当前位置:文档之家› 壳寡糖_综述

壳寡糖_综述

壳寡糖_综述
壳寡糖_综述

壳寡糖

1. 壳寡糖的基本概念

壳寡糖,又称寡聚氨基葡糖、甲壳低聚糖,是指2-10个氨基葡萄糖以β-1,4-糖苷键连接而成的低聚壳聚糖,是由壳聚糖解聚而制成的。以普通虾蟹壳为原料,经脱钙、脱蛋白、脱色、及脱乙酰基反应后,运用酶生物技术和先进分离技术制备而成的氨基寡聚糖类产品。是天然糖中唯一大量存在的碱性氨基多糖,壳寡糖是甲壳素、壳聚糖系列产品的高级产品,具备水溶性好、生物活性高、功能作用大、应用领域广、易被人体吸收等突出特点,在国外素有人体第六大生命要素、软黄金之美誉,在医药、功能性食品、日化、农业等领域应用广泛。壳寡糖作为新世纪前瞻性生物技术产品,具备广泛的应用前景。

图1 壳寡糖的生产工艺工程

2.壳寡糖的生物活性

2.1 壳寡糖的免疫调节作用

壳聚糖具有激活机体系统、介导机体系统的系列生物学效应,提高吞噬细胞的系统功能。巨噬细胞表面存在着细菌多糖的受体,而壳聚糖作为细

菌多糖的类似物,能刺激巨噬细胞活化,产生如下反应:促进其吞噬功能,增强它在其它免疫应答中的协同效应,从而实现机体对T细胞、NK细胞和B细胞的调节,介导机体的细胞免疫应答和体液免疫应答。因此,壳聚糖具有对机体的免疫调节作用。

2.2 控制胆固醇

人类健康的最大问题之一是胆固醇,它导致许多严重的疾病。壳聚糖有两个机制降低胆固醇。一个是阻止脂肪的吸收,另一个是将人体血液内的胆固醇排泄掉。首先,壳聚糖抑制那些助于脂肪吸收的脂肪酶的活性。脂肪酶分解脂肪使人体进行吸收。另外一个是排泄胆酸。一旦胆酸排泄,则血液中的胆固醇被用于制造胆酸。这两种机制使得壳聚糖成为强胆固醇清除剂。壳聚糖是一种天然材料,具有强大的阴离子吸附力,适用于降低胆固醇而没有任何副作用。

2.3 抑制细菌活性

壳聚糖在弱酸溶剂中易于溶解,这种溶液特别含有氨基(NH2+)。这些氨基通过结合负电子来抑制细菌。壳聚糖的抑制细菌活性,使其在医药、纺织和食品等领域有着广泛的应用。

2.4 预防和控制高血压

对高血压最有影响力的因素之一就是氯离子(Cl-)。它通常通过食盐摄入。近来许多人都过量消费盐。血管紧缩素转换酶(ACE:Angiotensin Converting Enzyme)产生血管紧缩素II,一种引起血管收缩的材料,其活力来自氯离子。高分子壳聚糖象膳食纤维一样发挥作用,在肠内不被吸收。壳聚糖通过自身的氯离子和氨根离子之间的吸附作用,排泄氯离子。因此,壳聚糖降低血管紧缩素II。它有助于防止高血压,特别是那些过量摄入食盐的人群。

2.5 吸附和排泄重金属

壳聚糖的一个显著特性是吸附能力。许多低分子量的材料,比如金属离子、胆固醇、甘油三酯、胆酸和有机汞等,都可以被壳聚糖吸附。特别是壳聚糖不仅可以吸附镁、钾,而且可以吸附锌、钙、汞和铀。壳聚糖的吸附活性可以有选择地发挥作用。这些金属离子在人体中浓度太高是有害的。比如,血液中铜离子(Cu2+)浓度过高会导致铜中毒,甚至产生致癌后

果。现已证明壳聚糖是高效的螯合物介质。壳聚糖的吸附能力的大小取决于其脱乙酰度。脱乙酰度越大,吸附能力越强。

2.6 保持湿度

壳聚糖具有更高的蛋白吸附能力;在降解酶(溶解酵素lysozyme、kitinase)的作用下,壳聚糖具降解性;壳聚糖很容易加工成线,适合做成线状或片状的医用材料;壳聚糖具有亲和力和溶解性,适用于生产各类衍生物;壳聚糖具有更高的化学活性;壳聚糖的持水性高;在血清中,壳聚糖易降解吸收;

