当前位置:文档之家› 第14讲柯西中值定理与洛必达法则2009

第14讲柯西中值定理与洛必达法则2009

第14讲柯西中值定理与洛必达法则2009
第14讲柯西中值定理与洛必达法则2009

第14讲 柯西中值定理与洛必达法则

讲授内容

一、柯西中值定理

定理 6.5(柯西(cauchy )中值定理) 设函数f 和g 满足 (i)在],[b a 上都连续;(ii)在(b a ,)上都可导;(iii))()(x g x f ''和不同时为零;(iv)),()(b g a g ≠ 则存在),,(b a ∈ξ使得

.)

()()()()

()(a g b g a f b f g f --=''ξξ

证:作辅助函数)).()(()

()()()()()()(a g x g a g b g a f b f a f x f x F ----

-=易见)(x F 在],[b a )上满足罗尔定理

条件,故存在),(b a ∈ξ,使得.0)()

()()()()()(='---

'='ξξξg a g b g a f b f f F

因为0)(≠'ξg (否则由上式)(ξf '也为零),所以得证.

例1 设函数f 在[a,b])0(>a 上连续,在(b a ,)内可导,则存在),(b a ∈ξ,使得 .ln

)()()(a b f a f b f ξξ'=-

证:设x x g ln )(=,显然它在],[b a 上与)(x f 一起满足柯西中值定理条件,于是存在b a ,(∈ξ),使得

+

→0

lim

x .1

)(ln ln )()(ξ

ξf a

b a f b f '=

--整理便得所要证明的等式.

二、不定式极限

现在我们将以导数为工具研究不定式极限,这个方法通常称为洛必达(L ’Hospital)法则. 1.

0型不定式极限

定理6.6 若函数f 和g 满足:(i)0)(lim )(lim 0

==→→x g x f x x x x ;(ii)在点0x 的某空心邻域)(0x U 内两者都

可导,且0)(≠'x g ;A x g x f x x =''→)

()(lim

(A 可为实数,也可为±∞或)∞,则.)

()(lim

)

()(lim

A x g x f x g x f x x x x =''=→→

证:补充定义0)()(00==x g x f ,使得f 与g 在点0x 处连续.任取x ∈)(0x U ,在区间[x x ,0] (或[0,x x ]上应用柯西中值定理,有

,)

()()

()()()(00ξξg f x g x g x f x f ''=--即

)

()()

()(ξξg f x g x f ''=

(ξ介于).0之间与x x

当令0x x →时,也有,0x →ξ使得.)

()(lim

)

()(lim

)

()(lim

A x g x f g f x g x f x x x x x x =''=''=→→→ξξ

注意 若将定理6.6中0x x → 换成,,,,00∞→±∞→→→-

+x x x x x x 也可得到同样的结论.

例2 求 .tan

cos 1lim

2

x

x x +→π

解:容易检验x x f cos 1)(+=与x x g 2

tan

)(=在点π=0x 的邻域内满足定理6.6的条件(i)和(ii),又因

2

12

c o s lim

sec

tan 2sin lim

)

()(lim

3

2

=

-=-=''→→→x x

x x x g x f x x x π

π

π

故由洛必达法则求得.2

1)

()(lim

)

()(lim

=

''=→→x g x f x g x f x x π

π

例3 求.)

1ln()21(lim

2

21

x x e

x

x ++-→

解:利用)1ln(2

x +~),0(2

→x x 则得

x

x e x

x e x x e x

x x

x x

x 2)

21(lim

)21(lim

)

1ln()21(lim

2

10

2

2

1

2

2

1

-

→→→+-=+-=++-=12

22

)

21(lim

2

30

==

++-

→x e x

x

.1x

e

x -

例4

解:这是

0型不定式极限,可直接运用洛必达法则求解.但若作适当变换,在计算上可方便些.为此,

令x t =

,当+→0x 时有+

→0t ,于是有.11lim 1lim 1lim

-=-=-=-+

+

+

→→→t

t t

t x

x t e

e

t e

e

2.

∞型不定式极限

定理6.7 若函数f 和g 满足:(i) ;)(lim )(lim 0

0∞==++→→x g x f x x x x ii )在某右邻域)(00

x U +内两者都可导,

且;0)(≠'x g (iii )A x g x f x x =''+

→)

()

(lim

(A 可为实数,也可为±∞∞,),则.)

()(lim )

()

(lim

A x g x f x g x f x x x x =''=+

+

→→

注:定理6.7对于00,x x x x →→-。或∞←±∞→x x ,等情形也有相同的结论.

例5 求.ln lim

x

x x +∞

→ 解:.01lim

)()(ln lim

ln lim

=='

'=+∞

→+∞

→+∞

→x

x x x

x x x x

例6 求.lim

3

x

e x x +∞

→ 解:.6

lim

6lim

3lim

lim

2

3

+∞====+∞

→+∞

→+∞

→+∞

→x

x x

x x x x x e

x

e

x

e

x

e

注:不能对任何比式极限都按洛必达法则求解.首先必须注意它是不是不定式极限,其次是否满足洛必达法则的其他条件.1sin lim

=+∞

→x

x

x x ,虽然是

∞型,但若不顾条件随便使用洛必达法则:

,1

cos 1lim

sin lim

x

x

x

x x x +=+∞

→∞→ 就会因右式的极限不存在而推出原极限不存在的错误结论.

