当前位置:文档之家› 风光互补路灯的设计__毕业设计

风光互补路灯的设计__毕业设计

风光互补路灯的设计__毕业设计
风光互补路灯的设计__毕业设计

目录

摘要: (1)

一风光互补路灯概述 (2)

(一)风光互补发电概述 (2)

(二)风光互补路灯 (3)

1 风光互补路灯的组成及各部件的作用 (3)

2 风光互补路灯的特点 (4)

3 风光互补路灯的发展前景 (6)

4风光互补路灯的应用场景 (6)

二风光互补路灯的设计 (7)

(一)风光互补路灯设计方案 (7)

(二)风光互补路灯设计参数 (7)

1技术参数 (8)

2路灯设计 (8)

3安装要求 (9)

4注意事项 (11)

参考文献 (11)

致谢 (12)

风光互补路灯的设计

摘要:能源是人类社会存在与发展的物质基础。在过去的200多年中,建立在煤炭、石油和天然气等化石燃料基础上的能源体系极大地推动了人类社会的发展。与此同时,地球50万年历史积累下来有限的化石能源正在以惊人的速度被消耗。据有关资料显示,以目前全世界对能源的需求量和增长速度来看,地球上已探明的石油储备可维持40余年,天然气60余年,煤炭200余年。人们在物质生活和精神生活不断提高的同时,也越来越感觉到大规模使用化石燃料所带来的严重后果:资源日益枯竭,环境不断恶化,还诱发了不少国与国、地区之间的政治经济纠纷,甚至战争和冲突。因此人类必须寻求一种新的、清洁、安全、可靠的可持续能源系统。

在众多可再生能源中,风能和太阳能由于碳的零排放,是21世纪最被看好的可再生能源。风能、太阳能虽然有取之不尽、用之不竭,就地可取、无需运输,无环境污染等优点,但无论是风能发电系统还是光伏发电系统,都受到自然资源的制约;不仅在地域上差别迥异,而且随时间变化具有很强的随机性。根据风光的互补性,使用风光互不系统可以很好的解决发电系统的供电问题,实现连续、稳定的供电。

关键词:发电系统、控制系统、储存系统、照明系统

一、风光互补路灯概述

(一)风光互补发电概述

风光互补,就是利用太阳能电池组件、风力发电机将转化的电能存储到蓄电池中,当夜晚点亮路灯的时候,逆变器将蓄电池中存储的直流电转变为交流电,从而供灯具用电。由于蓄电池存储的电能有限,所以风光互补最大的优势就是在夜间和阴雨天时由风力发电机发电,晴天有太阳的时候由太阳能发电,既有风又有太阳的情况下两者同时发电。

风光互补发电系统主要由风力发电机组、太阳能光伏电池组、控制器、蓄电池、逆变器、交流直流负载等部分组成,系统结构如下图。该系统是风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。

(1)风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;

(2)光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电;

(3)控制部分根据日照强度、风力大小及负载的变化,不断对蓄电池组的工作状态进行切换和调节:一方面把调整后的电能直接送往直流或交流负载。另一方面把多余的电能送往蓄电池组存储。发电量不能满足负载需要时,控制器把蓄电池的电能送往负载,保证了整个系统工作的连续性和稳定性;

(4)蓄电池部分由多块蓄电池组成,在系统中同时起到能量调节和平衡负载两大作用。它将风力发电系统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。

(5)风光互补发电系统根据风力和太阳辐射变化情况,可以在以下三种模式下运行:风力发电机组单独向负载供电;光伏发电系统单独向负载供电;风力发电机组和光伏发电系统联合向负载供电。

(6)风光互补发电系统主要由风力发电机、太阳能电池、智能控制器、蓄电池组、逆变器、电缆及支撑和辅助件等组成一个发电系统。夜间和阴雨天无阳光时由风能发电,晴天由太阳能发电,在既有风又有太阳的情况下两者同时发挥作用,实现了全天候的发电功能,比单用风机和太阳能更经济、科学、使用。

(二)风光互补路灯

1.风光互补路灯的组成及各部件的作用

风光互补路灯主要由太阳能电池组件、风力发电机、大功率LED灯、风光互补控制器、太阳能专用免维护蓄电池、逆变器等部件组成,还包括太阳能电池组件支架、风机附件、灯杆、预埋件、蓄电池地埋箱等部件。风光互补控制器是对光伏电池板和风力发电机所发出的电能进行调节和控制,一方面把调整后的电能送往灯具,另一方面把多余的能量对蓄电池进行充电,当发出的电能不能满足负载需要时,控制器就会把蓄电池中存储的电能送往灯具,蓄电池存储的电能用完时,控制器可以控制蓄电池不被过放电,当蓄电池充满电后,控制器可以控制电池不被过充电。具有完善的保护功能,从而可以达到更长的使用时间。太阳能电池组件是将太阳能直接转换为电能的发电装置,具有以下特点:不产生噪声,不排放污水,不需要燃料,维护费用低,稳定性好,效率高,寿命长。风力发电机是以自然风作为动力,驱动风轮及发电机旋转,将风能转换为电能给蓄电池充电或通过逆变器直接转换成交流电。具有体积小、重量轻,发电效率高,微风便能启动,寿命长免维护等特点。蓄电池作为风光互补发电系统的储能设备,在整个发电系统中起着非常重要的作用。首先,由于自然风和光照是不稳定的,在风力、光照过剩的情况下,存储负载供电多余的电能,在风力、光照欠佳时,储能设备蓄电池可以作为负载的供电电源;其次,蓄电池具有滤波作用,能使发电系统更加平稳的输出电能给负载;另外,风力发电和光伏发电很容易受到气候、环境的影响,发出的电量在不同时刻是不同的,也有很大差别。作为它们之间的“中枢”,蓄电池可以将它们很好的连接起来,可以将太阳能和风能综合起来,实现二者之间的互补作用。常用蓄电池主要有铅酸碱性镍蓄电池和镉镍蓄电池。

图.风光互补路灯系统图

2.风光互补路灯的特点

优点

由于蓄电池存储的电能有限,所以风光互补最大的优势就是在夜间和阴雨天时由风力发电机发电,晴天由太阳的时候由太阳能发电,既有风又有太阳的情况下两者同时发电,风光互补路灯完全适应自然环境的变化,夏季,风力小,但是阳光强,冬季,阳光弱,但是风力大。阴天风力大阳光弱,晴天阳光强风力弱。具有很好的互补性,同时风能和太阳能是取之不尽的再生能源。实现了全天候的发电能力,比单用风力发电及单独使用太阳能更科学、实用。普通的路灯必须用地埋电缆供电,所以路灯供电线路的建设成本高,距离远还要建设升压系统,并且耗费电能。而风光互补路灯不需要输电线路,不消耗电能,有明显的经济效益。风光互补路灯是完全利用风能和太阳能为灯具供电,系统兼具风能和太阳能产品的双重优点,开关智能控制,自动感应外界光线变化,无须人工操作,适用于乡村结合道路、高速公路、城市道路、景观道路、小区等等场所。风光互补路灯具有零电费、绿色环保等特性,节能减排是未来照明发展的重要方向之一。

节能减排,节约环保,无后期大量电费支出。资源节约型和环境友好型社会正

成为大势所趋。对比传统路灯,风光互补路灯以自然中可再生的太阳能和风能为能源,不消耗任何非再生性能源,不向大气中排放污染性气体,致使污染排放量降低为零。长久下来,对环境的保护不言而喻,同时也免除了后期大量电费支出的成本。

免除电缆铺线工程,无需大量供电设施建设。市电照明工程作业程序复杂,缆沟开挖、敷设暗管、管内穿线、回填等基础工程,需要大量人工;同时,变压器、配电柜、配电板等大批量电气设备,也要耗费大量财力。风光互补路灯则不会,每个路灯都是单独个体,无需铺缆,无需大批量电气设备,省人力又省财力。

个别损坏不影响全局,不受大面积停电影响。由于常规路灯是电缆连接,很可能会因为个体的问题,而影响整个供电系统;风光互补发电路灯则不会出现这种情况。分布式独立发电系统,个别损坏不会影响其他路灯的正常运行,即使遇到大面积停电,亦不会影响照明,不可控制的损失因此大幅降低。

节约大量电缆开销,更免受电缆被盗的损失。电网普及不到的偏远地区安装路灯,架线安装成本高,并会有严重的偷盗现象。一旦偷盗,影响整个电力输出,损失巨大。使用风光互补路灯则不会有此顾虑,每个路灯独立,免去电缆连接,即使发生偷盗现象也不会影响其他路灯的正常运作,将损失降到最低。