3.壳寡糖的应用领域及研究

3.1专用壳寡糖产品

3.1.1 化妆品专用壳聚糖

化妆品专用壳聚糖具有良好的吸湿、保湿、调理、抑菌等功能;适用于润肤霜、淋浴露、洗面奶、摩丝、高档膏霜、乳液、胶体化妆品等;有效的弥补了一般壳聚糖的缺陷。

3.1.2絮凝剂专用壳聚糖

壳聚糖及其衍生物都是具有良好的絮凝、澄清作用。我厂生产的絮凝剂专用壳聚糖,作为饮料的澄清剂,可使悬浮物迅速絮凝,自然沉淀,提高原液的得率;在中药提取液中,大分子的蛋白质、鞣酸和果胶,可以用壳聚糖溶液方便地除去,精制出纯度较高的中药有效成份;利用壳聚糖的吸附性,在水质净化方面有良好的效果。

3.1.3、农业、饲料、饵料专用壳聚糖

壳聚糖是天然的植物营养促长剂--叶面肥的原料,由壳聚糖复配而成的叶面肥,既能给植物杀虫,抗病,起到肥料的作用,又能分解土壤中动植物残体及微量金属元素,从而转化为植物的营养素,增强植物免疫力,促进植物的健康;虾壳、蟹壳中含有丰富的蛋白质、微量元素,动物食入吸收后,有良好的营养价值。

3.1.4、UTA(吸附剂)专用壳聚糖

UTA专用壳聚糖是经过特殊工艺加工的壳聚糖系列产品;它能有效地吸附蛋白,比一般壳聚糖的吸附要高40%。

3.1.5、烟草(烟胶)专用壳聚糖

该产品可与烟丝均匀混合,且能粘附于烟丝表面,可增强抗张强度、耐水性、耐破度,加工时不易破碎,适用于现代高速卷烟机;该烟草添加剂可使烟支的燃烧性能显著增强,具有降低烟草焦油和烟碱含量的作用,使烟支杂气减轻,烟气中有害物质减少,吸味得到改善,香气显露;也能够有效地抑制烟叶霉变,延长烟草的保存时间。壳寡糖对肉仔鸡的饲养有影响;应用于仔猪的饲养;应用于鹌鹑的饲养;应用于北京鸭的饲养;应用于对虾和鲍鱼的饲养;应用于罗非鱼的饲养;应用于虹鳟鱼的饲养。

3.2食品应用

3.2.1抗菌剂

壳聚糖及其衍生物有较好的抗菌活性,能抑制一些真菌、细菌、和病毒的生长繁殖。目前认为其可能的机制有三:一是由于壳聚糖的多聚阳离子,易于真菌细胞表面带负电荷的基团作用,从而改变病原菌细胞膜的流动性和通透性;二是干扰DNA的复制与转录;三是阻断病原菌代谢。近年来,有许多研究者提出壳聚糖通过诱导病程相关蛋白,积累次生代谢产物和信号传导等方式来达到抗菌的目的的观点。

目前大多数调味品中使用的防腐剂是苯甲酸及其钠盐,与之相比,在相同的贮藏条件下,壳聚糖抑菌效果更加,用量少,口感好,且无任何毒副作用,是一种理想的调味品防腐剂。将0.1%壳聚糖添加到酱油中,对引起酱油变质的酵母群有明显的抑制作用,在夏季敞开条件下可存放30d,而不会变质,且不影响口感、颜色、香味与成分。

3.2.2果蔬保鲜剂

果蔬保鲜的目的主要是保持果蔬在采摘后直到货架期,能维持正常的品质、品味、营养成分和外观,提高其商品价值。用壳聚糖进行涂膜保鲜,其膜层具有通透性、阻水性,可以对各种气体分子增加穿透阻力,形成了一种微气调环境,是果蔬组织内的二氧化碳含量增加,氧气含量降低,抑制了果蔬的呼吸代谢和水分散失,减缓果蔬组织和结构衰老,从而有效地延长果蔬的采后寿命。

壳聚糖的分子量对保鲜效果也有影响,其中粘度在100-300cp的壳聚糖比粘度在1000cp以上的效果好。

3.2.3抗氧化剂

肉类食品中由于含有高含量的不饱和脂类化合物易被氧化而使肉类食品腐败变质,从而缩短肉制品的贮存寿命和破坏肉制品的风味。研究了表明:用壳聚糖处理过的牛肉的氧化稳定性非常有效。加入1%的壳聚糖,在4℃下贮藏3天,牛肉中的硫代巴比土酸减少70%。Shahidi报道,N,O-羧甲基壳聚糖(NOOC)及其乳酸盐,吡咯烷羧酸盐对抑制熟肉的氧化非常有效,冷藏9天后的熟肉风味几乎不变。他指出,NOOC及前面提到的壳聚糖衍生物在(500-3000)×10-6之间的抑制氧化效果分别为69.9%、43.4%和66.3%。这种抑制氧化作用机理是与肉中自由铁离子和壳聚糖有关的。当肉在热处理过程中,自由铁离子便从肉的血红蛋白中释放出来,并与壳聚糖螯合形成螯合物,从而抑制铁离子的催化活性

