当前位置:文档之家› 无线物理层安全通信中的波束成形技术研究

无线物理层安全通信中的波束成形技术研究

无线物理层安全通信中的波束成形技术研究
无线物理层安全通信中的波束成形技术研究

无线物理层安全通信中的波束成形技术研究物理层安全技术利用无线信道特征来实现安全通信,有效克服了传统安全技术依赖于窃听者有限能力的缺陷。随着多天线系统的快速发展和应用,基于多输入多输出(Multiple Input Multiple Output,MIMO)波束成形的物理层安全传输技术能够充分利用空间自由度来开发合法信道和窃听信道的差异性,同时满足了无线通信的可靠性和安全性需求,因而成为当前无线通信领域的研究热点。

其中,保密容量之外的安全目标下的低复杂度波束成形算法、适用于不同误差模型下鲁棒性更强的波束成形算法以及有限反馈波束成形算法的保密性能分析等成为了物理层安全研究中的关键和难点问题。本文围绕这些问题在合法信道和窃听信道不同信道状态信息(Channel State Information,CSI)情况下进行了研究。

本文首先从理想CSI情况下的波束成形设计出发,针对多用户多天线高斯窃听信道(Multi-antenna Gaussian Multi-Receiver Wiretap Channel,MG-MRWC)模型中保密容量难以计算和用户间干扰(Inter-User Interference,IUI)导致信号交叉的问题,研究了保密和速率最大化和信干噪比

(Signal-to-Interference-plus-Noise Ratio,SINR)平衡两个问题,提出了以迫零(Zero Forcing,ZF)和信漏噪比(Signal-to-Leakage-and-Noise Ratio,SLNR)为基本准则的波束成形算法。为了验证SLNR准则度量保密性能的有效性,以多输入单输出多天线窃听(Multiple-Input Single-Output Multi-antenna Eavesdropper,MISOME)系统为例,本文从信号泄漏的角度定量分析了不同天线数目情况下SLNR波束成形算法的保密性能。

在此基础上,针对MG-MRWC模型的最大化保密和速率问题,本文提出了第I

类ZF(ZF-I)、第II类ZF(ZF-II)和加强信漏噪比(Enhanced SLNR,E-SLNR)波束成形算法。与两种ZF波束成形算法相比,统一考虑了IUI和窃听者信号泄漏影响的E-SLNR波束成形算法不仅不受限于天线数目,而且以更低的计算复杂度获得了最佳的保密性能。

针对MG-MRWC模型的SINR平衡问题,为获得计算复杂度和保密性能的最佳折中,本文提出了迫零SINR和修改SLNR(Modified SLNR,M-SLNR)波束成形算法。经典半定松弛(Semidefinite Relaxation,SDR)波束成形算法由于随机化处理而导致高计算复杂度。

迫零SINR波束成形算法由于需要限定窃听者的信号泄漏为零从而影响了保密性能。M-SLNR波束成形算法可以根据窃听者的SINR要求进行双模式选择:基于等功率分配(Equal Power Allocation,EPA)的E-SLNR算法可以满足窃听者的低SINR要求,而基于窃听者SINR要求的充分条件为约束的波束成形算法可以满足窃听者的高SINR要求。

仿真结果表明M-SLNR波束成形算法能够以较低的计算复杂度获得较好的保密性能。随后本文针对多输入单输出单天线窃听(Multiple-Input

Single-Output Single-antenna Eavesdropper,MISOSE)模型中合法信道和窃听信道CSI都存在误差的情况,提出了人工噪声辅助的鲁棒波束成形算法,克服了由于误差CSI所导致的保密性能下降的问题。

已有的研究成果表明,在仅有窃听信道CSI存在误差的情况下,人工噪声有助于提高波束成形算法的鲁棒性。然而,在合法信道和窃听信道CSI都存在误差的情况下,人工噪声策略却没有得到充分应用。

基于确定误差模型,本文提出了基于最差性能的鲁棒波束成形算法,解决了

最差性能的保密速率最大化(Worst-Case Secrecy Rate Maximization,WC-SRM)问题。该算法将初始NP-hard(Non-deterministic Polynomial hard)问题转化

为一个联合半定规划(Semidefinite Program,SDP)和单变量优化的问题,进而能够有效求解。

此外,基于随机误差模型,本文研究了中断概率的保密速率最大化

(Outage-Probability Secrecy Rate Maximization,OP-SRM)问题,提出了基于中断性能的鲁棒波束成形算法。该算法利用随机误差模型和确定误差模型之间的数学关系,将OP-SRM问题转化为WC-SRM问题进行求解。

进一步,基于随机误差模型,本文研究了平均保密速率最大化(Average Secrecy Rate Maximization,A-SRM)问题,提出了基于平均性能的鲁棒波束成形算法,并证明了该算法的输入信号协方差矩阵的秩为一。仿真结果及分析在验证以上所提出的三种波束成形算法有效性的同时,也表明了人工噪声的发送功率与合法信道和窃听信道CSI的误差程度密切相关。

当合法信道CSI误差越大时,使用人工噪声就越要谨慎;当窃听信道CSI误差越大时,需要分配给人工噪声的发送功率就越多。其次,本文针对统计窃听信道信息情况下的多天线高斯窃听信道(Multi-antenna Gaussian Wiretap

Channel,MGWC)模型,首先以最小化总发送功率为目标设计了有用信号和人工噪

声之间的功率分配鲁棒算法,然后分析了有限反馈波束成形算法的可达保密速率。

在MISOSE和多输入多输出多窃听(Multiple-Input Multiple-Output

Multi-antenna Eavesdropper,MIMOME)两种模型中,分别针对合法信道CSI存在确定误差和随机误差的情况进行了鲁棒发送设计。在确定误差模型下,本文提出的算法能够对抗合法信道CSI误差的影响。