3.其他类型不定式极限

不定式极限还有∞-∞∞∞?∞00,0,1,0等类型.它们一般均可化为0

0型或

∞型的极限。

例7 求

ln lim 0

x x x +→

解:这是一个∞?0型不定式极限,.0)(lim 11

lim 1ln lim

ln lim 02

=-=-

==++

+

+

→→→→x x

x

x

x

x x x x x x 例8 求.)(cos lim 2

1

x

x x →

解:这是一个“∞

1”型不定式极限.作恒等变形,)(cos cos ln 1

12

2

x

x

x

e

x =

其指数部分的极限x x

x cos ln 1lim

2

→是

0型不定式极限,可先求得

,2

12tan lim

cos ln lim

2

-=-=→→x

x x

x x x 从而得到2

11

2

)

(cos lim -→=e x x

x 。

例9 求x k

x x ln 10

)(sin lim +→+ (k 为常数)。

解:这是一个00型不定式极限,按上例变形的方法,先求

∞型极限:

,s i n c o s lim 1sin cos lim ln 1sin ln lim

k x

x x k x

x

x

k x

x

k x x x =?

==+++

+

→→→

然后得到 k

x k

x e x =+→+ln 10

)(sin lim )0(≠k 。当k =0时上面所得的结果显然成立.

例10 求x

x x x ln 1

)

1(lim 2

++

+∞

→。

解 这是一个0∞型不定式极限.类似地先求其对数的极限(

∞型):

,1111

lim

ln )

1ln(lim

2

2

=+=+++∞

→+∞

→x

x x

x x x x 于是有.)

1(lim ln 1

2

e x x x

x =++

例11 求).ln 11

1(

lim 1

x

x x -

-→

解:这是一个∞-∞型不定式极限,通分后化为

0型的极限,即

.2

1ln 21lim

ln 11lim

ln 11

1

lim ln )1(1

ln lim )ln 111(lim 1

1

111-

=+-=+--=+--=-+-=--→→→→→x

x

x x x x

x

x x

x x x x x

x x x x x x

例12 设{

,)

(0

,0)(≠==x x

x g x x f 且已知0)0()0(='=g g ,3)0(=''g ,试求).0(f '

解:因为

,)

(0

)

0()(2

x

x g x f x f =

--所以由洛必达法则得

.23)0(210

)

0()(lim

212)(lim

)(lim

)0(0

02

=

''=-'-'='=='→→→g x g x g x

x g x

x g f x x x

注:(1)上例解法中,已知条件0)0(=g 用在何处? (2)如果用两次洛必达法则,得到==' )0(f x

x g x 2)(lim 0

'→.2

3)0(2

12

)(lim

=

''=

''=→g x g x 错在何处?

例13 求数列极限n

n n

n

)111(lim 2

+

+

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

导数的应用洛必达法则

导数的应用洛必达法则 1.设函数21)(ax x e x f x ---=. (1) 若0=a ,求)(x f 的单调区间; (2) 若当0≥x 时,0)(≥x f ,求实数a 的取值范围. 解:(1) 定义域为R ,当0=a 时,有题知x e x f x --=1)(,则1)('-=x e x f . 令0)('>x f ,得e x >;令0)('x 时,当210)(x x e a x f x --≤?≥时,设)0(,1)(2>--=x x x e x g x ,则4 42]2)2[(2)1()1()('x x e x x x x x e x e x g x x x ++-=?----= 设)0(,2)2()(>++-=x x e x x h x ,显然)(x h 在),0(+∞为增函数,所以 0)0()(=>h x h ,所以0)('>x g ,所以)(x g 在),0(+∞上为增函数 由洛必达法则得 2122 211)(000200lim lim lim lim ===-=--=→→→→e e x e x x e x g x x x x x x x 所以2 1)(>x g 因为)(x g a ≤在),0(+∞恒成立,所以21≤ a . 即实数a 的取值范围为]21,(-∞ 2.设函数x e x f --=1)(. (1) 证明:当1->x 时,1)(+≥ x x x f ; (2) 设当0≥x 时,1 )(+≤ax x x f ,求实数a 的取值范围. 解:(1) 证明: 当1->x 时,011)(≥--?+≥ x e x x x f x . 设)1(,1)(->--=x x e x g x ,则1)('-=x e x g . 令0)('>x g ,得0>x ;令0)('