3.2.4 保健食品添加剂

壳聚糖难被人体胃肠消化吸收,当人把它们摄入体内后,它们可与相当于自身质量许多倍的甘油三酯、脂肪酸、胆汁酸和胆固醇等脂类化合物生成络合物,该络合物不被胃酸水解,不被消化系统吸收,从而阻碍人体吸收这类物质,使之穿肠而过排出体外。因此,壳聚糖类可以降脂,减少食品热量,可用作保健食品添加剂。Agullo等研究表明,壳二、三聚糖不仅具有非常爽口的甜味和调解血压、消除脂肪肝、降低胆固醇和增强免疫力的功能,而且还具有提高食品的保水性及水分调节作用,可作为糖尿病和肥胖病的保健食品添加剂。

3.2.5 果汁的澄清剂

果汁中含有大量带负电荷的果胶、纤维素、鞣质和多聚戊糖等物质,在存放期间会使果汁浑浊。当壳聚糖的正电荷和上述负电荷物质吸附絮凝后,经处理后的澄清果汁是一个稳定的热力学体系,所以能长期存放,不产生浑浊。

3.3医学应用

3.3.1促进凝血和伤口愈合

壳聚糖具有促进血液凝固的作用,可用作止血剂。它还可用于伤口填料物质,具有灭菌、促进伤口愈合、吸收伤口渗出物、不易脱水收缩等作用。

3.3.2作为药物的缓释基质

壳聚糖能被生物体内的溶菌酶降解生成天然的代谢物,具有无毒、能被生物体完全吸收的特点,因此用它作药物缓释剂具有较大的优越性。日本已有以壳聚糖作为基质的缓释药物出售

3.3.3用于人造组织器官

壳聚糖与磷酸钙的复合物可作为骨的替代物,用于骨的修补及牙的填料;壳聚糖衍生物与聚酯的复合材料可用作人造血管。Abewidra曾推出一种修饰烧伤、溃疡及皮肤感染的新型材料———“人造皮肤”,这种修饰材料具有天然皮肤的功能,不但能使伤口免受细菌的感染,而且还可以渗透空气和水分,促进伤口愈合。壳聚糖和甲壳素混合后可制成高强度的丝状纤维,用作手术线。这种手术线能被生物体内的溶菌酶降解,伤口愈合后不需拆除就能被机体充分吸收,不会产生过敏反应。