在随机误差模型下,本文提出了两种鲁棒算法。其中一种利用随机误差模型与确定误差模型之间的数学关系将概率约束问题转化为确定约束问题进行求解,该算法能获得问题的次优解;另一种利用马尔可夫不等式将概率约束问题转化为平均约束问题,该算法获得了平均性能的同时保证了较低的计算复杂度。

针对MISOME模型,本文推导了有限反馈波束成形算法的保密性能表达式,并提出了一种新的反馈策略。当信道增益超过固定门限值时,合法接收者反馈最佳波束成形向量的索引和保密速率给发送端;否则,合法接收者只需要通知发送端保持静默状态。

该策略虽然降低了系统的总吞吐量,但是保证了安全传输而且降低了反馈开销。通过对有限反馈波束成形算法保密性能的渐近分析,本文研究了天线数目、有限反馈数目和信噪比(Signal-to-Noise Ratio,SNR)增益等因素对保密性能的影响,从而获得了保密速率为正的条件以及保证固定性能损失所需要的反馈比特数目。

本文最后研究了MG-MRWC模型中盲窃听信道信息下的波束成形设计问题,提出了一种确定误差约束下的鲁棒波束成形算法。与其它误差模型下的鲁棒设计相比,确定误差模型下基于最差性能的鲁棒设计虽然略为保守,但是凭借其问题求解的可行性和性能的确定性受到了普遍的关注。

由于未知窃听信道的任何信息,本文建立了发送功率最小化(Power Minimization,PM)问题。该问题在固定总发送功率的前提下,满足合法接收者的均方误差(Mean Square Error,MSE)约束条件的同时使得有用信号的发送功率最小,从而最大限度地使用剩余发送功率等方向地发送人工噪声。

针对PM问题,本文提出了收发机联合设计的鲁棒波束成形算法。该算法利用

交替迭代优化方法将问题转化为两个SDP问题,从而利用高效的内点算法进行求解。

仿真结果验证了算法的有效性和收敛性。

波束成形

第四章智能天线自适应波束成形算法简介 4.1 引言 智能天线技术作为一种新的空间资源利用技术,自20世纪90年代初由一些学者提出后,近年来在无线通信领域受到了人们的广泛关注。它是在微波技术、自动控制理论、数字信号处理(DSP)技术和软件无线电技术等多学科基础上综合发展而成的一门新技术。智能天线技术从实质上讲是利用不同信号在空间上的差异,对信号进行空间上的处理。与FDMA,TDMA及CDMA相对应,智能天线技术可以认为是一种空分多址SDMA技术,它使通信资源不再局限于时域、频域和码域,而是拓展到了空间域。它能够在相同时隙、相同频率和相同地址码情况下,根据用户信号在空域上的差异来区分不同的用户。智能天线技术与其它通信技术有机相结合,可以增加移动通信系统的容量,改善系统的通信质量,增大系统的覆盖范围以及提供高数据率传输服务等。 4.2 智能天线技术及其优点 智能天线,即具有一定程度智能性的自适应天线阵,自适应天线阵能够在干扰方向未知的情况下,自动调节阵列中各个阵元的信号加权值的大小,使阵列天线方向图的零点对准干扰方向而抑制干扰,增强系统有用信号的检测能力,优化天线方向图,并能有效地跟踪有用信号,抑制和消除干扰及噪声,即使在干扰和信号同频率的情况下,也能成功地抑制干扰。如果天线的阵元数增加,还可以增加零点数来同时抑制不同方向上的几个干扰源。实际干扰抑制的效果,一般可达25--30dB以上。智能天线以多个高增益的动态窄波束分别跟踪多个移动用户,同时抑制来自窄波束以外的干扰信号和噪声,使系统处于最佳的工作状态。 智能天线利用空域自适应滤波原理,依靠阵列信号处理和数字波束形成技术发展起来,它主要包括两个重要组成部分,一是对来自移动台发射的多径电波方向进行到达角(DOA)估计,并进行空间滤波,抑制其它移动台的干扰;二是对基站发送信号进行数字波束形成,使基站发送信号能够沿着移动电波的到达方向发送回移动台,从而降低发射功率,减少对其它移动台的干扰。在普遍采用扩频技术的CDMA系统中,采用智能天线的优势主要体现在以下几个方面: 1) 提高了基站接收机的灵敏度 基站接收到的信号,是来自各天线单元和收信机接收到的信号之和,如果采

认识快速成型技术

教学难点与重点: 难点: 《产品逆向工程技术》教案 共 页 第 页 授课教师: 教研室: 备课日期: 年 月 日 课 题: 教 学 准 备: 教学目的与要求: 授 课 方 式: 项目四 快速成型技术认识 任务一 认识快速成型技术 PPT 掌握快速成型技术的原理、工作流程和特点。 讲授(90') 重点:快速成型技术的原理、工作流程和特点。 教 学 过 程: 上节课回顾→讲授课题→课堂小结