缺点

(1)安全性问题

担心风光互补路灯的风车和太阳能电池板会被风吹落到公路上伤及车辆和行人。实际上,风光互补路灯的风车和太阳能电池板的受风面积远小于公路指示牌和灯杆广告牌,而且,路灯的强度设计也是按抗12级台风的标准设计的,不会出现安全上的问题。

(2)亮灯时间不保证

担心风光互补路灯受天气影响,亮灯时间不保证。风能和太阳能是最常有的自然能源,晴天阳光充足,而阴雨天则风大,夏天阳光照射强度高,而冬天风大,并且,风光互补路灯系统配有足够的储能系统,能保证路灯有充足的电源。

3.风光互补路灯的发展前景

目前,在国内外市场上常见的风光互补路灯主要用于两种场合。一是在远离电网或不利于铺设电缆地区的农牧民家庭使用。二是用于路灯照明。风光互补道路照明是一个新兴的新能源利用领域,它不仅能为城市照明减少对常规电的依赖,也为农村照明提供了新的解决方案。据《2013-2017年中国风光互补路灯行业发展前景与

投资预测分析报告》数据显示,中国现有城乡路灯总数,大约在2亿盏,并以每年20%的速度增长,假如这2亿盏400瓦或250瓦高压钠灯全部改成150瓦或100瓦风光互补LED路灯,并且每盏路灯每天工作12小时,在1年内将节约1500亿度电。而三峡水电站在2010年的发电总量为840亿度电。因此把全国2亿盏路灯全部改为风光互补路灯后,所节省的电量相当于1.8个三峡水电站2010年的全年发电量。全球的环境在日益恶化,各国都在发展清洁能源,“十二五”期间,节能环保行业将占据经济建设中的重要角色,清洁能源的领域将会不断发展壮大。我国有丰富的风能及太阳能资源,路灯作为户外装置,两者的结合做成风光互补路灯,无疑给国家的节能减排提供了一个很好的解决方案。一套400瓦的常规路灯一年耗电超过1000度,相当于消耗标准煤400多公斤。若换成1000套照明效果相当的150瓦风光互补路灯,一年可节约电能上百万度,节约标准煤达400多吨。由此可见,风光互补路灯在城市道路照明行业中的发展前景十分看好。中国现有9亿人口生活在农村,其中5%左右目前还未能用上电。在中国无电乡村往往位于风能和太阳能蕴藏量丰富的地区。因此利用风光互补发电系统解决用电问题的潜力很大。采用已达到标准化的风光互补发电系统有利于加速这些地区的经济发展,提高其经济水平。另外,利用风光互补系统开发储量丰富的可再生能源,可以为广大边远地区的农村人口提供最适宜也最便宜的电力服务,促进贫困地区的可持续发展。

4.风光互补路灯的应用场景

中国现有9亿人口生活在农村,其中5%左右目前还未能用上电。在中国无电乡村往往位于风能和太阳能蕴藏量丰富的地区。因此利用风光互补发电系统解决用电问题的潜力很大。采用已达到标准化的风光互补发电系统有利于加速这些地区的经济发展,提高其经济水平。另外,利用风光互补系统开发储量丰富的可再生能源,可以为广大边远地区的农村人口提供最适宜也最便宜的电力服务,促进贫困地区的可持续发展。

室外应用

世界上室外照明工程的耗电量占全球发电量的12%左右,在全球日趋紧张的能源和环保背景下,它的节能工作日益引起全世界的关注。

基本原理是:太阳能和风能以互补形式通过控制器向蓄电池智能化充电,到晚间根据光线强弱程度自动开启和关闭各类led室外灯具。智能化控制器具有无线传感网络通讯功能,可以和后台计算机实现三遥管理(遥测、遥讯、遥控)。智能化控

制器还具有强大的人工智能功能,对整个照明工程实施先进的计算机三遥管理,重点是照明灯具的运行状况巡检及故障和防盗报警。

道路照明

车行道路照明工程(快速道/主干道/次干道/支路);

小区(广义)道路照明工程(小区路灯/庭院灯/草坪灯/地埋灯/壁灯等)。

目前已被开发的新能源新光源室外照明工程有:风光互补led智能化路灯、风光互补led小区道路照明工程、风光互补led景观照明工程。

二、风光互补路灯的设计

(一)风光互补路灯设计方案

1.路灯配置设计

路灯配置采用一台100W风力发电机、一片75W太阳能电池板、一套100W低压无极灯或者LED以及2只60AH/12V铅酸阀控蓄电池,组成一支独立的风光互补路灯。可每天可靠亮灯8小时。

2.配置清单

序号部件名称规格型号数量

1 风力发电机FD2.5-0.5/9 1台

2 太阳能组件TPM-30M(75W) 2块

3 充电控制器CMP12 1个

4 灯杆10m,镀锌,喷塑1套

5 灯罩、灯源24V/100W LED 1套

6 路灯控制器24V/10A 1个

7 电控箱标准1个

8 蓄电池12V 60Ah 2个

9 附件1套

表.配置清单

(二)风光互补路灯设计参数

1.技术参数

发电主体:(1)故障率低(转速慢、无转向机构);

(2)无噪音;

(3)发电曲线饱满(启动风速低、在中低风速运行时发电量较大);

(4)不受风向及近地面团风的影响;

(5)抗台风能力较强(抗风能力达到45m/s)。

2.路灯设计

(1)风光互补路灯配置:垂直轴风力发电和太阳能电池板以10:3的配比进行设计,适用于大多数城市道路。

例如10米高路灯配置:灯笼型垂直轴风力发电机--100W;

太阳能电池板--75W;

灯杆高度--10米;

灯泡功率--100W无极灯、LED灯

蓄电池--60AH免维护;

亮灯时间--8h/d;

(2)蓄电池配置:蓄电池采用胶体蓄电池,安装在路灯灯杆中间,既作为蓄电池箱同时可用作广告灯箱。胶体蓄电池寿命较长,工作稳定性较高。

(3)控制系统:风光互补控制器或风力发电控制器对于蓄电池的充放电控制非常关键,必须将其控制在较平稳的变化范围内。控制器的好坏对于蓄电池以及光源的寿命起到至关重要的作用。

(4)光源

应用在太阳能照明系统中的光源要满足以下2个条件:

①寿命要长,光衰要低,这样才能体现高品质照明系统,太阳能照明系统一般也是提供长时间质保期的。

②为尽可能的降低初期投入成本,事必要减小晶硅片面积和蓄电池容量,这是由电流来决定的。所以相同功率的光源实际工作电流越小越好,这样整体造价就会下降。光源的价格在整个太阳能照明系统中所占的比例很小很小。

无极灯工作电流小,同功率的无极灯和金卤灯和高压钠灯相比电流只有一半左右,可大大降低太阳能板和蓄电池的配置,另外寿命超长,光通维持率高,显色性好,这些优点都非常适合作为太阳能光源,国内外已有很多工程应用实例。

(5)太阳能电池组件:单晶硅太阳能电池具有光电转换效率高的特点,故一般都喜欢采用它。其实对于新能源路灯而言,由于其独立供电,供电持续性要求较高,

故采用弱光性较强的多晶硅太阳能电池效果较好。

3.安装要求

(1)地基浇筑

(2)①确定立灯位置;勘察地质情况,如果地表1.2米皆是松软土质,那么开挖深度应加深;同时要确认开挖位置以下没有其他设施(如电缆、管道等),路灯顶部没有长时间遮阳物体,否则要适当更换位置。

(3)②在立灯具的位置预留(开挖)符合标准的1.2米坑;进行予埋件定位浇筑。预埋件放置在方坑正中,PVC穿线管一端放在预埋件正中间、另端放在蓄电池储存处,注意保持预埋件、地基与原地面在同一水平面上(或螺杆顶端与原地面在同一水平面上,根据场地需要而定),有一边要与道路平行;这样方可保证灯杆竖立后端正而不偏斜。然后以C20混凝土浇筑固定,浇筑过程中要不停用震动棒震动,保证整体的密实性,牢固性。

③施工完毕,及时清理定位板上残留泥渣,并以废油清洗螺栓上杂质。

④混泥土凝固过程中,要定时浇水养护;待混凝土完全凝固(一般72小时以上),才能进行吊灯安装。

(2)太阳能电池组件安装

①电池组件的输出正负极在连接到控制器前须采取措施避免短接;