酰氯的制备方法

酰氯是一种重要的羧酸衍生物,在有机合成、药物合成等方面都有着重要的应用,主要可以发生水解、醇解、氨(胺)解、与有机金属试剂反应、还原反应、α氢卤化等多种反应。酰氯是最活泼的酰基化试剂,极限结构的共振杂化体。 这种共振效应稳定了整个分子,也加强了羰基碳原子与离去基团的键。共振效应是一种稳定效应,它依赖于成键原子轨道的交盖,酰氯受这种共振的影响可能是最小的,因为这种共振需要碳原子的2p轨道与氯原子的3p轨道交盖,这两种轨道的大小不同,它们之间的交盖不大,对Cl 来说,结构(Ⅱ)的贡献不大,酰氯由于共振影响而受到的稳定作用是最小的,因此,酰氯是最活泼的酰基化试剂。在一些羧酸不能进行或进行非常缓慢的反应中将羧酸制成酰氯使反应活性和产率大大提高。 目前,制备酰氯的方法最常用的SOCl2,三氯化磷,五氯化磷,三光气等,本文对几种方法进行论述。 1二氯亚砜法 1.1二氯亚砜在酰氯制备中的应用 脂肪酸(包括不饱和脂肪酸)芳香酸,有机磺酸和取代酸(如氨基酸和卤代酸等)在催化剂存在下均能与氯化亚砜生成酰氯,催化剂通常使用N,N-二甲基甲酰胺(DMF)、N,N-二甲基苯胺和吡啶等。反应过程中氯化亚砜一般先与催化剂结合,然后再与羧酸反应生成酰氯。 (1)三甲基乙酸在己内酰胺催化下与氯化亚砜反应生成三甲基乙酰氯,产率96%。 (CH3)3CCOOH→(SOCl2己内酰胺)→(CH3)3COCl (2)对(间)苯二甲氯化亚砜酸和氯化亚砜反应制得对(间)苯二甲酰氯。 这两种产品主要用于有机合成,是目前广泛使用的增塑剂对苯二甲酸二异辛脂(DOTP)和邻苯二甲酸二异辛酯的合成原料。 (3)邻氯苯甲酸和氯化亚砜反应生成邻氯苯甲酰氯。 该产品主要用于有机合成以及医药,染料中间体的合成。 (4)用丁(庚、辛、癸)酸和氯化亚砜反应制得丁(庚、辛、癸)酰氯,用十六碳酸和氯化亚砜反应制得十六碳酰氯,这4种产品常用于医药中间体的合成。 CH3(CH2)n COOH→(SOCl2)→CH3(CH2)n COCl n=4-20 (5)硬脂酸和氯化亚砜反应制得的硬脂酸酰氯可用于合成护肤品,双硬脂酸曲酸脂和制备造纸工业的中性施胶剂——烷基烯酮二聚体(AKD)。 (6)有机磺酸在催化剂存在下与氯化亚砜反应一般生成磺酰氯也可由有机磺酸钠直接与氯化亚砜反应生成磺酰氯。 1.2氯化亚砜在制备酰氯中的优、缺点 利用氯化亚砜制备酰氯反应条件温和,在室温或稍加热即可反应。产物除酰氯外其他均为气体,往往不需提纯即可应用,纯度好,产率高。如果所生成酰氯的沸点与氯化亚砜的沸点相近,与氯化亚砜不宜分离;另外此方法氯化亚砜用量大,生产成本高,且设备腐蚀严重。 2三氯化磷法 (1)丙酸与三氯化磷反应生成丙酰氯,反应式如 下: CH3CH2COOH→(PCl3)→CH3CH2COCl 丙酰氨主要用于合成抗癫痫药甲妥因、利胆醇、抗肾上腺素药甲氧胺盐酸盐,在有机合成中用作丙酰化试剂。 (2)月桂酸与三氯化磷反应生成月桂酰氯,反应如下: 3C11H23COOH+PCl3→3C11H23COCl+H3PO3 本品用于合成过氧化十二酰,月桂酰基多缩氨基酸钠。 (3)油酸与三氯化磷反应制得油酰氯,反应如下: CH3(CH2)7(CH2)7COOH PCl3CH3(CH2)7(CH2)7COCl >C=<→>C=C< H H NaOH H H 本品主要用于有机合成中间体,用它可以制得净洗剂LS(C25H40NnaO5S),204洗涤剂等。 用三氯化磷制备酰氯时,适用于制备低沸点酰氯,因反应中生成的亚磷酸不易挥发,可方便蒸出酰氯。

薄膜的材料及制备工艺

薄膜混合集成电路的制作工艺 中心议题:多晶硅薄膜的制备 摘要:本文主要介绍了多晶硅薄膜制备工艺,阐述了具体的工艺流程,从低压化学气相沉积(LPCVD),准分子激光晶化(ELA),固相晶化(SPC)快速热退火(RTA),等离子体增强化学反应气相沉积(PECVD等,进行详细说明。 关键词:低压化学气相沉积(LPCVD);准分子激光晶化(ELA); 快速热退火(RTA)等离子体增强化学反应气相沉积(PECVD) 引言 多晶硅薄膜材料同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低成本制备的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶硅薄膜的制备工艺可分为两大类:一类是高温工艺,制备过程中温度高于600℃,衬底使用昂贵的石英,但制备工艺较简单。另一类是低温工艺,整个加工工艺温度低于600℃,可用廉价玻璃作衬底,因此可以大面积制作,但是制备工艺较复杂。 1薄膜集成电路的概述

在同一个基片上用蒸发、溅射、电镀等薄膜工艺制成无源网路,并组装上分立微型元件、器件,外加封装而成的混合集成电路。所装的分立微型元件、器件,可以是微元件、半导体芯片或单片集成电路。 2物理气相沉积-蒸发 物质的热蒸发利用物质高温下的蒸发现象,可制备各种薄膜材料。与溅射法相比,蒸发法显著特点之一是在较高的真空度条件下,不仅蒸发出来的物质原子或分子具有较长的平均自由程,可以直接沉积到衬底表面上,且可确保所制备的薄膜具有较高纯度。 3 等离子体辅助化学气相沉积--PECVD

传统的CVD技术依赖于较高的衬底温度实现气相物质间的化学反应与薄膜沉积。PECVD在低压化学气相沉积进行的同时,利用辉光放电等离子体对沉积过程施加影响。促进反应、降低温度。 降低温度避免薄膜与衬底间不必要的扩散与化学反应;避免薄膜或衬底材料结构变化与性能恶化;避免薄膜与衬底中出现较大的热应力等。 4低压化学气相沉积(LPCVD)