“ “ 张家界航院教案 第 页 上节课回顾: 讲授课题: 项目四 快速成型技术认识 通过前面的几节课我们学习了什么是逆向工程。通过逆向工程技术, 企业可以迅速的设计出符合当前流行趋势,以及符合人们消费需求的产品, 快速抢占市场。市场这块蛋糕就那么大,谁先抢到谁先吃,后来的就只能 看别人吃。现在的企业发展战略已经从以前的“如何做的更多、更好、更 便宜”转变成了“如何做的更快”。所以快速的响应市场需求,已经是制 造业发展的必经之路。 但是一件产品是不是设计出来就完事了?从设计到产品,中间还有一 个制造的过程,逆向工程解决了快速设计的问题,但是如果在制造加工阶 段耗费太长的时间,最后依然是无法快速的响应市场。尤其是在加工复杂 薄壁零件的时候,往往加工一件零件的周期要好几周,甚至几个月才能完 成,比如飞机发动机上的涡轮,加工周期要 90 天。 怎么解决这个问题呢?这就要用到今天我们这节课要讲的内容:快速 成型技术。快速成型技术就是在这种背景需求下发展起来的一种新型数字 化制造技术,利用这项技术可以快速的将设计思想转化为具有结构和功能 的原型或者是直接制造出零部件,以便可以对设计的产品进行快速评价、 修改。按照以往的技术,在生产一件样品的时候,要么开模、要么通过复 杂的机加工艺来生产,这样不管是从成本的角度还是时间的角度来讲,都 会带来成本的提高。而快速成型技术可以极大地缩短新产品的开发周期, 降低开发成本,最大程度避免产品研发失败的风险,提高了企业的竞争力。 任务一 认识快速成型技术 快速成型技术(Rapid Prototype ,简称 RP)有许多不同的叫法,比如 “3D 打印”( 3D printing)、分层制造”( layered manufacturing ,LM) 、增材制 造”( additive manufacturing ,AM) 等。同学们最熟悉的应该就是“3D 打 印”,其实刚开始的时候,3D 打印本是特指一种采用喷墨打印头的快速成 型技术,演变至今,3D 打印成了所有快速成型技术的通俗叫法,但是现在 在学术界被统一称为“增材制造”。 增材制造是一种能够不使用任何工具(模具、各种机床),直接从三 维模型快速地制作产品物理原型也就是样件的技术,可以使设计者在产品 的设计过程中很少甚至不需要考虑制造工艺技术的问题。使用传统机加的 方法来加工零件时,在设计阶段设计师就需要考虑到零件的工艺性,是不 是能够加工出来。对于快速成型技术来讲,任意复杂的结构都可以利用它 的三维设计数据快速而精确的制造出来,解决了许多过去难以制造的复杂 结构零件的成型问题,实现了“自由设计,快速制造”。 一、物体成型的方式 之所以叫“增材制造”很好理解就是通过“堆积”材料的方式进行制 造。与之相应的还有“减材制造”和“等材制造”。在现代成型学的观点 中,物体的成型方式可分以下几类:

网络安全简答题

网络安全简答题精选 一、简答题 1、简述物理安全包括那些内容? 防盗,防火,防静电,防雷击和防电磁泄漏 2、简述防火墙有哪些基本功能?(写出五个功能) 建立一个集中的监视点 隔绝内外网络,保护内部网络 强化网络安全策略 对网络存取和访问进行监控和审计 实现网络地址转换 3、简述无线局域网由那些硬件组成? 无线局域网由无线网卡、AP、无线网桥、计算机和有关设备组成。 4、简述网络安全的层次体系 从层次体系上,可以将网络安全分成四个层次上的安全:物理、逻辑、操作系统和联网安全 5、简述TCP/IP协议族的基本结构 ?TCP/IP协议族是一个四层协议系统,自底而上分别是数据链路层、网络层、传输层和应用层。 6、简述网络扫描的分类及每类的特点 扫描,一般分成两种策略:一种是主动式策略,另一种是被动式策略。 被动式策略是基于主机之上,对系统中不合适的设置、脆弱的口令及其他同安全规则抵触的对象进行检查,不会对系统造成破坏。 主动式策略是基于网络的,它通过执行一些脚本文件模拟对系统进行攻击的行为并记录系统的反应,从而发现其中的漏洞,但是可能会对系统造成破坏。 7、简述常用的网络攻击手段 网络监听、病毒及密码攻击、欺骗攻击 拒绝服务攻击、应用层攻击、缓冲区溢出 8、简述后门和木马的概念并说明两者的区别

木马(Trojan),也称木马病毒,是指通过特定的程序木马程序来控制另一台计算机 后门:是绕过安全性控制而获取对程序或系统访问权的方法 本质上,木马和后门都是提供网络后门的功能,但是木马的功能稍微强大一些,一般还有远程控制的功能,后门程序则功能比较单一,只是提供客户端能够登录对方的主机 9、简述恶意代码的概念及长期存在的原因 恶意代码是一种程序,它通过把代码在不被察觉的情况下镶嵌到另一段程序中,从而达到破坏被感染电脑数据、运行具有入侵性或破坏性的程序、破坏被感染电脑数据的安全性和完整性的目的。 原因:在信息系统的层次结构中,包括从底层的操作系统到上层的网络应用在内的各个层次都存在着许多不可避免的安全问题和安全脆弱性。而这些安全脆弱性的不可避免,直接导致了恶意代码的必然存在。 10、简述安全操作系统的机制 安全操作系统的机制包括:硬件安全机制,操作系统的安全标识与鉴别,访问控制、最小特权管理、可信通路和安全审计。 11、简述密码学除机密性外还需提供的功能 鉴别、完整性、抗抵赖性 鉴别:消息的接收者应该能够确认消息的来源;入侵者不可能伪装成他人。 完整性:消息的接收者应该能够验证在传送过程中消息没有被修改;入侵者不可能用假消息代替合法消息。 抗抵赖性:发送者事后不可能虚假地否认他发送的消息。 12、简述入侵检测系统的概念及常用的3种入侵检测方法 入侵检测系统:是能够对入侵异常行为自动进行检测、监控和分析的软件与硬件的组合系统,是一种自动监测信息系统内、外入侵的安全设备 常用的方法有3种:静态配置分析、异常性检测方法,基于行为的检测方法和文件完整性检查。 13、简述网络安全框架包含的内容 网络安全策略 网络安全策略和标准 网络安全运作