洛必达法则失效的种种情况及处理方法

洛必达法则失效的种种情况及处理方法 今天我在看XX 书时,看到这样一道题?+∞→x x x x x 0d sin 1lim ,说是不可以使用洛必达法则,我对照这本书上关于使用洛必达法则的条件,觉得还不太清楚,好像应该是符合条件的,谢谢你抽空给我指点一下。 洛必达法则是计算极限的一种最重要的方法,我们在使用它时,一定要注意到该法则是极限存在的充分条件,也就是说洛必达法则 )()(lim )()(lim x g x f x g x f a x a x ''=→→的三个条件: (1)0)(lim =→x f a x (或∞),0)(lim =→x g a x (或∞); (2))(x f 和)(x g 在a x =点的某个去心邻域内可导; (3)A x g x f a x =''→)()(lim (或∞)。 其中第三个条件尤其重要。 其实,洛必达法则的条件中前两条是一望即知的,所以我们在解题过程中可以不用去细说,而第三个是通过计算过程的尝试验证来加以说明的,由于验证结束,结论也出来了,也就更加没有细说的必要了。所以在利用洛必达法则解题过程中,往往只用式子说话,不必用文字来啰嗦的。 而对于极限问题?+∞→x x x x x 0d sin 1lim 来说,因为x x g x f x x sin lim )()(lim +∞→+∞→=''不存在(既不是某个常数,也不是无穷 大),而可知洛必达法则的第三个条件得不到验证。此时,我们只能说洛必达法则对本问题无效,绝对不能因此而说本问题之极限不存在。 实际上,我们利用“将连续问题离散化”的方法来处理,可以断定这个极限是存在的。 【问题】求极限?+∞→x x x x x 0d sin 1lim 。 【解】对于任何足够大的正数x ,总存在正整数n ,使ππ)1(+<≤n x n ,也就是说总存在正整数n ,使r n x +=π,其中π<≤r 0。 这样+∞→x 就等价于∞→n ,所以 ??+∞→+∞→+=r n n x x x x r n x x x ππ00d sin 1lim d sin 1lim ??????++=??+∞→r n n n n x x x x r n ππππd sin d sin 1lim 0 ππππ22lim d sin d sin 1lim 00=++=??????++=∞→∞→??r n R n t t x x n r n n r n , 这里前面一项注意到了函数x sin 的周期为π,而后面一项作了令t n x +=π的换元处理。最后注意到积分值R 的有界性(20<≤R )。 如果把上述洛必达法则失效的情况称为第一种情况,则洛必达法则还有第二种失效的情况:第三个条件永远也无法验证。

柯西中值定理

§2 柯西中值定理和不等式极限 一柯西中值定理 定理(6.5) 设、满足 (i) 在区间上连续, (ii) 在内可导 (iii) 不同时为零; (iv) 则至少存在一点使得 柯西中值定理的几何意义 曲线由参数方程 给出,除端点外处处有不垂直于轴的切线, 则上存在一点 P处的切线平行于割线.。 注意曲线 AB在点处的切线的斜率为

, 而弦的斜率为 . 受此启发,可以得出柯西中值定理的证明如下: 由于, 类似于拉格朗日中值定理的证明,作一辅助函数 容易验证满足罗尔定理的条件且 根据罗尔定理,至少有一点使得,即

由此得 注2:在柯西中值定理中,取,则公式(3)可写成 这正是拉格朗日中值公式,而在拉格朗日中值定理中令,则 . 这恰恰是罗尔定理. 注3:设在区间I上连续,则在区间I上为常数,. 三、利用拉格朗日中值定理研究函数的某些特性 1、利用其几何意义 要点:由拉格朗日中值定理知:满足定理条件的曲线上任意两点的弦,必与两点间某点的切线平行。 可以用这种几何解释进行思考解题: 例1:设在(a ,b)可导,且在 [a,b] 上严格递增,若,则对一切 有。 证明:记A(),,对任意的x,记C(),作弦线AB,BC,应用拉格 朗日中值定理,使得分别等于AC,BC弦的斜率,但因严格递增,所以

<,从而 < 注意到,移项即得<, 2、利用其有限增量公式 要点:借助于不同的辅助函数,可由有限增量公式 进行思考解题: 例2:设上连续,在(a,b)内有二阶导数,试证存在使得 证:上式左端 作辅助函数 则上式 =, =

,其中 3、作为函数的变形 要点:若在[a,b]上连续,(a,b)内可微,则在[a,b]上 (介于与 之间) 此可视为函数的一种变形,它给出了函数与导数的一种关系,我们可以用它来研究函数的性质。 例3 设在上可导,,并设有实数A>0,使得 ≤在上 成立,试证 证明:在[0,]上连续,故存在] 使得 ==M 于是 M=≤A≤≤ 。 故 M=0,在[0,] 上恒为0。用数学归纳法,可证在一切[]( i=1,2,…)上恒有 =0, 所以=0, 。

洛必达法则在高考解答题中的应用

导数结合洛必达法则巧解高考压轴题 一.洛必达法则: 法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立. ○2洛必达法则可处理00,∞ ∞,0?∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限. ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解 1. 函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围. 2. 已知函数x b x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围.