壳寡糖科普

甲壳素、壳聚糖和壳寡糖的由来: 甲壳素广泛存在于低等植物菌类、藻类细胞,虾、蟹、昆虫的外壳和软骨,高等植物的细胞壁中。人类最早利用甲壳资源始于中国著名的《本草纲目》中所记载:蟹壳有破瘀消积的功能。 " 蟹 " 字本身即指:解毒的虫类。 1811年,法国学者布拉诺首先在蘑菇中发现了甲壳素。1991年美欧医学科技界营养食品研究机构宣布甲壳素类物质为继脂肪、蛋白质、糖、矿物质、维生素等生命要素之外的第六生命要素,轰动一时。日本则率先将甲壳素类物质经临床实践后以保健食品投放市场,并成为日本厚生省(相当于我国卫生部)唯一准许宣传疗效的机能性保健食品;同时日本政府也投入了巨资予以开发和市场推广,其销售量也占日本保健食品的首位,并在短短的30年后使日本跃居世界第一长寿国! 甲壳素、壳聚糖、壳寡糖都称为甲壳素类物质。甲壳素不溶于水、碱、一般的酸和有机溶剂,只溶于部分浓酸,依靠人体胃肠道中的甲壳素酶、溶菌酶等的作用少部分分解,因此其吸收率较低,服用量较大,产生的服用反应也高达70%以上。对甲壳素进行化学处理,脱掉其中的乙酰基,就变成了壳聚糖,壳聚糖已经可以溶于稀酸,比甲壳素进了一步。但是壳聚糖还是大分子,仍然不溶于水,把壳聚糖降解为小分子,就是壳寡糖。壳寡糖可以直接溶于水,因此吸收率大为增加,服用量和服用后反应大为减少。 为什么称壳寡糖是生命第六要素 壳寡糖的最终代谢产物——葡萄糖胺和乙酰葡萄糖胺是人体必须的两种物质。如缺少该物质,人体的自身免疫功能就会下降,导致高血压、心脑血管疾病、癌症等现代疑难病。人在幼儿时可以在细胞内合成这两种物质,成年以后就必须从食物中摄取。 十九世纪70年代,科学家在对细胞的营养学、结构学和功能学研究过程中发现由于工业化生产、农药化肥的大量使用、大棚技术、无土栽培技术等大量的使用,甲壳素类的物质在人类的食物链中消失了,人体从食物中得不到及时弥补,必须人为的添加和补充。 而壳寡糖在人体内会分解产生这两种物质。因此,医学界将壳寡糖称为继脂肪、蛋白质、糖、矿物质、维生素之后保持体质呈碱性的要素,所以被称为第六生命要素。科学家指出,人们应该象摄取前五种物质一样,每天摄取适量的壳寡糖。 为什么说壳寡糖是长寿因素 科学研究发现,甲壳类生物的生命抗病能力大大超越了脊椎类动物,含有甲壳素的昆虫、龟贝类、虾蟹类等动物,能在极其恶劣的环境下生存繁殖,且生命力旺盛。但人类和鱼类等脊椎类动物生存适应能力较差,只要水质稍有污染,气候环境改变,生命就要受威胁。甲壳类生物和脊椎类生物巨大的生存抗逆差异引起了科家们浓厚兴趣。后经研究证实、其抗逆差异在于这些动物的体内含有壳寡糖物质。 多吃虾、蟹能摄取壳寡糖吗? 不能。因为在自然状态下,甲壳素的性质非常稳定,而且分子量非常大(在100万以上),不能够被人体吸收。在正常情况下,也不易被分解,只有通过高科