②太阳电池组件与支架连接时要牢固可靠;

③组件的输出线应避免裸露,并用扎带扎牢;

④电池组件的朝向要朝正南,以指南针指向为准;

⑤太阳电池组件安装的角度应与当地的纬度相同。

(3)蓄电池安装

①蓄电池置于控制箱内时须轻拿轻放,防止砸坏控制箱;

②蓄电池之间的连接线必须用螺栓压在蓄电池的接线柱上并使用铜垫片以增强导电性;

③输出线连接在蓄电池后在任何情况下禁止短接,避免损坏蓄电池;

④蓄电池的输出线与电线杆内的控制器相联时必须通过PVC穿线管;

⑤上述完成后,检查控制器端的接线,防止短路。正常后关好控制箱的门。(4)灯具安装

①灯杆起吊之前,先检查各部位紧固件是否牢固,灯头安装是否端正,光源工

作是否正常。然后在简易调试系统工作是否正常;松开控制器上太阳板连接线,光源工作;接上太阳板连接线,灯熄;同时仔细观察控制器上各指示灯的变化;一切属于正常,方可起吊安装, 进行各部位组件固定:太阳板和风机固定在太阳板支架上,灯头固定到挑臂上,然后将支架与挑臂固定到主杆,并将连接线穿引到控制箱(电池箱)。对接公母头对插线,将对插口与灯杆对接,同时用外六角螺丝拧紧将其与灯杆固定,灯头对插过程中,将引线拉直,避免挫伤线缆。导线经过所有管口部位,管口倒内角取毛刺避免损伤电缆线。

②主灯杆起吊时,注意安全防范;螺丝绝对紧固好,如组件朝阳角度有所偏差,需要上去端调整其朝阳方向完全朝正南。

③将蓄电池放进电池箱,按照技术要求将连接线连接到控制器;先接蓄电池,再接负载,然后接太阳板;接线操作时一定要注意各路接线与控制器上标明的接线端子不能接错,正负两极性不能碰撞,不能接反;否则控制器将被损坏。调试系统工作是否正常;松开控制器上太阳板连接线,灯亮;接上太阳板连接线,灯熄;同时仔细观察控制器上各指示灯的变化;一切属于正常,方可封好控制箱。

(5)风力发电机安装要求

①将发电机总成固定在灯杆上;

②将3支风叶均匀对称的安装在风叶转轮上,且校正平衡度重心;

③将安装好的风叶总成安装在带锥度的发电机上,且固定;

④将风叶的顶帽安装在风叶的总成顶部;

⑤最后把风机输出线与太阳能电池板线相应接到对应的接口处。

⑥风机周围3米内,应无高层建筑物;

4.注意事项

①风光互补路灯以太阳辐射及风力为能源,照射在光电池组件上的阳光是否充裕直接影响灯具的照明效果,四周建筑物较高,也直接影响到风的流向,因此在选择灯具的安装位置时,电池组件及风力发电机在任何时间段都能够照射到阳光,且无树叶及高层建筑遮挡物。

②穿线时一定要注意导线勿夹在灯杆的连接处。导线的连接处应该连接牢固,且用PVC胶带缠绕。

③使用时,为保证美观和电池组件能更好的接收太阳辐射,特别新疆是多风沙地区, 电池板方阵倾角应超过30度,保持方阵表面的干净,以免影响发电量。有条

件时可用清水清洗,再用干净抹布擦干。切勿用腐蚀性溶剂或硬物冲洗擦试。定期检查所有安装部件的紧固程度,遇到冰雹、狂风、暴雨等异常天气,应及时采用保护措施。

参考文献:

[1]王君一,徐任学.太阳能利用技术.北京:金盾出版社,2008.1

[2]刘竹青.风能利用技术.北京:中国农业科学技术出版社,2006.10

[3]赵树安.太阳能光伏发电及应用技术.南京:东南大学出版社,2011.5 [4]张希良.风能开发利用.北京:化学工业出版社,2005.1

[5]林闽,张艳红,修强,热孜望;风光互补路灯控制系统的设计[J];可再生能源;2011年 06期.

[6]王志新;风光互补技术及应用[J];新材料产业;2009年 02期.

[7]刘鑫,郭锐强,魏子贺;风光互补路灯的发展前景研究,商场现

代化,2012年 23期.

致谢

论文由王莉老师指导,还有我一帮小伙伴们的帮助,此时,谢谢你们。

文完成之际,我舒了一口气,从开始到结束的一个多月里我查阅和搜索了大量的资料。本篇论文是结合工作项目和王老师的指导之后,最终定稿完成的,完成这篇论文期间王老师在细心的指导支持。王老师不论是从专业还是学术上都在不厌其烦的细心指导,同时了解我的工作之后,还给我说了很多以后再工作上注意的问题,给我无微不至的关心;在论文修改期间王老师在忙于教务之余,还特地抽出时间对我的论文进行逐字检查并且提出修改意见,我也深深地被老师这种认真所打动。此时,我应经按捺不住的想对我敬爱的王老师说声谢谢,您辛苦了!以备写论文只需,直到定稿,查阅大量与专业相关的资料完成初稿设计,中期就不断在修改和完善,甚至到最后老师给的评价,我一直在尽我最大努力的做好这一件事,述说出一篇含金量高的文节。然而在设计的过程之中,随时都能遇到不可预料的事情,但是我还是重重克服。比如论文的格式、字数的要求,还有一些资料的查找,也曾经令我迷茫和彷徨,甚至感到过难受。到最后,论文完稿,我用我最大的努力去换的一份自己写的黄金论文,这是属于自己的一篇文节,自己的结晶。最后还要对那些在我做论文的过程中对我做过哪怕是一丁点帮助过的同学、老师,表达我最衷心的感谢!

在大学的三年中,感谢教授与我知识的所有老师和同学,是你们让我明白越来越多的东西,书本上的、书本外的。正是有了你们的帮助我才能从一个又一个的谜团里走出来,我想这将会一直影响着我今后的生活和工作,谢谢你们!

在即将离开母校的时刻,感谢所有酒泉职业技术学院的老师和学子以及工作岗位上的同学,对我的宽容和教导。

宁可累死在路上,也不能闲死在家里!宁可去碰壁,也不能面壁。是狼就要练好牙,是羊就要练好腿。什么是奋斗?奋斗就是每天很难,可一年一年却越来越容易。不奋斗就是每天都很容易,可一年一年越来越难。能干的人,不在情绪上计较,只在做事上认真;无能的人!不在做事上认真,只在情绪上计较。拼一个春夏秋冬!赢一个无悔人生!早安!—————献给所有努力的人

太阳能风光互补LED路灯基本设计方案

太阳能风光互补LED路灯基本设计方案 一.风光互补LED路灯设计案例分析 1.1设计依据 《城市道路照明设计标准》CJJ45-2006 《公路工程技术标准》JTG D70-2004 (1)、每套路灯系统配置设计 ★年平均风速3m/s以上地区。 ★年平均风速3m/s以上地区。 ★太阳能资源Ⅱ类及以上可利用地区。 (2)、路灯功能描述: ★亮灯时间及控制: 路灯配置采用一台400LW风力发电机、一组100W太阳能电池板、一套60WLED灯具、2只200AH/12 V铅酸阀控蓄电池,组成一支独立的风光互补路灯照明系统。可保证每天可靠亮灯8~10小时。 ★可靠性:系统在连续没有风和太阳能补充能量的情况下能正常供电3~5天。 ★光控亮灯、时空关灯;全功率、半功率全自动控制。 ★结构:灯杆总高10米;灯高8米;采用双边交叉布灯,灯杆间距25米。 ★蓄电池采用埋地处理,提高电池性能寿命及提高防盗窃作用。 (3)、配置清单

附件电缆等2、工程设计方案 (1)、风光互补路灯电路设计方案 系统电路原理图: 系统性能特点: l、智能充、放电控制,可相对延长蓄电池的使用寿命; 2、工作模式:24小时定时模式; 3、负载开路及短路保护,并具有自动恢复功能;

4、采用专用芯片对LED灯进行恒功率、启动控制,具有过流、过电压保护,灯泡开路、短路保护; 5、防频闪双频工作模式,灯温补偿; 6、采用工业级芯片低功耗设计,可在高温、寒冷、潮湿的环境下可靠工作; 7、使用、维护简单方便,全自动控制。 (2)、路灯杆的设计方案 风力发电机和太阳能电池是风光互补路灯的标志性组合,要保证风力发电机和太阳能电池能平稳、安全的运行,同时也配合路灯灯杆的多样化造型,我们将风光互补路灯灯杆设计为自立式路灯灯杆。风力发电机位于灯杆的顶端,太阳能电池板位于灯杆的中部,详见下图: 灯高8米