复变函数的积分 柯西定理

第三章 复变函数的积分 §3-1复变函数的积分 【刘连寿、王正清编著《数学物理方法》P 29-31】 复变函数积分的定义: 设C 为复平面上以0z 为起点,而以z %为终点的一段路径(即一根曲线),在C 上取一系列分点011,,,,n n z z z z z -=%L 把C 分为n 段,在每一小段[1k k z z -] 上任取一点k ξ作和数: ()()()11 1 n n n k k k k k k k S f z z f z ξξ-===-=?∑∑, 其中1k k k z z z -?=- 如果当n →∞且每一小段的长度(1||||k k k z z z -?=-)趋于零时, 和式()1 n k k k f z ξ=?∑的极限存在,并且其值与k z 及k ξ的选取方式无关,则称这一极限为()f z 沿 路径C 由0z 到z %的积分: ()()1 lim lim n n k k C n n k f z dz S f z ξ→∞ →∞ ===?∑? , C 称为积分路径(()f z 在C 上取值,即z 在C 上变化)。 若C 为围线(闭的曲线),则积分记为: ()C f z dz ?? . (围道积分) 几点说明: 1. 复变函数的积分不仅与积分端点有关,还与积分路径有关。(与我们以前在高等数学中学过的实变函数的线积分类似。)

2.因为 z x iy =+,dz dx idy =+,()()(),,f z u x y iv x y =+,于是 ()()()(),,C C f z dz u x y iv x y dx idy =++?????? ()()()(),,,,C C u x y dx v x y dy i v x y dx u x y dy ????=-++???? ??, 所以复变函数的积分可以归结为两个实变函数的线积分,它们分别是复变函数积分的实部和虚部。 3.从复变函数积分的定义出发,可以直接得出复变函数的积分具有如下简单性质: (1)0C dz z z =-?%,z %、0z 分别为C 之起点、终点。 (2)()()()()11221122C C C a f z a f z dz a f z dz a f z dz ±=±???????,1a 、2a 为复常数。 (3)()()()1 2 C C C f z dz f z dz f z dz =+???, 其中积分路径C 由路径1C 、2C 连接 而成。 (4)()()C C f z dz f z dz - =-??, C - 表示与C 方向相反的同一条曲线。 4.围道积分的环绕方向: 若积分路径C 的两端点重合(即C 为自身不相交的封闭曲线),则计算积分()C f z dz ??时必须先规定积分路径的环绕方向(因为:()()C C f z dz f z dz - =-??蜒 )。 以后凡遇围道积分,如 不加特别说明,都假定积分路径的环绕方向为沿逆时钟方向。 ( C 为逆时钟方向,C - 代表顺时钟方向)

使用洛必达法则求极限的几点注意_图文(精)

硬闲洛密达法则求极限的儿点涅枣 口杨黎霞 (江南大学江苏?无锡214122 摘要如果当圹+口或r+*时,两个函数删与,M都趋于零或都趋于无穷大。那么极限l/m葡可能存在,也可能不存在。洛 ‘::, 必达法则是计算此类未定式极限行之有效的方法.然而。对于本科一年级的初学者来讲,若盲目使用此法则.会导致错误。本文就使用该法则解题过程中的几点注意作了分析与探讨。 关键词洛必达法则 极限未定式等价无穷小代换 变量代换 中图分类号:0172 文献标识码:A 在高等数学里.极限是大一新生一开始就要接触而且非常重要的内容。其中有一类未定式的极限不能用“商的极限等于极限的商”这一法则.而要用洛必达法则。洛必达法则内容很简单.使用起来也方便有效。但在具体使用过程中。一旦疏忽了以下几点.解题就可能出错。 首先,只有分子、分母都趋于零或都趋于无穷大时,才能直接使用洛必达法则。 其次,每次使用洛必达法则前都要检验是否满足次法则条件。只要满足此法则条件.就可连续使用此法则.直到求出结果或为无穷大。

例如:t/mx"。:坛,n.垡!;!j:以,n墨王翌::!.≥芝三:…:lira墨}==D(n仨z+ ,-.-e’r_? e’ Jr--JO e‘r_?e。 此题用了n次法则。 再者,使用洛必达法则求极限是应及时化简,主要指代数、三角恒等变形,约去公因子。具有极限不为零的因子分离出来,等价无穷小代换,变量代换等。下面通过例子说明。 土- 例:鲤【(J慨。7I叫】‘=塑【(J+÷eL÷】=纫型±笋=姆 号等力 此题先用了变量代换。当变量x趋于。时.t趋于0.这一点要注意。 例:矗。卑=f溉!堡:型Jim r.zim掣=f讹丝车堑 =lim S,ec气-I=li,n.]+co.sx-一2 本题用了多种方法:提出极限存在但不为零的因子。等价无穷小代换。洛必达法则,三角恒等变形约分等。 (J呵+{,一、/瓦芦 fJ目:lim———生—r_—一若直接使用洛必达法则,其分子

柯西中值定理的证明及应用

柯西中值定理的证明及应用 马玉莲 (西北师范大学数学与信息科学学院,甘肃,兰州,730070) 摘要:本文多角度介绍了柯西中值定理的证明方法和应用, 其中证明方法有: 构造辅助函数利用罗尔定理证明,利用反函数及拉格朗日中值定理证明, 利用闭区间套定理证明, 利用达布定理证明, 利用坐标变换证明. 其应用方面有:求极限、证明不等式、证明等式、证明单调性、证明函数有界、证明一致连续性、研究定点问题、作为函数与导数的关系、推导中值公式. 关键词:柯西中值定理; 证明; 应用