壳寡糖简介

壳寡糖简介(一位教授的信,实际效果不知) 1寡聚糖对植物的生长调节作用 长期以来由于认为糖在生物有机体的作用远在核酸及蛋白质之下,故其功能一直未得到应有的重视。近年来,发现生物体内绝大多数蛋白质表面都连有数目不等的寡糖链(一般将少于12个糖基的糖链称为寡糖,多于12个糖基者称为多糖),这些寡糖在许多生命过程中都具有重要的功能,如参与蛋白质的折叠、维系空间结构、介导特异的识别过程(细胞识别和分子识别);作为某些重要生物大分子的保护性储存库(某些生长因子与寡糖结合能免受非特异的水解从而延长其寿命);引导胞内某些特异蛋白(酶)的靶向定位等等。现已发现,不仅与蛋白质结合的寡糖具有广泛的生物学效应,游离的寡聚糖本身在许多生命过程中也都有重要的生物学效应,某些寡聚糖与激素相似,它们依赖于糖链结构的不同调控着植物的生长、发育以及对逆境的防御等重要生理过程。 寡聚糖作为植物免疫激活因子的基础研究始于20世纪60年代,Ayers等于1976年发现细胞壁的寡糖片段能诱导植物植保素(Phytoalexin)合成。Bishop于19 81年发现番茄病原菌分泌的多聚半乳糖醛酸酶(PG)消化果胶多糖得到的片段,可诱导蛋白酶抑制剂的合成与积累。以后又发现寡糖可以诱导乙烯、甲壳素酶、葡聚糖酶、富含羟脯氨酸糖蛋白等的产生。1985年Albersheim首次提出了寡糖素(Oligosaccharins)这个新概念和新领域,并认为寡聚糖具有调控植物生长、发育、繁殖、防病和抗病等方面的功能,能够刺激植物的免疫系统反应,每种活性寡聚糖可发出调节特定功能的信息,激活防御反应和调控植物生长,产生具有抗病害的活性物质,抑制病害的形成。特别是不同来源的寡聚糖可针对不同的病原菌,从而可开发针对各类病害的系列寡聚糖农药,解决基因工程遗传育种也很难解决的病原菌生态变异小种的问题。这些寡聚糖分子在很低浓度(nmol/L)下,可作为一种信号分子调控植物的生长发育和植物抵抗逆境(虫害、病原菌入侵、生理逆境)的防卫反应。把这些有生物活性的一类寡糖分子统称为寡糖素。第一个寡糖素即发现于真菌细胞中,具有活化被子植物的防卫反应的功能。不久,在高等植物细胞内也发现了能引起类似防卫反应的寡糖素,这些来源于植物的寡糖素除具有激发子(Elicitor)效应能引起防卫相关反应,某些激发子可以是寡糖素、诱导植物产生的抗病抗虫化合物(植物抗毒素、酚类等)和相关蛋白(蛋白酶抑制剂、苯丙氨酸解氨酶等),除参与植物的防卫反应外,还具有调控植物生长发育的功能,如促进或抑制豌豆茎切断的伸长生长,抑制生长素促进的烟草外植体生根,多聚半乳糖醛酸酶(PG)激发番茄中乙烯的产生,从而促进果实成熟。 目前已知的寡糖素大多是一些细胞和真菌细胞壁结构多糖的降解产物中有活性的寡糖组分,如真菌b-寡葡聚糖(Fungal oligo-glucan)、木葡聚糖类寡糖(Xylogl ucaonderived oligosaccharide)、果胶类寡糖(Oligosaccharide of pectin)、b-寡木聚糖(Oligo-b-xylan)、壳寡糖(Chito-oligosaccharide)、某些糖蛋白(N-Linked glycoprotein)上寡糖链以及寡糖肽类等都是具有生物活性的寡糖素。 2壳寡糖的来源及基本物理化学性质 壳寡糖是水溶性的壳聚糖降解产物,又称为水溶性壳聚糖,壳聚糖(chitosan)是由甲壳素衍生而来的。甲壳素(chitin)又叫甲壳质或者几丁质,它广泛存在于微生物、酵母、蘑菇的细胞壁中,昆虫的表皮中,乌贼、贝壳等软体动物的骨骼内。尤其是虾、螃蟹等甲壳类的水生动物的甲壳中含有丰富的甲壳素(约1/4~ 1/3)。有虾蟹壳经过酸碱处理可得到甲壳素。甲壳素在自然界的合成量仅次于纤维素,是地球上第二大再生资源,每年其生物合成量约为100亿吨。 甲壳素是法国人Braconnot于1811年首次描述的,从那以后有关甲壳素的一些基础研究便逐渐开展起来,而壳聚糖是在1859年被Rouget发现的,自1950年以来有关甲壳素/壳聚糖的研究和开发便逐渐成为化学和生物领域的一个热点,并一直持续升温到现在。甲壳素的化学名称为聚β-(1,4)-2-乙酰氨基-2-脱氧-D-葡萄糖,甲壳素脱乙酰化产物为壳聚糖。它们的化学结构式如图1.2。

壳寡糖的新用途的制作流程

本申请属于农业领域,公开了壳寡糖在防治番茄幼苗潜叶蝇的新用途。壳寡糖原材料来自于虾蟹壳,来源天然环保,采用先进的生物酶解法制备,加工工艺绿色、安全,壳寡糖分子量低,水溶性好,易被生物体吸收。同时壳寡糖在促进有益微生物的生长,提高植株抗逆性和对多种细菌、真菌、病毒等产生免疫杀死作用方面均具有重要意义。试验表明在番茄育苗中,采用叶面喷施壳寡糖溶液时,一定程度上可以缓解虫害,减少番茄幼苗病株数。由于壳寡糖较高的水溶性与安全性,对操作者的技术要求较低,且不会对生物体造成伤害,是一种绿色环保、安全有效的农业制剂。 权利要求书 1.壳寡糖在防治番茄幼苗潜叶蝇的用途。 2.根据权利要求1所述的用途,所述壳寡糖分子量为1000-3000Da。 3.根据权利要求1所述的用途,所述壳寡糖浓度为25-150mg/L。 4.根据权利要求3所述的用途,所述壳寡糖浓度为100mg/L。 5.根据权利要求1所述的用途,所述壳寡糖作用于番茄幼苗的时期为子叶展平至五到六片叶。 6.一种防治番茄幼苗潜叶蝇的方法,在番茄幼苗子叶展平后,将壳寡糖混合液通过叶片喷施方式作用于番茄幼苗,每盘幼苗壳寡糖混合液的用量为1/3L/d。 7.根据权利要求6所述的方法,所述壳寡糖混合液为壳寡糖水溶液或壳寡糖溶于水溶性的溶剂制得的溶液。 8.根据权利要求7所述的方法,所述壳寡糖混合液中壳寡糖浓度为25-150mg/L,壳寡糖分子