无线通信系统中基于物理层安全的安全通信

无线通信系统中基于物理层安全的安全通信由于无线媒质的开放性与广播性,使得恶意用户可以截获在无线媒介中传送的信息,从而对无线通信的安全性带来很大的挑战。无线通信系统中基于物理层的安全着眼于OSI模型的物理层,利用无线通信理论、信息处理、随机处理、博弈论及信息论等领域的知识来解决这一问题,通过对物理层通信进行了适当的设计,提高或增进网络的安全性能。 基于物理层的安全方法一般利用了无线媒质的特征,比如信道衰落、信号干扰、多节点合作以及多维信息发送等。基于无线通信物理层的安全问题是当前无线通信中的研究热点之一,尽管文献中已经有了众多的研究成果,但无线通信中的安全问题仍然存在许多亟需解决的问题。 在本论文中,我们将主要从信息论的角度研究无线网络的安全问题,力图进一步提高无线通信的安全性。本论文的主要创新点如下:1.针对无线广播信道经历瑞利衰落的情形,分析了全双工系统的安全性能,理论推导出了非零安全容量和安全中断概率的闭式解。 理论分析结果以及仿真结果都表明,如果具有全双工功能的接收机在接收信号的同时可以发送一个辅助的人工噪声,那么与仅发送端发送人工噪声的情形相比,系统的安全等级可以得到提高。即便对于窃听节点距离信息源非常近,合法接收机距离信息源较远的情形,依然可以达到安全传输的效果。 2.针对蜂窝通信系统,论文提出了一种利用保护节点提高安全性的方法。该方法通过部署一些保护节点来防止窃听者截获合法发送端和接收端之间传送的信息。 这些保护节点专门发送额外的人工噪声来使窃听信道的质量恶化。论文中同

时考虑了上行通信和下行通信的情形。 结果表明,采用这种方法可以实现蜂窝系统的安全性和健壮性。3.为了改善中继系统的安全性能,提出了一种改进的次优干扰方案。 在此方案中,信噪比最好的中继节点转发信息,信噪比最差的中继节点发送干扰信号,并且仅当这两个信道满足一定条件时发送机密信息,否则发送普通信息。仿真结果表明,由于机密信息仅在对合法接收机有利的情形下传输,这使得窃听者获取发送信息的难度加大,从而使系统的安全性得以提高。 4.为了改善点到点双向通信中信息被截获的概率,提出了一种基于随机线性编码的安全传输方案。在此方案中,随机线性编码的生成多项式由接收方控制,编码的构造方式使得窃听者除非完整截获双向通信的所有数据,否则无法破解发送端发送的任何一个数据包。 因此,通过加长编码长度,或者降低发送功率,就可以使窃听者破解机密消息的截获概率变得非常低。

无线通信中物理层安全问题及其解决方案

无线通信中物理层安全问题及其解决方 案 篇一:无线通信系统物理层的传输方案设计 (无线局域网场景) 一、PBL问题二: 试设计一个完整的无线通信系统物理层的传输方案,要求满足以下指标: 1. Data rate :54Mbps, Pe 3. Channel model :设系统工作在室内环境,有4条径,无多普勒频移,各径的相对时延为:[0 2 4 6],单位为100ns ,多径系数服从瑞利衰落,其功率随时延变化呈指数衰减:[0 -8 -16 -24]。 请给出以下结果: A. 收发机结构框图,主要参数设定 B. 误比特率仿真曲线(可假定理想同步与信道估计) 二、系统选择及设计设计 1、系统要求 20MHz带宽实现5GHz频带上的无线通信系统;速率要求: R=54Mbps;误码率要求: Pe 2、方案选取根据参数的要求,选择作为方案的基准,并在此基础上进行一些改进,使实际的系统达到设计要求。 中对于数据速率、调制方式、编码码率及OFDM子载波数目的确定如表 1 所示。 与时延扩展、保护间隔、循环前缀及OFDM符号的持

续时间相关的参数如表 2 所示。 的参数 参考标准选择OFDM系统来实现,具体参数的选择如下述。 3、OFDM简介 OFDM的基本原理是将高速信息数据编码后分配到并行的N个相互正交的子载波上,每个载波上的调制速率很低(1/N),调制符号的持续间隔远大于信道的时间扩散,从而能够在具有较大失真和突发性脉冲干扰环境下对传输的数字信号提供有效的保护。OFDM系统对多径时延扩散不敏感,若信号占用带宽大于信道相干带宽,则产生频率选择性衰落。OFDM的频域编码和交织在分散并行的数据之间建立了联系,这样,由部分衰落或干扰而遭到破坏的数据,可以通过频率分量增强的部分的接收数据得以恢复,即实现频率分集。 OFDM克服了FDMA和TDMA的大多数问题。OFDM把可用信道分成了许多个窄带信号。每个子信道的载波都保持正交,由于他们的频谱有1/2重叠,既不需要像FDMA那样多余的开 销,也不存在TDMA 那样的多用户之间的切换开销。 过去的多载波系统,整个带宽被分成N个子信道,子信道之间没有交叠,为了降低子信道之间的干扰,频带与频带之间采用了保护间隔,因而使得频谱利用率降低,为了克

几种常见的快速成型技术

几种常见的快速成型技术 一、FDM 丝状材料选择性熔覆(Fused Deposition Modeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。 丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。热塑性丝状材料(如直径为1.78mm的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。但仍需对整个截面进行扫描涂覆,成型时间长。适合于产品设计的概念建模以及产品的形状及功能测试。由于甲基丙烯酸ABS(MABS)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。但成型精度相对较低,不适合于制作结构过分复杂的零件。 FDM快速原型技术的优点是: 1、制造系统可用于办公环境,没有毒气或化学物质的危险。 2、工艺干净、简单、易于材作且不产生垃圾。 3、可快速构建瓶状或中空零件。 4、原材料以卷轴丝的形式提供,易于搬运和快速更换。 5、原材料费用低,一般零件均低于20美元。 6、可选用多种材料,如可染色的ABS和医用ABS、PC、PPSF等。 FDM快速原型技术的缺点是: 1、精度相对国外SLA工艺较低,最高精度0.127mm。 2、速度较慢。 二、SLA 光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。 在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的塑料薄片。然后,工作台下降一层薄片的高度,以固化的塑料薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢固的粘结在前一层上,如此重复不已,知道整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工件,进行清洗和表面光洁处理。 光敏树脂选择性固化快速原型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂模和其他软模的母模,使目前较为成熟的快速原型工艺。 SLA快速原型技术的优点是: 1、需要专门实验室环境,维护费用高昂。 2、系统工作相对稳定。 3、尺寸精度较高,可确保工件的尺寸精度在0.1mm(但,国内SLA精度在0.1——0.3mm之间,并且存在一定的波动性)。 4、表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平。 5、系统分辨率较高。