1.引言 微分中值定理是微分学中的重要定理,它包括罗尔定理、拉格朗日定理、柯西中值定理,而柯西中值定理较前两者更具有一般性、代表性,其叙述如下: 柯西中值定理:设函数f(x),g(x)满足 (1) 在[,]a b 上都连续; (2) 在(,)a b 内都可导; (3) '()f x 和'()g x 不同时为零; (4) ()()g a g b ≠, 则存在(,)a b ξ∈,使得 ()()() ()()() f f b f a g g b g a ξξ''-=- . (1) 本文从不同思路出发,展现了该定理的多种证明方法及若干应用,以便其更好的被认识、运用. 2.柯西中值定理的证明 2.1构造辅助函数利用罗尔定理证明柯西中值定理 罗尔定理 设函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 上可导,且 ()()f a f b =则至少存在一点,(,)a b ξ∈ , 使得 因为()0g ξ'≠(若()g ξ'为0则()f ξ'同时为0, 不符条件)故可将(2)式改写为(1)式. 便得所证.

洛必达法则的一些应用

1 引言 18世纪数学本身的发展,以及这个世纪后期数学研究活动的扩和数学教育的改革都为19世纪数学的发展准备了条件.微积分学的深人发展,才有了后面的洛比达法则,而且在英国和欧洲大陆是循着不同的路线进行的.在欧洲大陆,新分析正在莱布尼茨的继承者们的推动下蓬勃发展起来.伯努利家族的数学家们首先继承并推广莱布尼茨的学说. 雅各布·伯努利运用莱布尼茨引用的符号,并称之为积分,莱布尼茨采用他的建议,并列使用微分学与积分学两个术语.雅各布·伯努利的弟弟约. 翰·伯努利在莱布尼茨的协助之下发展和完善了微积分学. 他借助于常量和变量,用解析表达式来定义函数,这比在此之前对函数的几何解释有明显的进步. 他在求“0/0”型不定式的值时,发现了现称为洛必达法则的方法,即用以寻找满足一定条件的两函数之商的极限. 约翰·伯努利的学生、法国数学家洛必达的《无限小分析》(1696)一书是微积分学方面最早的教科书,在十八世纪时为一模著作,他在书中规了这一种算法即洛必达法则,之后洛必达法则的也得到了广泛应用,这对传播微分学起到很大的作用. 从极限概念的产生到现在已经经历了两千五百多年的发展,漫漫的历史长河,人类在寻求真理和科学的过程中不断探索和总结,对于数学的探索给了人类科学发展以强大的动力.我们应当对任何知识都认真的学习、研究及做出总结.不仅踏寻前人的路迹,同时也要从中开创新的空间. 极限是数学分析的基石,是微积分学的基础.不定式极限是一种常见和重要的极限类型,其求法多种多样,变化无穷.本文先介绍了洛必达法则的定义,然后对洛必达法则使用条件及其常见误区进行了详细分析,阐述了该法则适用于解决函数极限的类型并举例说明其应用,总结了洛必达法则的各种形式及使用围,并介绍了洛必达法则的基本应用,以及在使用洛必达法则解题时应注意的问题.文章还将法则的适用围推广至求数列极限,然后分析法则的使用过程中容易出现的错误;最后通过具体实例说明了可以将法则和其他求极限方法结合起来使用,使我们对法则有了更深入的理解,进而提高了应用洛必达法则解决问题的能力. 2 洛必达法则及使用条件 在计算一个分式函数的极限时,常常会遇到分子分母同时趋向于零或无穷大的情况,由于这时无法使用“商的极限等于极限的商”的法则,运算将遇到很大的困难,事实上,这时极限可能存在,也可能不存在,当极限存在时,极限的值也会有各种各样的可能,如当a x →(或∞→x )时,两个函数)(x f 与)(x g 都趋于零或都趋于无穷大,那么极限

中值定理、洛必达、函数单调性、极值、最值,凹凸性的应用

第三章中值定理及导数的应用 一.验证罗尔中值定理、拉格朗日中值定理的条件及结论是否成立 要牢记三个中值定理成立的条件及其结论。 例1.验证:在上满足拉氏定理的条件,并求出定理 结论中的点. 解:(一)1.由,知在处连续,从而在上连续; 2.按左、右导数的定义不难求出从而在 内 可导,且 因此,在上满足拉氏定理的条件. (二)由拉氏定理的结论:,使 .不难算得:或. 注意:中值定理中结论只保证中间值的存在性,至于是否唯一,不唯一时有几个,如何求?定理本身并未指出. 二.利用拉格朗日中值定理证明不等式(尤其是双向不等式) 利用拉格朗日中值定理证明不等式的一般方法是;先根据所要证明的不等式的特点作一辅助函数,并恰当选择相应的闭区间;然后利用拉格朗日中值定理,得到一个含中值的等式,最后适当放大或缩小不等式即可. 例2.证明:对. 证明:设,则.在上由拉氏定理知,

即:.() 例3.证明:对. 例4.证明:对. 大家自己证明,这两个结论要记住. 三.利用中值定理证明等式成立(或方程有无根) 例5.设在上连续,在内可导,且证明:使 证明:(分析寻找合适的辅助函数应用罗尔中值定理,采用倒推的方法分析。 命题只须证,使 ,或者. 故令。显然,且在上连续,在内可导,从而由罗尔定理知,,使 例6.设,证明方程有三个实根,并且它们分别位于区间(见书第105页) 例7.证明方程只有一个正根.(反证). 拉氏定理有两个重要的的推论,也要会记会用. 推论1:若对任意,则 例8.证明:. 证明:设, 则,, 所以,由推论1, 推论2:若对于,则. 四.洛必达法则