量为1000-3000Da。 技术说明书 壳寡糖的新用途 技术领域 本技术属于农业领域,具体涉及壳寡糖的新用途,尤其是涉及壳寡糖在防治番茄幼苗潜叶蝇的用途。 背景技术 潜叶蝇是蔬菜生产中常见的虫害,以幼虫潜入叶片内取食叶肉,在叶面留下不规则线形形状。高温高湿条件下易引发潜叶蝇虫害,夏季为虫害高峰期。在番茄幼苗生长过程中,在2-7叶时易受潜叶蝇虫害,且受害严重时,潜痕密布,叶片发黄脱落,严重影响其叶片光合作用,不利于幼苗生长,进而影响蔬菜的生长,而后期也会影响其产量和品质。 目前生产中对于潜叶蝇的防治方法主要有以下几点:1、及时清除田间、田边杂草和蔬菜老叶、脚叶,减少虫源;2、大棚内茄果类蔬菜可悬挂黄板进行诱杀成虫,以减少虫源基数; 3、化学防治,选择持效期长的吡蚜酮、噻虫嗪、吡虫啉、阿维菌素及其复配制剂等药剂叶面喷雾防治。由于潜叶蝇传播蔓延快,易产生抗药性,因此在进行化学防治时,必须一次只能施用一种药剂且需轮换交替用药。目前生产中,化学药剂一般会选用21%灭杀毙乳油2500倍液、10%灭百可1300倍液、2.5%敌杀死乳油2500倍液、阿维菌素、20%速灭杀丁乳油2800倍液等等,此类药物均具有较高的毒性,持效期长,因此进行农药操作时需做好严格的防护措施,以免对操作者皮肤和呼吸道等造成损伤。此类药物与其他农药混用时其注意事项各有不同,且番茄幼苗在2~7片叶时,叶片较小,极易受到药害,对药物的选择和用量的需

磷酰氯合成方法研究进展_刘波

133 磷酰氯合成方法研究进展 刘 波1,王 博2 (1.环境保护部西北核与辐射安全监督站,甘肃兰州 730020; 2. 海南大学化工学院,海南海口 570228) 摘要:磷酰氯类化合物是一类重要的化学中间体,用途十分广泛。就近年来合成磷酰氯方法的进展 情况而言,寻找一种经济、环境友好、容易操作的合成工艺仍是未来的研究方向的。 关键词:磷酰氯;合成;进展 磷酰氯类化合物是一类重要的化学中间体,具有十分广 泛的用途,比如在杀虫剂、抗生素、杀真菌剂、延缓剂、润 滑剂、阻燃剂等的合成中有着非常重要的用途。同时磷酰氯 也是合成各种生物活性的化合物如氨基磷酸酯、膦酸盐、烯 醇磷酸酯、联胺磷酸酯的关键中间体。下面就磷酰氯类化合 物近年来的合成方法做一些总结。 1 酰化试剂与磷酸酯类化合物反应 1.1 氯化亚砜做为酰化试剂制备磷酰氯 常温下使用氯化亚砜和亚磷酸三乙酯或亚磷酸二乙酯 进行反应生成磷酰氯,如(图1)所示。 图1 磷酸酯与氯化亚砜的反应 1.2 氯气作为酰化试剂 Mueller, Eugen等 [1]在此基础上用环己烷做催化剂,室 温下反应得到磷酰氯,收率在80%左右,同时生成加成产物 (图2a)。2006年施介华等 [2]在室温下用氯气反应得到相应 的磷酰氯,收率为93%左右(图2b)。 图2 磷酸酯与氯化亚砜进行反应 1.3 氯代尿酸类作为酰化试剂 2005年,Acharya, J.,王博等[3]用三氯异氰尿酸和亚磷 酸二烷基酯类高效率地合成磷酰氯。后来,Shakya,P. D. 等[4]报道了一篇关于酰氯合成的方法的研究论文,在该论文 中同样采用氯代尿酸类化合物作为酰化试剂(图3)。 图3 氯代尿酸类化合物与磷酸酯反应 1.4 磺酰氯类化合物做催化作用下氯气做酰化试剂 用磺酰氯类化合无做催化剂的磷酰化反应不常见,且该 反应在-78℃进行反应,条件苛刻,收率不高(图4)。 图4 烯烃和磺酰氯催化下氯气与三磷酸酯反应 1.5 四氯化碳做为酰化试剂参与的磷酰化反应 四氯化碳和亚磷酸二乙酯或亚磷酸三乙酯在无催化剂 的情况下反应直接制备磷酰氯的反应(图5a)。同样在缚酸 剂三乙胺的存在下,有无催化剂都能进行反应得到磷酰氯, 该反应较无三乙胺存在的情况下更彻底(图5b)。 图5 四氯化碳参与的磷酰化反应 2010年第12期 2010年12月 化学工程与装备 Chemical Engineering & Equipment

