M0?? 2)? j f(x)dx = \ 3)P{x, < X < x2} = ~f(x)(/x =F(x2) -F(Xj) 特别地,连续型随机变量在某一点的概率为零,即 P{X = x} = 0.(但{脸力并不一定是不可能事件) 因此PQWXWb)二P(a

注:iv)与离散型随机变量不同,

易知 ; (3) P(|X|<. 解⑴ P(XW 二①二 (2) P(X> =1- P(XW =1-①= (3) P(|X|< =P0有 P///-h/2/r s

第二章随机变量及其函数的概率分布

第二章 随机变量及其函数的概率分布 §2.1 随机变量与分布函数 §2.2 离散型随机变量及其概率分布 一、 填空题 1. 某射手每次命中目标的概率为0.8,若独立射击了三次,则三次中命中目标次数为k 的概率==)(k X P 3,2,1,0,) 2.0()8.0(33=-k C k k k ; 2. 设随机变量X 服从泊松分布,且)2()1(===X P X P ,则==)4(X P 0.0902 ; 3. 设X 服从参数为p 的两点分布,则X 的分布函数为 ?? ? ??≥<≤-<=1 ,110 ,10 ,0)(x x p x x F ; 4. 已知随机变量X 的概率分布:P(X =1)=0.2, P(X =2)=0.3, P(X =3)=0.5, 则其分布 函数)(x F = 0 10.2 120.5 231 3x x x x =λ==则且,0),,2,1()(b k b k X P k 为(B ) (A) λ>0的任意实数; (B) ;11+=b λ (C) λ=b +1; (D) 1 1 -=b λ. 三、 计算下列各题 1. 袋中有10个球,分别编号为1~10,从中任取5个球,令X 表示取出5个球的最大号码,试求X 的分布列。 解 X 的可能取值为5,6,7,8,9,10 且10,9,8,7,6,5 ,)(5 10 41 ===-k C C k X P k 所以X 的分布列为

03第三讲 二维随机变量的概率分布

第三讲 二维随机变量的概率分布 考纲要求 1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率. 2.理解随机变量的独立性及不相关的概念,掌握随机变量相互独立的条件. 3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义. 4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布. 一、二维随机变量的概率分布 问题1 何谓二维随机变量的联合分布函数?何谓二维随机变量的边缘分布函数? 答 1.二维随机变量),(Y X 的联合分布函数{}(,),F x y P X x Y y =≤≤,即),(Y X 的取值落在无穷矩形域(,](,]x y -∞?-∞内的概率. 二维随机变量的联合分布函数具有如下性质: ⑴0(,)1F x y ≤≤; ⑵(,)(,)(,)0F F y F x -∞-∞=-∞=-∞=,(,)1F +∞+∞=; ⑶(,)F x y 关于x (关于y )单调不减; ⑷(,)F x y 关于x (关于y )右连续. 2.二维随机变量),(Y X 关于X 的边缘分布函数 {}{}(),(,)lim (,)X y F x P X x P X x Y F x F x y →+∞ =≤=≤<+∞=+∞=. 二维随机变量),(Y X 关于Y 的边缘分布函数 {}{}(),(,)lim (,)Y x F y P Y y P X Y y F y F x y →+∞ =≤=<+∞≤=+∞=. 问题2 何谓二维离散型随机变量联合分布、边缘分布和条件分布? 答 ⑴联合分布 设二维离散随机变量(,)X Y 的所有可能值为(,),,1,2,i j x y i j = ,则称 {},(,1,2,)i j ij P X x Y y p i j ==== 为二维离散随机变量(,)X Y 的联合分布律,其中 01ij p ≤≤,1 1 1ij i j p ∞ ∞ ===∑ ∑ . ⑵边缘分布

二维随机变量及其概率分布

1 第三章二维随机变量及其概率分布 一.二维随机变量与联合分布函数 1.定义若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量. 对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质 (1)F(x,y)分别关于x 和y 单调不减. (2)0≤F(x,y)≤1,F(x,-∞)=0,F(-∞,y)=0,F(-∞,-∞)=0,F(∞,∞)=1.(3)F(x,y)关于每个变量都是右连续的,即F(x+0,y)=F(x,y),F(x,y+0)=F(x,y).(4)对于任意实数x 1

相关主题
文本预览
相关文档 最新文档