多天线通信系统物理层安全可靠传输技术研究进展

龙源期刊网 https://www.doczj.com/doc/988337908.html, 多天线通信系统物理层安全可靠传输技术研究进展 作者:唐杰潘绯廖润发宋欢欢文红 来源:《信息安全与技术》2014年第05期 【摘要】多天线通信系统物理层安全已成为近年通信安全领域重要研究方向。本文全面总结了多天线通信系统物理层安全研究的现状,梳理了最新的多天线通信系统中物理层安全传输技术的基本原理和主要方法,指出其适用场景及需要进一步解决的问题,并对未来发展方向进行展望。 【关键词】多天线通信系统;物理层安全;保密容量;安全传输技术 【中图分类号】 TP311 【文献标识码】 A Multi Antenna Communication System Physical Layer Secure and Reliable Transmission Technology Research Progress Tang Jie Pan Fei Liao Run-fa Song Huan-huan Wen Hong (National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China SichuanChengdu 610054) 【 Abstract 】 Recently the physical layer security based on the multiple-input and multiple-output (MIMO) communication system has become an important research direction in the field of communication security. This paper summarizes the research of physical layer security of MIMO communication system and comprehensively analyzes the basic principle and the latest research results in this field. Finally, the application scene was pointed out and the problems need to be solved in the future are presented. 【 Keywords 】 physical layer security; mimo communication system; secure transmission method. 1 引言 无线信道的开放性、广播特性使得移动通信网络面临很多的安全威胁。传统通信系统的安全性依赖于攻击方计算资源和时间的有限性假设,随着高速计算机、并行计算等技术的飞速发展,如果密钥一旦泄露或被攻击者通过计算破解,整个安全体系将彻底崩溃。物理层安全旨在

自适应波束成形算法LMS、RLS、VSSLMS

传统的通信系统中,基站天线通常是全向天线,此时,基站在向某一个用户发射或接收信号时,不仅会造成发射功率的浪费,还会对处于其他方位的用户产生干扰。 然而,虽然阵列天线的方向图是全向的,但是通过一定技术对阵列的输出进行适当的加权后,可以使阵列天线对特定的一个或多个空间目标产生方向性波束,即“波束成形”,且波束的方向性可控。波束成形技术可以使发射和接收信号的波束指向所需要用户,提高频谱利用率,降低干扰。 传统的波束成形算法通常是根据用户信号波达方向(DOA)的估计值构造阵列天线的加权向量,且用户信号DOA在一定时间内不发生改变。然而,在移动通信系统中,用户的空间位置是时变的,此时,波束成形权向量需要根据用户当前位置进行实时更新。自适应波束成形算法可以满足上述要求。 本毕业设计将对阵列信号处理中的波束成形技术进行研究,重点研究自适应波束成形技术。要求理解掌握波束成形的基本原理,掌握几种典型的自适应波束成形算法,熟练使用MATLAB仿真软件,并使用MA TLAB仿真软件对所研究的算法进行仿真和分析,评估算法性能。 (一)波束成形: 波束成形,源于自适应天线的一个概念。接收端的信号处理,可以通过对多天线阵元接收到的各路信号进行加权合成,形成所需的理想信号。从天线方向图(pattern)视角来看,这样做相当于形成了规定指向上的波束。例如,将原来全方位的接收方向图转换成了有零点、有最大指向的波瓣方向图。同样原理也适用用于发射端。对天线阵元馈电进行幅度和相位调整,可形成所需形状的方向图。 波束成形技术属于阵列信号处理的主要问题:使阵列方向图的主瓣指向所需的方向。 在阵列信号处理的范畴内,波束形成就是从传感器阵列重构源信号。虽然阵列天线的方向图是全方向的,但阵列的输出经过加权求和后,却可以被调整到阵列接收的方向增益聚集在一个方向上,相当于形成了一个“波束”。 波束形成技术的基本思想是:通过将各阵元输出进行加权求和,在一时间内将天线阵列波束“导向”到一个方向上,对期望信号得到最大输出功率的导向位置即给出波达方向估计。 “导向”作用是通过调整加权系数完成的。对于不同的权向量,上式对来自不同方向的电波便有不同的响应,从而形成不同方向的空间波束。

四种常见快速成型技术

四种常见快速成型技术 FDM 丝状材料选择性熔覆(Fus ed Dep osi tion Mod eling)快速原型工艺是一种不依*激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。 丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。热塑性丝状材料(如直径为1.78m m的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。但仍需对整个截面进行扫描涂覆,成型时间长。适合于产品设计的概念建模以及产品的形状及功能测试。由于甲基丙烯酸ABS(M AB S)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。但成型精度相对较低,不适合于制作结构过分复杂的零件。 FD M快速原型技术的优点是: 1、操作环境干净、安全可在办公室环境下进行。 2、工艺干净、简单、易于材作且不产生垃圾。 3、尺寸精度较高,表面质量较好,易于装配。可快速构建瓶状或中空零件。 4、原材料以卷轴丝的形式提供,易于搬运和快速更换。 5、材料利用率高。 6、可选用多种材料,如可染色的A BS和医用A BS、PC、PP SF等。 FDM快速原型技术的缺点是: 1、做小件或精细件时精度不如SLA,最高精度0.127mm。 2、速度较慢。 SL A 敏树脂选择性固化是采用立体雕刻(Stereo litho gra phy)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。 在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的塑料薄片。然后,工作台下降一层薄片的高度,以固化的塑料薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢固的粘结在前一层上,如此重复不已,知道整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工件,进行清洗和表面光洁处理。 光敏树脂选择性固化快速原型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂模和其他软模的母模,使目前较为成熟的快速原型工艺。 SL A快速原型技术的优点是: 1、成形速度较快。 2、系统工作相对稳定。 3、尺寸精度较高,可确保工件的尺寸精度在0.1m m(但,国内SL A精度在——0.3mm之间,