风光互补式LED路灯设计方案

风光互补式LED路灯设计方案 设计者:黄钜海 (浙江科技学院建筑工程学院,杭州,310023) 一、设计概述 风光互补式LED路灯功能特点: 1、风光一体,互补性强,稳定性高 2、适用范围广泛、适应性强、实用性强 3、一次性投入、持续性产出、使用寿命长 4、对环境不产生任何污染、绝对绿色环保 5、性能稳定,故障率低

为保证风力发电机和太阳能电池能平稳、安全的运行,同时也配合路灯灯杆的多样化造型,我们将风光互补路灯灯杆设计为自立式路灯灯杆。风力发电机位于灯杆的顶端,太阳能电池板位于灯杆的中上部,详见上图。 具体配置方案如下: 灯杆高度:10米,灯具离地8米,灯杆间距25米 灯杆材质:Q235优质钢结构标准灯杆(热镀锌/喷塑) 太阳能光伏组件:100W 风力发电机:额定功率300W 启动风速1.5m/s,额定风速10m/s 光源:60WLED灯 蓄电池:地埋式磷酸铁锂电池100AH 控制系统:智能升压型,微电脑智能控制、防过充、过放、防潮、输出短路保护及光控+时控自动开、关灯。 工作时间:10小时/天,前5小时全亮,后5小时半功率亮;阴雨天连续工作3-7天工作温度:-20℃~+45℃ 相对湿度:20%--90%。

二、详细说明 2.1风力发电机 风机是风光互补路灯的标志性产品,风机的选择最关键的是要风机的运行平稳。 灯杆是无拉索塔,最担心因风机运行时的振动引起灯罩和太阳能支架的固定件松脱。 选择风机的另一个主要因素就是风机的造型要美观,重量要轻,减小塔杆的负荷。 这里选用嘉顿雄GARDENSON 牌GARDENSON-200W/300W型风机 技术参数:300W 起动风速:1.5(m/s)额定风速:12(m/s) 切入风速:2.5m/s 额定电压:24V 额定功率:300W 最大功率:400W 风叶直径: 0.3 m 风叶数量: 6(pcs) 整机重量: 10kg 大风保护:泄荷及电磁制动工作温度: -20℃至40℃ 海拔高度:≤4500m(额定工况海拔高度为1000m)最大风速:≤35m/s 电机选用60W国际先进的永磁式发电机,动平衡好、切割磁力线佳效率高,低 速性能好,2级风就能发电。在永磁发电机的前端与风叶结合部之间,设自动衡速保 护装置,该装置在遇到超强风时利用自身的离心力,自动对风机进行衡速,有效的 保护风机、电气设备不受超强风损害。 2.2太阳能电池 一般认为单晶硅太阳能电池具有光电转换效率高的特点,故采用单晶硅电池。 电池安置于路灯的上方一侧位置,并根据纬度的不同调整一定的倾角。也可根据需 要设置太阳跟踪装置。 太阳能电池组件主要技术参数 型式※单晶硅 冰雹抗载能力2400pa 接线盒类型C型;接插件 接线盒防护等级IP65 组件效率≥14% 使用温度范围-40℃—85℃ 最大系统耐压1000V DC 开路电压43.4

风光互补LED路灯控制器的设计

^ 风光互补LED路灯控制器的设计 摘要 本文主要首先介绍了产生新能源的必要性及风能和太阳能快速发展的背景。其次介绍了什么是风光互补及风光互补的技术原理、技术结构及技术优势和风光互补系统的组成、风光互补路灯的优势。然后介绍了什么是风光互补控制器,风光互补控制器的特点,风光互补控制器的工作原理及风光互补路灯控制器的结构图和电路原理图。 关键词:控制器,工作原理,路灯,风能,太阳能

目录 1、绪论 (1) 2、风光互补的概述 (1) 、风光互补的技术原理 (2) 、风光互补的技术构成 (2) 、风光互补的技术优势 (2) 、风光互补的典型案例 (3) 3、风光互补系统 (3) 、风光互补系统的组成 (3) 、风光互补路灯的优势 (3) 4、风光互补控制器 (5) 、风光互补控制器的概述 (5) 、风光互补控制器的特点及功能 (5) 、风光互补路灯控制器的结构图 (6) 、风光互补控制器的原理图 (7) 、风光互补控制器的工作原理 (7) 总结 (11) 致谢 (12) 参考文献 (13)

1、绪论 随着世界人口的持续增长和经济的不断发展,对于能源的需求日益增加,目前的能源消费结构中,煤炭、石油和天然气等化石燃料虽然仍占有很重要的地位,但是化石燃料的燃烧造成环境污染,致使全球气候变暖、冰山融化、海平面上升等自然灾害频繁发生和能源危机日益临近,新能源已经成为今后世界上的主要能源之一。其中,风能、太阳能等洁净能源备受关注。 太阳能、风能作为未来的能源是一种非常理想的清洁能源。近年来由于人们对能源、环境问题的日益关注,太阳能、风能的应用与普及越来越受到人们的重视。若能合理地利用太阳能、风能将会为人类提供充足的能源。对太阳能、风能技术而言,照明应用并非是其最主要的应用领域,也不是最能体现应用优势的领域,但就其作为能源的表现形式来说,太阳能、风能在照明领域的互补应用最直观。而在当前技术水平下,太阳能、风能技术作为能源的高成本、低效率是不容回避的问题,特别是在单体照明应用中,如不与LED技术相结合,按照常规设计太阳能、风能照明系统,往往要面对系统变换效率低及经济效益不佳等问题。LED因具有低能耗、直流工作等优势,成为配合风光互补路灯照明光源的理想产品。就目前技术和政策而言,在我国最有希望快速普及应用太阳能、风能发电技术的领域,应是风光互补LED路灯照明工程。LED是一种可将电能转变为光能的半导体发光器件,属于固态光源。在通用照明领域,LED照明灯具有体积小、重量轻、方向性好、节能、寿命长、容易控制、耐受各种恶劣环境条件等优点,是典型的绿色照明光源。尤其随着大功率白光LED的研发成功,使它在照明领域应用更加广泛。LED 作为新型固态绿色光源与风光互补发电技术结合应用于路灯领域,是可再生能源与高新固态绿色光源的结合,与其他电能变换技术和照明技术相比更加符合产业政策及推广应用的市场。 2、风光互补的概述 风光互补,是一套发电应用系统,该系统是利用太阳能电池方阵、风力发电机(将交流电转化为直流电)将发出的电能存储到蓄电池组中,当用户需要用电时,逆变器将蓄电池组中储存的直流电转变为交流电,通过输电线路送到用户负载处。是风力发电机和太阳电池方阵两种发电设备共同发电。其中,风光互补发电站是针对通信基站、微波站、边防哨所、边远牧区、无电户地区及海岛,在远离大电网,处于无电状态、人烟稀少,用电负荷低且交通不便的情况下,利用本地区充裕的风能、太阳能建设的一种经济

风光互补路灯完全版

风光互补太阳能路灯 设 计 方 案 设计单位:乌鲁木齐旭日阳光太阳能 工程有限公司 设计时间:二0一一年三月二十日 设计人员:姜广建电话:

风光互补路灯设计方案 现场效果图

一、自然资源状况 在跨入21世纪之际,人类将面临实现经济和社会可持续发展的重大挑战,在有限资源和环保严格要求的双重制约下发展经济已成为全球热点问题。而能源问题将更为突出,不仅表现在常规能源的匮乏不足,更重要的是化石能源的开发利用带来了一系列问题,如环境污染,温室效应都与化石燃料的燃烧有关。目前的环境问题,很大程度上是由于能源特别是化石能源的开发利用造成的。因此,人类要解决上述能源问题,实现可持续发展,只能依靠科技进步,大规模地开发利用可再生洁净能源。太阳能和风能等清洁能源以其独具的优势,其开发利用必将在21世纪得到长足的发展,并终将在世界能源结构转移中担纲重任,成为21世纪后期的主导能源。 1.1化石能源带来的问题 (1)能源短缺:由于常规能源的有限性和分布的不均匀性,造成了世界上大部分国家能源供应不足,不能满足其经济发展的需要。从长远来看,全球已探明的石油储量只能用到2020年,天然气也只能延续到2040年左右,即使储量丰富的煤炭资源也只能维持二三百年。因此,如不尽早设法解决化石能源的替代能源,人类迟早将面临化石燃料枯竭的危机局面。 (2)环境污染:当前,由于燃烧煤、石油等化石燃料,每年有数十万吨硫等有害物质抛向天空,使大气环境遭到严重污染,直接影响居民的身体健康和生活质量;局部地区形成酸雨,严重污染水土。这