我们在第一章曾注意到,考试时考察得最多的求极限问题要么是型,要么是。对付这种问题,我们根据具体情形曾给出了因式分解约零因子、根式有理化约零因子、等价无穷小替换、凑重要极限等方法。现在有一个著名的法则——洛必达法则,可用一招统一解决大部分的或的极限问题。 现在先回顾一下洛必大达法则的条件及结论: 第一种:型的洛必达法则 设函数满足: (1); (2)在的某个去心邻域内,都存在 ; (3)存在(或为). 则,存在(或为). 第二种.型的洛必达法则 设函数满足: (1); (2)在的某个去心邻域内,都存在, ; (3)存在(或为).

中值定理证明

中值定理 首先我们来看看几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及f(b)=B ,那么对于A 与B 之间的任意一个数C ,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

洛必达法则在高考中的应用

高考数学专题突破:用洛必达法则求参数取值范围 洛必达法则简介: 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 ()() lim x a f x g x →=() () lim x a f x l g x →'=' 。 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ?f ,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)() ()lim x f x l g x →∞'=', 那么 () ()lim x f x g x →∞=() () lim x f x l g x →∞'='。 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 ()() lim x a f x g x →=() () lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a + →,x a - → 洛必达法则也成立。 ○ 2洛必达法则可处理00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型。 ○ 3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 ⑤若无法判定 () () f x g x ''的极限状态,或能判定它的极限振荡而不存在,则洛必达法则失效,此时,需要用其

复变函数的积分柯西定理

第三章 复变函数的积分 第一节 复变函数积分的概念 教学内容:复变函数的积分的定义、复变函数积分的计算问题、复变 函数积分的基本性质、柯西积分定理. 教学要求:1、了解复变函数积分的定义和性质,会求复变函数在曲线 上的积分 2、会用柯西积分定理和复合闭路定理计算积分,了解不定 积分的概念 教学过程: 一、复变函数的积分的定义 定义3.1设在复平面上有一条连接A 及B 两点的光滑简单曲线C 设),(),()(y x iv y x u z f +=是在C 上的连续函数.其中 ),(y x u 及),(y x v 是)(z f 的实部及虚部.把曲线C 用分点 B z z z z z A n n ==-,...,,,1210分成n 个小弧段,其中 ),...,2,1,0(n k y x z k k k =+=

在每个狐段上任取一点k k k ηξ?+=,作和式 ))((11 -=-∑k n k k k z z f ? (1) 令|}{|max 11-≤≤-=k k n k z z λ,当0→λ时,若(1)式的极限存在,且此极限值不依赖于k k k ηξ?+=的选择,也不依赖于曲线C 的分法,则就称此极限值为)(z f 沿曲线C 的积分.记作 =? C z z f d )())((lim 11 -=→-∑k n k k k z z f ?λ 当)(z f 沿曲线C 的负方向(从B 到A )积分,记作?- C z z f d )( 当)(z f 沿闭曲线C 的积分,记作()dz z f C ? 定理3.1 若),(),()(y x iv y x u z f +=沿光滑简单曲线C 连续,则)(z f 沿C 可积,且 ,d ),(d ),(d ),(d ),(d )(y y x u x y x v i y y x v x y x u z z f C C C ++-= ?? ? (2) 证明: ) )((11 -=-∑k n k k k z z f ? )]())][(,(),([11 1k k n k k k k k k k y y i x x iv u -+-+=+=+∑ηξηξ ], ))(,())(,([) )(,())(,(1 1 11 11 1 11 1∑∑∑∑-=+=+-=+=+-+-+---=n k k k k k n k k k k k n k k k k k n k k k k k y y u x x v i y y v x x u ηξηξηξηξ 由),(),()(y x iv y x u z f +=沿光滑简单曲线C 连续,可知 ),(),,(y x v y x u 沿光滑简单曲线C 也连续,当0→λ时,有

柯西积分定理与柯西积分公式的由来及其应用

( 2012 届) 本科毕业论文(设计) 题目:柯西积分定理与柯西积分公式的由来及其应用 学院:教师教育学院 专业:数学与应用数学(师范) 班级:数学082 学号: 姓名: 指导教师: 完成日期: 教务处制

诚信声明 我声明,所呈交的论文(设计)是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文(设计)中不包含其他人已经发表或撰写过的研究成果,也不包含为获得______或其他教育机构的学位或证书而使用过的材料。我承诺,论文(设计)中的所有内容均真实、可信。 论文(设计)作者签名:签名日期:年月日

授权声明 学校有权保留送交论文(设计)的原件,允许论文(设计)被查阅和借阅,学校可以公布论文(设计)的全部或部分内容,可以影印、缩印或其他复制手段保存论文(设计),学校必须严格按照授权对论文(设计)进行处理,不得超越授权对论文(设计)进行任意处置。 论文(设计)作者签名:签名日期:年月日