无线携能通信网络的物理层安全研究

无线携能通信网络的物理层安全研究 当今世界,无线通信技术飞速发展,不断地改变着人们获取和发送信息的方式以及世界范围内信息的传递方式。但由于无线信道的开放特性,信息在传输的过程中极易受到非法用户的干扰或窃听,从而导致保密信息泄露。物理层安全技术利用无线信道的物理特征进行协议设计从而达到保密传输的目的,可以有效提高通信系统的整体安全性能。与此同时,组成无线通信网络的各类终端设备功能更强,工作强度更大,耗费的电量更多,能量不足成为网络服务质量提升的阻碍。无线携能通信网络通过能量采集技术向无线设备补充能量,可以有效延长无线网络的寿命。将物理层安全技术与无线携能网络相结合,既可以增强无线信息传输的安全性又可以缓解网络设备能量不足的问题,因此本文对无线携能通信网络的物理层安全性能展开研究,具体工作包括以下两个方面:研究了不同物理层安全策略对无线携能通信网络安全性能的影响。首先,在无线携能通信网络中加入干扰节点,分析了人工噪声对系统安全性能的影响。理论分析和仿真结果表明,干扰节点的加入可以有效提高系统的安全性能。其次,考虑了源节点与窃听节点之间存在直传链路的场景,中继节点采用随机转发协议转发保密信息。分析表明,通过合理的协议设计,可以降低窃听节点译码成功的几率。最后,针对存在多个中间节点的无线携能通信网络,提出了一种中继与干扰节点的选择策略。本文推导得出了系统安全中断概率的闭式表达式,并通过仿真对理论结果进行了验证。仿真结果表明合理选择中继与干扰节点可以获得更好的安全性能。针对包含多个供电基站

和多个中间节点的无线携能通信网络,提出了一种联合中继与干扰节点选择的安全传输策略。首先,根据供电基站-中间节点之间的信道增益选择最优的供电基站。其次,通过综合考量供电基站-中间节点、中间节点-目的节点以及中间节点-窃听节点的信道增益选择出最佳的中继与干扰节点。最后,分析了系统的安全中断性能,推导得到了系统安全中断概率的闭式表达式,并通过仿真对理论结果进行了验证。仿真结果表明了本文提出的中继与干扰节点联合选择策略优于现有节点选择方案,并与穷举法获得的最佳策略性能接近。

快速成型技术及其发展综述

计算机集成制造技术与系统——读书报告 题目名称: 专业班级: 学号: 学生姓名: 指导老师

快速成型技术及其发展 摘要:快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,同时简述快速成型技术在国内的发展历程。 关键词:快速成型烧结固化叠加发展服务 1 快速成形技术的产生 快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。与此同时,其它的成形原理及相应的成形系统也相继开发成功。1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys 公司,1992年推出第一台商业成形系统LOM-1015。1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM 公司,于1992年开发了基于SLS的商业成形系统Sinterstation。斯科特科瑞普在1988年提出了熔融成形(Fused Deposition Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。 自从80年代中期SLA光成形技术发展以来到90年代后期,出现了几十种不同的RP技术,但是SLA、SLS和FDM几种技术,目前仍然是RP技术的主流,最近几年LJP(立体喷墨打印)技术发展迅速,以色列、美国、日本等国的RP设备公司都力推此类技术设备。 2基本原理 快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。 1、从成形角度看,零件可视为“点”或“面”的叠加。从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。 2、从制造角度看,它根据CAD造型生成零件三维几何信息,控制多维系统,通过激光束或其他方法将材料逐层堆积而形成原型或零件。 3快速成型技术特点 RP技术与传统制造方法(即机械加工)有着本质的区别,它采用逐渐增加材料的方法(如凝固、焊接、胶结、烧结、聚合等)来形成所需的部件外型,由于RP技术在制造产品的过程中不会产生废弃物造成环境的污染,(传统机械加工的冷却液等是污染环境的),因此在当代讲究生态环境的今天,这也是一项绿色制造技术。 RP技术集成了CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,解决了传统加工制造中的许多难题。 RP技术的基本工作原理是离散与堆积,在使用该技术时,首先设计者借助三维CAD或者

麦克风波束成形的基本原理

启拓专业手拉手会议,矩阵切换厂商-全球抗干扰专家 麦克风波束成形的基本原理 麦克风波束成形是一个丰富而复杂的课题。所有MEMS麦克风都具有全向拾音响应,也就是能够均等地响应来自四面八方的声音。多个麦克风可以配置成阵列,形成定向响应或波束场型。经过设计,波束成形麦克风阵列可以对来自一个或多个特定方向的声音更敏感。本应用笔记仅讨论基本概念和阵列配置,包括宽边求和阵列和差分端射阵列,内容涵盖设计考虑、空间和频率响应以及差分阵列配置的优缺点。 阵列和差分端射阵列,内容涵盖设计考虑、空间和频率响应以及差分阵列配置的优缺点。 空气中声波的频率与波长的关系 方向性和极坐标图 方向性描述麦克风或阵列的输出电平随消声空间中声源位置的改变而变化的模式。ADI 公司的所有MEMS麦克风都是全向麦克风,即它们对来自所有方向的声音都同样敏感,与麦克风所处的方位无关。图2所示为全向麦克风响应的2轴极坐标图。无论麦克风的收音孔位于

x-y平面、x-z平面还是y-z平面,此图看起来都相同。 全向麦克风响应图 本应用笔记中,阵列的“前方”称为轴上方向,指拾取目标音频的方向,在极坐标图上标为0°;“后方”为180°方向;“侧边”指前后方之间的空间,中心方向分别位于90°和270°。本应用笔记中的所有极坐标图均归一化到0°响应水平。 涉及声音频率和波长的所有公式都使用以下关系式:c = f ×λ,其中c为343 m/s,即声音在20℃的空气中的传播速度。图1显示了这些条件下声波的频率与波长的关系。本应用笔记末尾的“设计参数计算公式”列出了本文所用阵列设计参数的计算公式。 宽边阵列 宽边麦克风阵列是指一系列麦克风的排列方向与要拾取的声波方向垂直(见图3)。图中,d是阵列中两个麦克风元件的间距。来自阵列宽边的声音通常就是要拾取的声音。