些问题最终将迫使人们改变能源结构,依靠利用太阳能等可再生洁净能源来解决。 (3)温室效应:化石能源的利用不仅造成环境污染,同时由于排放大量的温室气体而产生温室效应,引起全球气候变化。这一问题已提到全球的议事日程,其影响甚至已超过了对环境的污染,有关国际组织已召开多次会议,限制各国CO2等温室气体的排放量。 1.2 太阳能资源及其开发利用特点 (1)储量的“无限性” :太阳能是取之不尽的可再生能源,可利用量巨大。太阳每秒钟放射的能量大约是1.6×1023kW,其中到达地球的能量高达8×1013kW,相当于6×109t标准煤。按此计算,一年内到达地球表面的太阳能总量折合标准煤共约1.892×1013千亿t,是目前世界主要能源探明储量的一万倍。太阳的寿命至少尚有40亿年,相对于人类历史来说,太阳可源源不断供给地球的时间可以说是无限的。相对于常规能源的有限性,太阳能具有储量的“无限性”,取之不尽,用之不竭。这就决定了开发利用太阳能将是人类解决常规能源匮乏、枯竭的最有效途径。 (2)存在的普遍性:虽然由于纬度的不同、气候条件的差异造成了太阳能辐射的不均匀,但相对于其他能源来说,太阳能对于地球上绝大多数地区具有存在的普遍性,可就地取用。这就为常规能源缺乏的国家和地区解决能源问题提供了美好前景。 (3)利用的清洁性:太阳能像风能、潮汐能等洁净能源一样,其

风光互补路灯设计计算

风光互补路灯设计 一、技术要求及涉及因素: 问题一:所要架设路灯的路级标准(单道或双道、路长、路宽、照明亮度要求)。 问题二:所要架设路灯的地理位置(常年日光照射情况及日平均风速)。 问题三:路灯日使用情况(每日使用时间,采用节能的双开或三开),遇到阴雨天,系统可提供备用电力应用天数。 问题四:系统负载功率多大?输出电压和电流是直流还是交流? 问题五:系统负载情况,是电阻性、电容性、还是电感性?启动电流需要多大? 根据问题一,确定合理的路灯布置方式,包括单路灯照明范围和路灯间距,同时还可以确定路灯的最低照明标准瓦数。力求作到在照明达到理想要求的情况下少架设路 灯,以降低路灯照明系统成本。(需设计最少三套方案,进行成本比较)根据问题二,通过对所设路灯地理位置的年光照量和年风能储量考查,包括日均日照时间和日均风速,确定太阳能发电系统和风力发电系统的发电功率的分占百分比。 根据问题三,根据路灯日使用情况和路灯系统电能备用天数,确定蓄电池容量及风光发电系统的功率选择。 根据问题四及问题五:根据所需负载情况,确定风光发电系统附边设备的选型。 以上工作都作好后,根据风光发电系统的重量,进行灯杆的承重能力及抗几能力设计。 二、设计实例: 下面以河北省二级路增加设计速度60km/h一档后,路基宽为10.0m,路长为2km,每天工作时间为10小时,备用时间为5天为例,进行风光路灯设计。 (一)、河北省≥3 m/s的风速全年累积为4000~5000h,≥6m/s风速全年累积为3000h以上。年太阳辐射总量为5850-6680 MJ/m2,相当于日辐射量4.5-5.1KWh/m2。 得出结论,河北省是一个风能和太阳能储量很高的省份,即适合风力发电,又适合太阳能发电,因此将太阳能发电和风力发电得到的电能定为各50%。 采用截光型灯具,灯具支架长1.5米,实际照明有效宽度为8.5米,设计灯架高为10米,灯具距地面直线距离为9米,各路灯间距为25米,所需路灯总数为2000/25=80。采用单支75瓦LED路灯,24V系统,其平均亮度和亮度平均度、平均照度和照度平均度均高于标准要求。 (二)、太阳能发电系统设计 采用自带恒流、恒压、调功一体控制器降低系统功耗、降低组件成本。 (实际降低系统总损耗20%左右,以下以15%计算) 1、LED灯,单路、75W,24V系统。 2、当地日均有效光照以5h计算,采用追日系统可提高至6h。 3、每日放电时间10小时,(以晚7点-晨5点为例)通过控制器夜间 分时段调节LED灯的功率,降低总功耗,实际按每日放电7小时计算。 (例一:晚7点至11点100%功率,11点至凌晨5点为50%功率。合计:7h) (例二:7:00-10:30为100%,10:30-4:30为50%,4:30-5:00为100%)4、满足连续阴雨天4天(另加阴雨前一夜的用电,计5天)。 逆变后实际输出功率为原功率90%,故所需发电功率为83W。 电流=83W÷24V

风光互补路灯发电量计算及材料说明

太阳能板发电量: 根据北京是太阳能3类利用区,1KW太阳能电池可转得到4500MJ/Year,则150W太阳能电池可转换得到电量为: Q1 = 4500/365/3.6*0.8 = 0.411KWH 根据气象台统计的北京风能状况,每年风速高于3米/秒的时间超过3500小时,则平均一天风速高于3米/秒的时间超过9小时,全部以低估为3米/秒的风速情况来计算(风力发电机在3米/秒时功率为70W)。则一台风力发电机平均每天的发电量为: Q2 = 70*9*0.8 = 489WH = 0.504KWH 风光路灯配置的日均总发电量高于 0.9KWH . 可将方案中相应部分改成以上内容。下面是参考资料 他们要是有对风的时间分布不均匀的情况有异议,可向他们说明。这是风光互补系统,夏天太阳强发电量远高于计算值,冬天风强风机发电量也远高于计算值,并且我们的计算值都是取低值,考虑了安全系数。 路灯灯杆: 1、灯杆尺寸:选用8米高锥杆,锥杆底部直径180mm、锥杆顶部直径90mm。 2、灯杆内外采用热镀锌防腐蚀处理,防腐蚀年限≥ 30年,镀层厚度> 85um。杆表面再 进行彩色喷塑处理,涂层附着牢固,表面光滑。 3、灯杆焊接按照国标GB-50205《钢结构工程施工及验收规范》,焊接质量严格按照 GBJ205-83规程进行,无漏焊、断焊、咬边等缺陷。 灯罩:

高反光率低压纳灯专用灯罩。 低压钠灯及电子整流器: 1、低压钠灯采用菲利普SOX18WBY22D低压钠灯,其发光波长为589.0nm和589.6nm 的单色光,这两条黄色谱线的位置靠近人眼最灵敏的波长555 .0nm 。既具有高发光效率,又在人眼中不产生色差,因此视见分辨率高,对比度好,适用于道路等高能见度和显色性要求不高的地方。低压纳灯还具有不眩目,不会产生因环境气体的蚀化作用而引起灯具光学系统过早损坏的现象。 2、菲利普SOX18WBY22D低压钠灯工作寿命长达10000小时。发光效率可达200 lm /W 是电光源中光效最高的一种光源。 3、电子整流器为BESN铂胜低压钠灯电子镇流器,体积小,重量轻,自身损耗小(3%), 高功率因数99%,恒功率输出,高频点燃,无频闪,提高发光效率10%,延长灯管寿命 2.5倍。 风力发电机控制器 SW24400风/光互补控制器,采用微处理器和PWM脉宽调制充电方式,高效率地实现风能和太阳能对蓄电池的充电,同时,SW12400具备了完善的电池电压监控、控制器温度监控、手动停风机和充电指示等功能。 主要技术指标 路灯及太阳能控制器 本控制器采用两种工作模式:纯光控模式和光控+ 定时模式。两种模式的设定和控制通过路灯控制器的拨码来实现。具有对太阳能电池板和蓄电池提供多种保护,使系统更可靠的长久工作。