柯西积分定理与柯西积分公式的由来及其应用 王莉莉 (嘉兴学院数学与信息工程学院) 摘要:复变函数是综合性大学或师院类院校理工专业的必修课,是实变函数微积分的推广和发展.其中柯西积分定理和柯西积分公式是复变函数理论的基础,是研究复变函数理论的关键.它的核心内容是柯西积分定理,即解析函数沿围线的积分值为零.本文研究了柯西积分定理和柯西积分公式的相关概念、证明、推广及在代数基本定理证明、实积分计算中的应用,论述了柯西积分定理与复变函数的积分有着密切的联系,利用柯西积分定理很容易导出著名的柯西积分公式,还对留数定理作了简要介绍,利用留数定理可以分别得到复变函数中的柯西积分定理、柯西积分公式和高阶导数公式. 关键词:复变函数;柯西积分定理;柯西积分公式;留数定理

洛必达法则在高考解答题中的应用

一.洛必达法则: 法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立. ○ 2洛必达法则可处理00,∞∞ ,0?∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞,0?∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限. ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解 1. 函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围. 2. 已知函数x b x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x > +-,求k 的取值范围. 3.若不等式3sin ax x x ->对于)2,0(π ∈x 恒成立,求实数a 的取值范围.

洛必达法则的应用

洛必达法则在高考中的应用 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0; (3)() () lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=() () lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件: (1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ?f ,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g'(x)≠0; (3)()()lim x f x l g x →∞ '=',那么 ()()lim x f x g x →∞=() () lim x f x l g x →∞'='。 法则3 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0; (3)()()lim x a f x l g x →'=',那么 () ()lim x a f x g x →=() () lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 1.将上面公式中的x→a ,x→∞换成x→+∞,x→-∞,x a + →,x a - →洛必达法则也成立。 2.洛必达法则可处理 00x a -→,∞ ∞ ,0?∞,1∞,0∞,00,∞-∞型。 3.在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型定式,否则滥用洛 必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 4.若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

在实际应用中柯西积分公式的用途-正文

柯西积分公式的应用 姓名:武小娜 班级:2014级数学教育 学号:6 摘要:阐述了柯西积分公式在解析函数理论中的重要地位,叙述了各种不同表示形式的柯西积分公式和高阶导数公式,并举例说明了这些公式在积分计算中的应用. 关键词:解析函数;复积分;柯西积分公式. 1 前言 《实变函数与泛函分析》是综合性大学理工科的基础课程,其中柯西积分定理和柯西积分公式是基础,是关键,也是19实际最独特的创造,是抽象科学中最和谐的理论之一.许多重要的性质定理由它们直接或者间接推导出来的. 柯西积分公式是复变函数的基本公式,是解析函数的一种积分表达式,它深刻地反映了解析函数在解析区域内边界值与内部值的关系.柯西积分公式的基本理论和相关性质已经有了详细而全面的阐述.但柯西积分公式仍然存在一些有待解决和完善的方面.有些理论的证明比较复杂,为初学者带来了诸多的不便;柯西积分公式只给出了求解光滑周线域的复积分方法;已经证明了的理论给出的例题还不够.考虑到柯西积分公式是复变函数积分的基础,对其进行研究具有较强的理论意义和现实意义. 通过阅读大量的专著,期刊还有网上的资料,本文将对实变函数中的柯西积分公式和它的几个重要的推论的意义及其性质进行归纳总结,并举出相应的例子,化抽象为具体;还将对柯西积分公式的使用条件和使用方法进行总结;然后总结归纳参考文献中得到的结论,并试图将归纳得到的这些结论做进一步的推广;在论文的最后,会选取一些经典例题做供大家参考!为完成本文我查阅大量的相关资料,力求把课本上的知识运用到实践中去. 2 预备知识 柯西积分定理 设函数)(z f 在z 平面上的单连通区域D 内解析,C 为D 内任一条周线,则0)(=?c dz z f . 推广的柯西积分定理