多用户MIMO系统中波束成形的优化研究

多用户MIMO系统中波束成形的优化研究多输入多输出(Multiple Input Multiple Output,MIMO)技术能够充分挖掘空间资源来实现空间分集和空间复用,有效提高频谱利用率。波束成形是多用户MIMO系统实现空分多址的主要技术,能有效地抑制小区间的干扰和用户间的干扰,是当前无线通信物理层技术的研究热点之一。 本文以多用户MIMO系统中波束成形技术为主要研究点,重点对多小区多播系统、协作多播系统和干扰信道的波束成形技术展开了深入的研究。主要工作可概括为以下几个方面:1)针对发送端有理想信道状态信息(Channel State Information,CSI)和非理想CSI这两种情况下的多小区多播系统,研究了加权总速率最大化问题,分别提出了相应的波束成形算法。 当发送端有理想的CSI情况时,每个基站功率约束下加权总速率最大化问题是非确定性多项式难题(Non-deterministic Polynomial-hard,NP-hard),难以直接求解。我们提出了一种低复杂度的迭代算法求解这一问题。 在每次迭代中,原优化问题通过连续凸近似(Successive Convex Approximation,SCA)表示成二阶锥规划(Second Order Cone Programming,SOCP)问题。当发送端仅有非理想CSI情况时,中断概率约束下加权总速率最大化波束成形问题也是非凸的。 此问题的困难就在如何处理中断约束。我们采用Bernstein类型不等式和半正定松弛(Semidefinite Relaxation,SDR)方法将原问题近似表示成一个交替优化问题,固定一组变量,关于另外一组变量是凸问题。 数值结果验证了上述两种情况下的算法有效性。2)针对协作多播系统,研究了多播速率最大化问题,提出了一种波束成形和中继选择联合优化算法。

无线通信系统中物理层安全技术探讨

移动通信│MOBILE COMMUNICATION 18 2018年第1期无线通信系统中物理层安全技术探讨 高宇鑫 中兴通讯股份有限公司,广东惠州518000 摘要:随着无线通信技术的发展,通信设备逐渐呈现小型化、多样化发展,在一定程度上提升了数据传播速率。由于无线传输通道具备广播特点,因此对通信保密有了更加严格的要求。最近几年,在物理层安全技术中,主要采取了传输链路物理特点,在物理层编码、调制以及传输方式的基础上实现了安全性通信,在各个学术界中受到了广泛关注和应用。因此,主要论述了传统安全传输技术和物理层安全技术存在的不同性,然后研究了物理层中的多天线分集技术、协作干扰技术以基于信道物理层安全技术,最后提出了物理层安全技术未来发展范围。 关键词:无线通信系统;物理层安全技术;未来发展范围 中图分类号:TN929.5文献标识码:A Discussion on Physical Layer Security Technology in Wireless Communication System Gao Yuxin ZTE Corporation, Guangdong Huizhou 518000 Abstract:With the development of wireless communication technology, communication devices have gradually become smaller and more diverse, which has improved the data transmission rate to some extent. Because the wireless transmission channel has broadcast characteristics, there is a stricter requirement for confidentiality of communication. In recent years, in the physical layer security technology, the physical characteristics of the transmission link have been adopted, and security communication has been implemented on the basis of physical layer coding, modulation, and transmission methods. It has attracted wide attention in various academic circles and application. Therefore, it mainly discusses the differences between the traditional security transmission technology and the physical layer security technology. Then it studies the multi-antenna diversity technology and cooperative interference technology in the physical layer based on the channel physical layer security technology, and finally proposes the future development scope of the physical layer security technology. Keywords:wireless communication system; physical layer security technology; future development range 无线通信技术的出现,在一定程度上丰富了人们的生活水平,尤其是在通信应用区域内,极大地增强了通信水平和整体能力。可是,在无线通信信道中,由于受到固有广播性、开放性以及传输链路不稳定性等因素的影响,因此无线通信系统与传统的有限通信系统相比较而言,更容易受到非法用户的监听和侦察,从而引发传输数据流失等现象。最近几年,出现的小米移动云泄露等情况,都说明了信息安全在无线通信领域中起到的重要性。所以,设计安全、高效稳定的无线通信系统在国家安全、商业机密等内容中,占据十分重要的地位。创新安全通信,可以增强国际现代化水平,提升我国的竞争力。1 无线通信系统中物理层安全技术发展背景 传统的安全技术主要采取密钥管理、身份确认等方式,其安全机制建立在计算机密码学方法的基础上,在应用计算机网络上层协议的设计中增强信息的准确性。传统安全技术一般依靠破解生成密钥需要较高的计算复杂度来提高加密算法的有效性,但是在计算能力不断提升和信息运输场景呈现多样化的背景下,传统密钥体系面临着严峻的挑战。其中存在的不足主要表现在以下几点: 第一,随着计算水平的不断提高,尤其是量子计算的出现,以计算复杂度为基本理论基础设计的现代