风光互补路灯设计计算

风光互补路灯设计计算 风光互补路灯设计 一、技术要求及涉及因素: 问题一:所要架设路灯的路级标准(单道或双道、路长、路宽、照明亮度要求)。 问题二:所要架设路灯的地理位置(常年日光照射情况及日平均风速)。 问题三:路灯日使用情况(每日使用时间,采用节能的双开或三开),遇到阴雨天,系 统可提供备用电力应用天数。 问题四:系统负载功率多大,输出电压和电流是直流还是交流, 问题五:系统负载情况,是电阻性、电容性、还是电感性,启动电流需要多大, 根据问题一,确定合理的路灯布置方式,包括单路灯照明范围和路灯间距,同时还可以 确定路灯的最低照明标准瓦数。力求作到在照明达到理想要求的情况下少架设路 灯,以降低路灯照明系统成本。(需设计最少三套方案,进行成本比较) 根据问题二,通过对所设路灯地理位置的年光照量和年风能储量考查,包括日均日照时 间和日均风速,确定太阳能发电系统和风力发电系统的发电功率的分占百分比。 根据问题三,根据路灯日使用情况和路灯系统电能备用天数,确定蓄电池容量及风光发 电系统的功率选择。

根据问题四及问题五:根据所需负载情况,确定风光发电系统附边设备的选型。 以上工作都作好后,根据风光发电系统的重量,进行灯杆的承重能力及抗几能力设计。 二、设计实例: 下面以河北省二级路增加设计速度60km,h一档后,路基宽为10.0m,路长为2km,每天工作时间为10小时,备用时间为5 天为例,进行风光路灯设计。 (一)、河北省?3 m,s的风速全年累积为 4000,5000h, ?6m,s风速全年累积为 3000h以上。年太阳辐射总量为5850-6680 MJ/m2,相当于日辐射量4.5- 5.1KWh/m2。 得出结论,河北省是一个风能和太阳能储量很高的省份,即适合风力发电,又适合 太阳能发电,因此将太阳能发电和风力发电得到的电能定为各50%。 采用截光型灯具,灯具支架长1.5米,实际照明有效宽度为8.5米,设计灯架高为10米,灯具距地面直线距离为9米,各路灯间距为25米,所需路灯总数为 2000/25=80。采用单支75瓦LED路灯,24V系统,其平均亮度和亮度平均度、平 均照度和照度平均度均高于标准要求。 (二)、太阳能发电系统设计 采用自带恒流、恒压、调功一体控制器降低系统功耗、降低组件成本。 (实际降低系统总损耗20,左右,以下以15,计算) 1、 LED灯,单路、75W,24V系统。

风光互补太阳能路灯设计原理

风光互补太阳能路灯设计原理 【返回】路灯,作为便民工程,也是耗电大户。在能源紧张的今天,风光互补路灯解决了这一难题,但风电互补路灯原理并不为人所知。其实风电互补路灯原理在国外早已普及,了解风电互补路灯原理才能更好的在国内将此项技术进行推广。 风光互补发电系统是一种风能和光能转化为电能的装置,风光互补路灯工作原理是利用自然风作为动力,风轮吸收风的能量,带动风力发电机旋转,把风能转变为电能,经过控制器的整流,稳压作用,把交流电转换为直流电,向蓄电池组充电并储存电能。利用光伏效应将太阳能直接转化为直流电,供负载使用或者贮存于蓄电池内备用。

风光互补型路灯结构由太阳能电池组件、风机、太阳能大功率LED、LPS灯具、光伏控制系统、风机控制系统、太阳能专用免维护蓄电池等部件组成,还包括太阳能电池组件支架、风机附件,灯杆,预埋件,蓄电池地埋箱等配件。 1 、风力发电机 风力发电机是将自然的风转换成电能的设施,将电能送到蓄电池中存储起来,它和太阳能电池板配合共同为路灯提供能源。根据光源的功率不同,使用的风力发电机的功率也不同,一般有200W、300W、400W、600W等。输出的电压也有12V、24V、36V等若干种。 2、太阳能电池板: 太阳能电池板是太阳能路灯中的核心部分,也是太阳能路灯中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送至蓄电池中存储起来。在众多太阳光电池中较普遍且较实用的有单晶硅太阳能电池、多晶硅太阳能电池及非晶硅太阳能电池等三种。在太阳光充足日照好的东西部地区 ,采用多晶硅太阳能电池为好,因为多晶硅太阳能电池生产工艺相对简单,价格比单晶低。在阴雨天比较多、阳光相对不是很充足的南方地区,采用单晶硅太阳能电池为好,因为单晶硅太阳能电池性能参数比较稳定。非晶硅太阳能电池在室外阳光不足的

风光互补路灯的设计__毕业设计

目录 摘要: (1) 一风光互补路灯概述 (2) (一)风光互补发电概述 (2) (二)风光互补路灯 (3) 1 风光互补路灯的组成及各部件的作用 (3) 2 风光互补路灯的特点 (4) 3 风光互补路灯的发展前景 (6) 4风光互补路灯的应用场景 (6) 二风光互补路灯的设计 (7) (一)风光互补路灯设计方案 (7) (二)风光互补路灯设计参数 (7) 1技术参数 (8) 2路灯设计 (8) 3安装要求 (9) 4注意事项 (11) 参考文献 (11) 致谢 (12)

风光互补路灯的设计 摘要:能源是人类社会存在与发展的物质基础。在过去的200多年中,建立在煤炭、石油和天然气等化石燃料基础上的能源体系极大地推动了人类社会的发展。与此同时,地球50万年历史积累下来有限的化石能源正在以惊人的速度被消耗。据有关资料显示,以目前全世界对能源的需求量和增长速度来看,地球上已探明的石油储备可维持40余年,天然气60余年,煤炭200余年。人们在物质生活和精神生活不断提高的同时,也越来越感觉到大规模使用化石燃料所带来的严重后果:资源日益枯竭,环境不断恶化,还诱发了不少国与国、地区之间的政治经济纠纷,甚至战争和冲突。因此人类必须寻求一种新的、清洁、安全、可靠的可持续能源系统。 在众多可再生能源中,风能和太阳能由于碳的零排放,是21世纪最被看好的可再生能源。风能、太阳能虽然有取之不尽、用之不竭,就地可取、无需运输,无环境污染等优点,但无论是风能发电系统还是光伏发电系统,都受到自然资源的制约;不仅在地域上差别迥异,而且随时间变化具有很强的随机性。根据风光的互补性,使用风光互不系统可以很好的解决发电系统的供电问题,实现连续、稳定的供电。 关键词:发电系统、控制系统、储存系统、照明系统

风光互补路灯整体改造方案

XX市城市道路照明节电改造建议方案 一.能源现状及以往路灯节能控制状况: 无论从世界还是从中国来看,常规能源都是很有限的,中国的常规能源储量远远低于世界的平均水平,大约只有世界总储量的10%。图1给出了世界和中国主要常规能源储量预测。 图1 世界和中国主要常规能源储量预测 从长远来看,可再生能源将是未来人类主要的能源来源,因此世界上多数发达国家和部分发展中国家都十分重视可再生能源在未来能源供应的重要作用。在新的可再生能源中,光伏发电和风力发电是发展最快的,也是各国竞相发展的重点。 随着XX市城市建设规模的不断发展,对于城市道路照明的要求越来越高,各种照明灯具的数量巨大,随之而来的是电费的日益高涨和电力能源的日趋紧张。从80年代末开始,照明节电技术研究就受到有关政府部门和厂商的高度重视。XX的路灯70%以上使用的都是高压钠灯,其设计寿命为24000小时(5年)。但是由于城市电网技术落后,造成线路的电压波动大致使电网中存留许多杂波,严重影响路灯灯泡的实际使用寿命。以

下是以往城市路灯控制方式及存在问题: (1)半夜灯隔盏亮控制方案 这种控制方式,采用特殊布线实现,但由于电力供应是三相线,而要实现 1/2 的功率控制,因此无论如何,都将导致电力变压器的三相严重不平衡。主要危害有:变压器寿命缩短,选型困难;功率总不能平衡,威胁电网安全;全半夜以及后半夜不平衡,导致灯具电压过高,灯具烧毁严重。 (2)传统电磁按时段换档控制方案 目前,市场上大部分照明节能产品,都采用传统电磁接触器换档技术,这种产品的主要缺点是: a)灯具寿命缩短。中途换档,由于接触器电流的切断,导致闪断故障 电力供应,冲击灯具,容易灭灯,烧灯,在节电率高的档位切换时,灭灯、烧灯,严重,线路末端过低,灯点燃困难。 b)容易烧毁。由于违背电磁基本原理,切换时,冲击电网,过压击穿 变压器绝缘,接触器触点啦弧,烧接触器,变压器燃烧。 c)浪费能源,耗用大量我国稀有的电解铜和矽钢。 (3)传统电磁固定降压控制方案 新的Hid 灯在额定电压下容易点燃,但一个或几个月后在低于额定电压以下时,点燃越来越困难。 电磁固定降压的缺点是:灯具的寿命大大缩短;由于固定降压,不需要高亮度照明的后半夜,由于电网电压升高,灯具反而更亮;灯具电压随电网电压波动而波动,没有稳压功能;由于耗用大量铜材和矽钢,被盗和破坏严重。以至于,负责的路灯部门(XX路灯处)坚决拒绝传统电磁