洛必达法则的一些应用

1 引言 18 世纪数学本身的发展,以及这个世纪后期数学研究活动的扩张和数学教育的改革都为19 世纪数学的发展准备了条件.微积分学的深人发展,才有了后面的洛比达法则,而且在英国和欧洲大陆是循着不同的路线进行的.在欧洲大陆,新分析正在莱布尼茨的继承者们的推动下蓬勃发展起来.伯努利家族的数学家们首先继承并推广莱布尼茨的学说. 雅各布?伯努利运用莱布尼茨引用的符号,并称之为积分,莱布尼茨采用他的建议,并列使用微分学与积分学两个术语?雅各布?伯努利的弟弟约?翰?伯努利在莱布尼茨的协助之下 发展和完善了微积分学. 他借助于常量和变量,用解析表达式来定义函数,这比在此之前对函数的几何解释有明显的进步. 他在求“ 0 / 0 ”型不定式的值时,发现了现称为洛必达法则的方法,即用以寻找满足一定条件的两函数之商的极限?约翰?伯努利的学生、法国 数学家洛必达的《无限小分析》(1696) 一书是微积分学方面最早的教科书,在十八世纪时为一模范著作,他在书中规范了这一种算法即洛必达法则,之后洛必达法则的也得到了广泛应用,这对传播微分学起到很大的作用. 从极限概念的产生到现在已经经历了两千五百多年的发展,漫漫的历史长河,人类在寻求真理和科学的过程中不断探索和总结,对于数学的探索给了人类科学发展以强大的动力?我们应当对任何知识都认真的学习、研究及做出总结?不仅踏寻前人的路迹,同时也要从中开创新的空间. 极限是数学分析的基石,是微积分学的基础?不定式极限是一种常见和重要的极限类型,其求法多种多样,变化无穷?本文先介绍了洛必达法则的定义,然后对洛必达法则使用条件及其常见误区进行了详细分析,阐述了该法则适用于解决函数极限的类型并举例说明其应用,总结了洛必达法则的各种形式及使用范围,并介绍了洛必达法则的基本应用,以及在使用洛必达法则解题时应注意的问题. 文章还将法则的适用范围推广至求数列极限, 然后分析法则的使用过程中容易出现的错误;最后通过具体实例说明了可以将法则和其他求极限方法结合起来使用,使我们对法则有了更深入的理解,进而提高了应用洛必达法则解决问题的能力. 2 洛必达法则及使用条件 在计算一个分式函数的极限时,常常会遇到分子分母同时趋向于零或无穷大的情况,由于这时无法使用“商的极限等于极限的商”的法则,运算将遇到很大的困难,事实上,这时极限可能存在,也可能不存在,当极限存在时,极限的值也会有各种各样的可能,如当x a (或x )时,两个函数f(X)与g(x)都趋于零或都趋于无穷大,那么极限 1 / 16

第14讲柯西中值定理与洛必达法则2009

第14讲 柯西中值定理与洛必达法则 讲授内容 一、柯西中值定理 定理 6.5(柯西(cauchy )中值定理) 设函数f 和g 满足 (i)在],[b a 上都连续;(ii)在(b a ,)上都可导;(iii))()(x g x f ''和不同时为零;(iv)),()(b g a g ≠ 则存在),,(b a ∈ξ使得 .) ()()()() ()(a g b g a f b f g f --=''ξξ 证:作辅助函数)).()(() ()()()()()()(a g x g a g b g a f b f a f x f x F ---- -=易见)(x F 在],[b a )上满足罗尔定理 条件,故存在),(b a ∈ξ,使得.0)() ()()()()()(='--- '='ξξξg a g b g a f b f f F 因为0)(≠'ξg (否则由上式)(ξf '也为零),所以得证. 例1 设函数f 在[a,b])0(>a 上连续,在(b a ,)内可导,则存在),(b a ∈ξ,使得 .ln )()()(a b f a f b f ξξ'=- 证:设x x g ln )(=,显然它在],[b a 上与)(x f 一起满足柯西中值定理条件,于是存在b a ,(∈ξ),使得

+ →0 lim x .1 )(ln ln )()(ξ ξf a b a f b f '= --整理便得所要证明的等式. 二、不定式极限 现在我们将以导数为工具研究不定式极限,这个方法通常称为洛必达(L ’Hospital)法则. 1. 0型不定式极限 定理6.6 若函数f 和g 满足:(i)0)(lim )(lim 0 ==→→x g x f x x x x ;(ii)在点0x 的某空心邻域)(0x U 内两者都 可导,且0)(≠'x g ;A x g x f x x =''→) ()(lim (A 可为实数,也可为±∞或)∞,则.) ()(lim ) ()(lim A x g x f x g x f x x x x =''=→→ 证:补充定义0)()(00==x g x f ,使得f 与g 在点0x 处连续.任取x ∈)(0x U ,在区间[x x ,0] (或[0,x x ]上应用柯西中值定理,有 ,) ()() ()()()(00ξξg f x g x g x f x f ''=--即 ) ()() ()(ξξg f x g x f ''= (ξ介于).0之间与x x 当令0x x →时,也有,0x →ξ使得.) ()(lim ) ()(lim ) ()(lim A x g x f g f x g x f x x x x x x =''=''=→→→ξξ 注意 若将定理6.6中0x x → 换成,,,,00∞→±∞→→→- +x x x x x x 也可得到同样的结论. 例2 求 .tan cos 1lim 2 x x x +→π 解:容易检验x x f cos 1)(+=与x x g 2 tan )(=在点π=0x 的邻域内满足定理6.6的条件(i)和(ii),又因 2 12 c o s lim sec tan 2sin lim ) ()(lim 3 2 = -=-=''→→→x x x x x g x f x x x π π π 故由洛必达法则求得.2 1) ()(lim ) ()(lim = ''=→→x g x f x g x f x x π π 例3 求.) 1ln()21(lim 2 21 x x e x x ++-→ 解:利用)1ln(2 x +~),0(2 →x x 则得 x x e x x e x x e x x x x x x 2) 21(lim )21(lim ) 1ln()21(lim 2 10 2 2 1 2 2 1 - →→→+-=+-=++-=12 22 ) 21(lim 2 30 == ++- →x e x x 求 .1x e x - 例4

相关主题
文本预览
相关文档 最新文档