1111《快速成形技术》预测试题1

复习提纲 1.喷涂距离:指喷抢的喷嘴到基体或过度基模表面的距离。 2.喷涂角度:指喷嘴气流轴线与喷涂基模之间的夹角。 3.遮蔽效应:指喷嘴气流轴线与喷涂基模之间的夹角(喷涂角度)小于45°时产生的效应。 4.近似处理:指用无数个三角形去等效一个三维几何实体,所以只能是无限接近,近似得到实体。(用无数个三角形平面来代替曲面) 5.后固化:指用很强的紫外激光照射刚成形的原型件,是其充分固化。 1.快速成型技术建立的理论基础:新材料技术、计算机技术、数控技术、激光技术。 2.快速成型的全过程包括三个阶段:前处理、自由成形、后处理。 3.光固化成型工艺中用来刮去每层多余树脂一的装置是刮刀。 4.用于FDM的支撑的类型为:水溶性支撑和易剥离性支撑。 5.熔融沉积制造工艺原材料供应系统包括:、、。 6.叠层实体制造工艺涂布工艺包括涂布形状和涂布厚度。 7. FDM快速成形的系统组成包括硬件系统、软件系统、供料系统。。 8. LOM技术原型制作过程主要有热变形和湿变形。两种变形。 1、叠层实体制造工艺常用激光器为(D )。 A、氦-镉激光器; B、氩激光器; C、Nd:YAG激光器; D、CO2激光器。 2、四种成型工艺不需要激光系统的是(D )。 A、SLA; B、LOM; C、SLS; D、FDM。 3、四种成型工艺不需要支撑结构系统的是(C )。 A、SLA; B、LOM; C、SLS; D、FDM。 4、光固化成型工艺树脂发生收缩的原因主要是(D )。 A、树脂固化收缩; B、热胀冷缩; C、范德华力导致的收缩; D、树脂固化收缩和热胀冷缩。 5、就制备工件尺寸相比较,四种成型工艺制备尺寸最大的是(B )。 A、SLA; B、LOM; C、SLS; D、FDM。 6、四种成型工艺中,可生产金属件的是(C)。 A、SLA; B、LOM; C、SLS; D、FDM。 8、就制备工件成本相比较,四种成型工艺制备成本最大的是(A)。 A、SLA; B、LOM; C、SLS; D、FDM。 9、在电弧喷涂工艺中喷涂角度最佳的是(C )。 A、0°; B、45°; C、90°; D、180°。 10、下列模具制造工艺中,只能生产塑料件的工艺是(B)。 A、环氧树脂工艺; B、硅橡胶模具制造工艺; C、电弧喷涂工艺; D、低熔点金属模工艺。 1、SLS周期长是因为有预热段和后冷却时间。(对) 2、SLA过程有后固化工艺,后固化时间比一次固化时间短。(错) 3、SLS工作室的气氛一般为氧气气氛。(错) 4、SLS在预热时,要将材料加热到熔点以下。(对) 5、LOM胶涂布到纸上时,涂布厚度厚一点效果会更好。(错) 6、FDM中要将材料加热到其熔点以上,加热的设备主要是喷头。(对) 7、影响电弧喷涂模具生产产品质量好坏主要部分是金属喷涂层。(错)

自适应波束成形算法LMS、RLS、VSSLMS

传统的通信系统中,基站大线通常是全向天线,此时,基站在向某一个用户发射或接收 信号时,不仅会造成发射功率的浪费,还会对处于其他方位的用户产生干扰。 然而,虽然阵列天线的方向图是全向的,但是通过一定技术对阵列的输出进行适当的加 权后,可以使阵列天线对特定的一个或多个空间目标产生方向性波束,即"波束成形" ,且 波束的方向性可控。波束成形技术可以使发射和接收信号的波束指向所需要用户,提高频谱 利用率,降低干扰。 传统的波束成形算法通常是根据用户信号波达方向(DOA)的估计值构造阵列天线的加权向量,且用户信号DOA在一定时间内不发生改变。然而,在移动通信系统中,用户的空间位置是时变的,此时,波束成形权向量需要根据用户当前位置进行实时更新。自适应波束成形算法可以满足上述要求。 本毕业设计将对阵列信号处理中的波束成形技术进行研究,重点研究自适应波束成形技 术。要求理解掌握波束成形的基本原理,掌握几种典型的自适应波束成形算法,熟练使用MATLAB 仿真软件,并使用MA TLAB仿真软件对所研究的算法进行仿真和分析,评估算法性能。 (一)波束成形: 波束成形,源于自适应大线的一个概念。接收端的信号处理,可以通过对多天线阵元接 收到的各路信号进行加权合成,形成所需的理想信号。从天线方向图(pattern)视角来看,这样做相当于形成了规定指向上的波束。例如,将原来全方位的接收方向图转换成了有零点、 有最大指向的波瓣方向图。同样原理也适用用于发射端。对天线阵元馈电进行幅度和相位调 整,可形成所需形状的方向图。 波束成形技术属于阵列信号处理的主要问题:使阵列方向图的主瓣指向所需的方向。 在阵列信号处理的范畴内,波束形成就是从传感器阵列重构源信号。虽然阵列天线的方 向图是全方向的,但阵列的输出经过加权求和后,却可以被调整到阵列接收的方向增益聚集 在一个方向上,相当于形成了一个“波束”。 波束形成技术的基本思想是:通过将各阵元输出进行加权求和,在一时间内将大线阵列 波束“导向”到一个方向上,对期望信号得到最大输出功率的导向位置即给出波达方向估计。 “导向”作用是通过调整加权系数完成的。对于不同的权向量,上式对来自不同方向的 电波便有不同的响应,从而形成不同方向的空间波束。 波束成形的工作过程是怎样的?以热点为例,基站给客户端周期性发送声信号,客户端 将信道信息反馈给基站,于是基站可根据信道状态发送导向数据包给客户端。高速的数据计

相关主题
文本预览
相关文档 最新文档