风光互补路灯项目

风光互补路灯项目 内蒙古自治区科技计划项目建议书 行) (试 项目名称: 推荐部门: 内蒙古自治区科学技术厅制 二ΟΟ二年七月 1 概况 一、基本信息 风光互补路灯试验示范项目名称 承担单位阿左旗光明工程公司 4?1、信息2自动化3、材料4、能源5、交通电力所属技术领域 6、农业7、畜牧业8、资源9、环保10、生物医药 11、社会公益12、其它 1?1、攻关2、推广3、星火4、火炬5、软科学6、申报项目类别科技合作7、专利实施8、园区基地9、盟市能力 建设等 常规风力发电均由两片或三片风叶构成基本 发电原理,每分钟转速在400至500转左右,其噪 音大、离心力危险性更大。缩短风轮直径、改变受主要研究内容风面扭距、增加顺片数量、降低噪音、提高安全性,(100字以内) 确保市政照明工程大面积应用。

1、根据市场需要,设计出适合市政、乡镇、道路 用的风光互补太阳能路灯。 2、采用缩短直径、增加叶片、改变扭距、降低噪主要技术经济指音、保证安全及输出功率。标(100字以内) 3、解决纯光伏造价高、连续阴天短的不利因素。 4、比较光伏、风能、风光互补三咱配置,在性价 比和资源利用率等方面的优劣与差别。 该项目的技术创新点是解决市政道路亮化工 程中的风光互补问题,重点是研究解决降低风转旋创新点及可能获转过程中,所形成的高分倍噪音和离心力造成叶片得的成果和知识断裂及飞车后叶片伤人事故。 产权知识产权归阿左旗光明工程有限责任公司享 有。 经费概算(万元) 总投资申请拨款 完成年限一年申报日期 2008年 2 一、项目概述 ,一,项目提出的北景、意义及必要性 太阳能路灯做为市政建设的替代型产品~现已形成重点发展和大面积推广的节能环保型灯具~更由于其替代性~节约性和较强的环保性~已成为国家重点提倡和发展的可再生能源应用型产品。但市政与住宅规划都有其秒利的一南~即:街道东西向的阴面、住宅小区的北面~都已成为太阳能路灯、景观灯、草坪灯的死角。而目前已上市的风光互补太阳能路灯~又没有解决小型风力发电机,100W-300W,转速形成的较大噪音和离心力造成的叶片断裂或脱落问题。

太阳能路灯设计说明

贵安新区车田村入村道路工程 徐州市市政设计院1 二、设计范围 1、路灯位置布置。 2、风光路灯互补配置。 3、路灯防雷设计。 4、路灯抗风设计 三、风光互补路灯的配置方案及控制系统 1、路面形式:本次道路照明设计全长约XXXXm ,路宽XXXXm ,两侧绿化带各 宽2.5m ,2侧人行道各宽3m ,车行道宽15m 。 2、自然条件:本地区平均年日照时间 2.84h ,经纬度北纬26.35,东京106.42 3、照明方式:根据贵阳的自然条件及村镇道路对照明上的需求选择太阳能型 路灯,光源选LED ,照明系统每天工作8.5小时。 4、布置方式:本次设计路双侧对称布置于绿化带内,距道路中心线8m ,灯 杆间距25m ,特殊路段可作适当调整,灯杆10m ,灯高8m ,悬挑1.5m ~2m 。 5、灯具:灯具结构均为一体化LED 光源,压铸铝壳及钢化玻璃透光罩,灯罩 防护等级IP ≤65,维护系数0.6。 6、灯杆:采用优质Q235经模压成型,灯杆表面热镀锌处理后表面聚酯粉体 涂装(白色),灯杆壁厚≥4mm 。 7、太阳能电池组件:单晶硅电池组件360W(60X6),铅酸蓄电池100AHx2(24V )、 路灯输出电压24V ,太阳能电池板为6块串并联,顶3块,下3块。 8、安装角度:太阳能电池板与地平线最佳倾斜角+8度,正南偏西5度,厂 家需根据现场条件复合确定。 9、光源LED 功率消耗:120x1W 系统功耗约140W ,光通量约为10800lm 。 10、风光互补系统控制器:具有过充、过放、电子短路、过载保护、防反接保护、雷电保护、短路保护、显示电池容量、智能化温度补偿,负载开机恢复设置、光控输出设置功能。四、抗风设计 1、太阳能组件:厂家应保证能受当地的风速而不致于损坏,电池组件支架与灯杆的连接,应使用灯杆螺栓固定连接。 2、灯杆和基础:路灯灯杆和基础的抗风设计与电池板的高度、面积、倾角及灯杆结构、当地最大风速有关。由灯杆厂家进行计算和设计,保证最大风速时太阳能路灯的稳定性。五、防雷设计 1、安全电压:本次设计太阳能路灯为DC24V,属安全电压,不做电气保护接地。 2、防雷接地:(1)不可用路灯、太阳能电池板作为接闪器;(2)用金属灯柱兼作接闪器和引下线;(3)路灯基础钢筋笼在-0.50m 以下其钢筋表面积大于0.37m 时,可作为防雷接地体。否则应增加人工接地极,接地电阻≤10Ω,必要时将接地体连接;接地同一般路灯。(4)在路灯控制器内设置TVS (瞬时电压抑制)防雷保护。六、其它 1、说明中与图纸如有不符之处,应以有关施工图为准。 2、所有电气设备应选用国家现行的技术的先进产品,不得采用国家明令淘汰的产品。 3、施工图中所附的路灯立面图仅为参考,具体样式可由建设单位确定,本次

风光互补太阳能路灯的设计(doc 53页)

风光互补太阳能路灯的设计 摘要 随着世界能源危机的加剧,世界各国都从两条道路寻找解决能源危机的办法,即:一条是寻求新能源和可再生能源的利用;另外一条就是寻求新的节能技术,提高能源的利用效率。风能作为一种绿色能源,己经成为一种新兴的能源形式,同时太阳能因诸多优势也得到广泛的应用,但两者每天的发电量受天气的影响很大。由于太阳能与风能互补性强,如何充分发挥两者的优势,构造风光互补的新型能源系统有很好的理论及实际意义。 本文对风光互补发电系统进行了设计,系统采用交流母线结构,可以随意扩容,方便其它设备接入。论文主要对风光互补发电系统结构组成、控制器、逆变器、并网控制等进行了设计和研究分析。 论文首先论述了风光互补发电系统的结构组成。重点设计了太阳能光伏发电系统。该系统主要包括DC-DC变换及并网逆变电路.。DC-DC变换采用推挽电路,结构简单,开关管功耗小。DC—DC模块将太阳能电池50V左右的直流转换为400V直流,同时完成最大功率点(MPPT)跟踪。论文详细分析了最大功率点跟踪原理及其分类,采用具有明显优势的电导增量法实现了该功能。论文还对逆变器的构成及并网控制方法作了分析研究。经过比较,逆变器采用单相桥式电路,IGBT为主开关器件。并网控制的关键是控制逆变器输出的电流,使其与电网电压同频、同相。文中介绍了逆变器的工作原理,阐述了并网逆变器的软件实现流程图,分析了同步的关键技术——软件锁相环SPLL技术。 关键词:风光互补发电系统,并网逆变器,最大功率跟踪。

Wind Solar Street Light Design Abstract The wind energy was called a green energy,it through become a newly arisen and important form,at the same time solar energy having many advantages.Also suffer people thoughtful of,but generating electricity of everyday measure to is influence by the wemher very strong.Because the solar energy and breeze Can be repaired with each other strongly,the pVowind energy system was used.It improved the single system,SO have good theories and actual meaning. The PV-wind hybrid system is designed in the thesis.This system used AC bus.It i s permi ted to enlarge system as one’S pleases,and Can connect the other equipment convenience.The thesis also design and analyse the composition of the PV-Wind Energy system,and the controller,inverter and grid—connected control.First,the thesis discussed the construction of PV-wind hybrid system.It put great emphasis on designing solar energy system.The solar energy system use TMS3 20F240 DSP of TI company to control.It concluded DC—DC convertor and grid—connected inverter.The DC-DC mold use Push—Pull converter which has simply construction and small on—off power exhaust.The DC/DC mold changes the solar cell voltage from 50V to 400V,and complete the task of Maxi mum Power Point Tracking(MPPT).The thesis analyse the principle and classification of MPPT in detail,use Conductance Increment Method of MPPT.This thesis discuss the structure of the grid-connected inverter,research the method of controlling.After comparing,the single-phase bridge circuit was used.The IGBT was used in circuit.The key point of the grid—connected inverter is to control the output current to synchronize the utility.After introducing the principle of inverter,the relevant design schema and flow

风光互补路灯设计实例与配置方案

风光互补路灯应用设计实例与典型配置方案 一、任务导入 风光互补路灯的技术优势在于利用了太阳能和风能在时间上和地域上的互补性,使风光互补发电系统在资源上具有最佳的匹配性。风光互补路灯控制系统还可以根据用户的用电负荷情况和当地资源进行系统容量的合理配置,既可保证系统供电的可靠性,又可降低路灯系统的造价。风光互补路灯系统可依据使用地的环境资源做出最优化的系统设计方案来满足用户的要求。因此,风光互补路灯系统可以说是最合理的独立电源的照明系统。这种合理性既表现在资源配置上,又体现在技术方案和性能价格上,正是这种合理性保证了风光互补路灯系统的可靠性。从而为它的应用奠定了坚实的基础。 二、相关知识 学习情境1风光互补路灯 (一)风光互补路灯的技术特点 风光互补路灯主要为夜间照明使用,采用两种工作模式:纯光控模式和光控+定时模式。两种模式的设定和控制是通过路灯控制器的拨码来实现的,并且风光互补路灯控制系统对风力发电机、太阳能电池组件和蓄电池提供多种保护,使系统可以更可靠的稳定工作。 风光互补路灯使用方便,实现无人值守,免解缆;低风速启动,合理吸收风能和光能,大风切出保护系统使整个系统更加安全可靠,大大减少太阳能电池组件的配比,降低了灯具的设计成本,可以收到良好的社会效益和经济效益。 小功率风力发电机组的风力机体积小、质量小而且发电效率高。风力发电机独特的电磁设计技术使其具有低的启动阻力矩。按照风能公式,风中可用能量是风速的3次方。这表示风速提高1倍时,风能将提高8倍。一般风力发电机组的效率通常是线性的,因此无法利用风力的3次方效益。发电机只在沿能量曲线上的1点或2点有效率。通过改进风力机组的效率曲线,使其符合风中可用能量的分布,使它沿整个曲线都有效率。 (二)风光互补路灯的构成 风光互补路灯具备了风能和太阳能产品的双重优点,没有风能的时候可以通过太阳能电池组件来发电并储存在蓄电池中,有风能没有光能的时候可以通过风力发电机来发电并储存在蓄电池中。风光都具备时,可以同时发电。在白天可以利用太阳光和风力资源发电,晚上利用风力发电机发电,弥补了风能供电或太阳能供电的单一性,使供电系统更具稳定性和可靠性。风光互补路灯开关无须人工操作,由智能时控器自动感应天空亮度进行控制。 风光互补路灯的结构图如图3 -53所示。风光互补路灯由风力发动机、太阳能电池板(含支架)、控制器、蓄电池、光源和灯杆组成。如果光源的额定电压为交流220V或110V,则需配置逆变器。

风光互补路灯项目实施建议书

风光互补路灯项目建议书 -

; 目录 一、前言 二、我国路灯照明现状及节能的必要性 三、我公司风光互补路灯的简介 四、风力发电机的技术参数 五、某市路灯使用状况及新能源路灯建设意义— 六、某市建设新能源路灯的条件 七、国外新能源路灯应用普及情况调研 八、某市适合推广新能源路灯的地区 九、适合某使用的新能源路灯类型

十、节能及环保效果分析 十一、某市安装新能源路灯将产生效果分析 " 一、前言 主席在亚太经合组织第14次领导人非正式会议上强调,“面对日益严峻的环境问题,我们应该提高清洁能源比重,重视环保技术研究应用,实现经济与能源、环境协调发展”。目前,全球的环境在日益恶化,各国都在发展清洁能源。而我国近20年的经济高速发展,电力供应一直跟不上,同时,大量的火力发电厂也造成环境的污染,路灯照明又是我国用电的大项目,国家有关部门做过一项专项调查,我国照明用电每年在3000亿度以上,而路灯照明耗电占30%。另外,我国有丰富的风能及太阳能资源,路灯作为户外装置,两者的结合做成风光互补路灯,无疑给国家的节能减排提供了一个很好的解决方案,我公司正是在这个前提下与美国科学家合作,开发了有独立知识产权的风光互补路灯。

二、我国路灯照明现状及节能的必要性 路灯照明现状 据调查,各地城市道路照明每天的平均时间为小时,其中,晚上22点后,道路上车少人稀,即便是繁华街道,午夜24点至清晨6点,也罕见行人和车辆。我国小型城市在夜晚9点后,大中城市在午夜12点后,道路上几乎空无一人,即便是、、这样的繁华都市,凌晨2点以后,道路上也已罕见行人、车辆。毫无疑问,在低交通流量上的道路上仍然保持原照明的亮度,不能按需调控照明亮度,显然是白白的耗费能源和费用。从光源来看,现有的路灯大多使用的是高压钠灯,其设计寿命虽为20000小时(4~5年),但由于电压波动影响,实际使用寿命远达不到此数,而我国许多地区的电网波动严重,有些地区甚至超过额定电压的15%,特别在后半夜,由于电负荷减少使得电网电压有时接近237V—245V,致使路灯灯泡的实际使用寿命大大缩短,一般不到一年。更换灯具的劳动工作量大,而且容易发生危险和工伤事件,造成维护费用居高不下。城市公共照明在我国照明耗电中占30%的比例,约439亿kWh,以平均电价0.65元/kWh计算,一年开支285亿元。在市政开支极度紧的今天,国绝大部分的城市和地区几乎不约而同地采用了日本等国家在七十年代就抛弃了的路灯隔盏关灯的省钱方法,其中的弊病不

风光互补系统设计

目录 摘要 (1) ABSTRACT (2) 1前言 (3) 1.1可再生能源开发应用 (3) 1.2风能资源现状 (3) 1.3太阳能资源现状 (3) 1.4风光互补供电系统的优势 (4) 1.5存在问题 (4) 1.6主要内容 (4) 2风光互补发电原理 (5) 2.1风光互补发电系统结构 (5) 2.1.1发电部分 (5) 2.1.2控制部分 (7) 2.1.3储能部分 (7) 2.1.4逆变部分 (8) 2.1.5风光互补发电系统智能充电控制的设计 (8) 2.1.6用电负载 (9) 3工程概况 (12) 3.1风能资源 (12) 3.2太阳能资源 (12) 3.3气象数据 (13) 4风光互补路灯的设计 (14) 4.1路灯灯源的选择 (14) 4.1.1 高压钠灯与 LED 对比分析 (14) 4.1.2光源性能对比分析 (14) 4.1.3光源电气特性比较 (14) 4.1.4 光源对比分析结论 (15) 4.2道路照明方式 (15) 4.3路灯分布方式 (16) 4.4道路的有效宽度计算 (17) 4.5路灯的安装高度与间距 (17) 4.6道路照明照度设计计算 (17) 4.6.1利用系数法 (17) 4.6.2道路的光通量计算 (18) 4.6.3 道路照明光源设计 (18) 4.7设计要求 (18) 4.8 蓄电池的容量的确定 (19) 4.9太阳能电池板发电能力测算及计算 (19) 4.10风力发电机组发电能力的测算 (20) 4.11风光互补路灯系统控制器 (21) 4.12防雷击配置 (22)

4.13小结 (22) 5楼顶风光互补发电系统设计 (23) 5.1设计要求 (23) 5.2蓄电池容量的确定 (23) 5.3发电机型号选择 (23) 5.4太阳能电池组件的选择 (24) 5.5太阳能电池阵列的安装 (24) 6结论 (26) 参考文献 (27) 致谢........................................................................................................................... 错误!未定义书签。

相关主题
文本预览
相关文档 最新文档