壳寡糖的功效与作用

现在市场上充斥着各种各样的壳寡糖保健产品,如果选择合适自己的壳寡糖保健品大家可能一头雾水,不知道它的功效到底如何,是否有广告宣传的那么神效,下面我们一起来了解下什么是壳寡糖。 壳寡糖也叫壳聚寡糖,也称几丁寡糖,学名β-1,4- 寡糖-葡萄糖胺,它是将壳聚糖经特殊的生物酶技术处理而得到的一种全新的产品,水溶性较好、功能作用大、生物活性高的低分子量产品。它具有壳聚糖所没有的较高溶解度和容易被生物体吸收等诸多独特的功能,其作用为壳聚糖的14倍。它是自然界中唯一带正电荷阳离子碱性氨基低聚糖,是动物性纤维素。研究证明:壳寡糖具有提高免疫,抑制癌肿细胞生长,促进肝脾抗体形成,促进钙及矿物质的吸收,增殖双歧杆菌、乳酸菌等人体有益菌群,降血脂、降血压、降血糖、调节胆固醇,减肥,预防成人疾病等功能,可应用于医药、功能性食品等领域。 壳寡糖可明显消除人体氧负离子自由基,活化机体细胞,延缓衰老,抑制皮肤表面有害菌滋生,保湿性能优异,是日化领域的基础原料。它不但具备水溶性,使用方便,而且抑制腐败菌性能效果显著,兼备多种功能作用,是性能优良的天然食品防腐保鲜剂。

壳寡糖应用领域非常广泛: 1.医药领域 使伤口免受细菌的感染,而且还可以渗透空气和水分,促进伤口愈合。被生物体内的溶菌酶 降解生成天然的代谢物,具有无毒、能被生物体完全吸收的特点,因此用它作药物缓释剂具 有较大的优越性。杜绝癌细胞的养分供应,使其分裂减少,制约癌细胞的分裂条件;减少癌 细胞代谢产生的酸性废弃物,从另一方面改善癌细胞周围的酸性环境,创造一个癌细胞很难 生存和分裂转移的环境条件;减少癌细胞向周围释放的各种酶(溶脂酶、水解酶、蛋白酶等);中和肿瘤周围的酸性物质,激活人体中有抗癌作用的免疫细胞,起到配合化疗、改善病症、 减轻痛苦、延长生命等作用。 2.食品领域 乳品:作为肠道益生菌(如双岐杆菌)的活化因子,增进钙及矿物质的吸收。 调味品:作为天然防腐产品替代苯甲酸钠等化学防腐剂。 饮料:应用在减肥瘦身、排毒养颜、免疫调节等功能性饮料中。 果蔬:进行涂膜保鲜,其膜层具有通透性、阻水性,同时具有抗菌防腐的功效。 3.农业领域 壳寡糖改变土壤菌群,促进有益微生物的生长,壳寡糖还可诱导植物的抗病性,对多种真菌、细菌和病毒产生免疫和杀灭作用,对小麦花叶病、棉花黄萎病、水稻稻瘟病、番茄晚疫 病等病害具有良好的防治作用,可以开发为生物农药、生长调节剂和肥料等。壳寡糖可有效 提高水果和蔬菜产量,防治病虫害,增殖土壤和生物菌肥的有益菌,被誉为不是农药的农药、不是化肥的化肥,壳寡糖的这种药肥双效的特殊作用决定了它在农业领域的广泛应用。现在 已经颁布农用壳寡糖的标准,在农业上它叫甲壳寡聚糖。 4.日用化工领域 壳寡糖具有明显的保湿,活化机体细胞,阻止皮肤粗糙和老化,抑制皮肤表面有害菌滋生、 抑菌抗皮肤病和吸收紫外线功能等功效,可以应用在保湿、抗皱、防晒等类型的护肤品中;

壳寡糖的酶法制备和分离技术可行性实施报告

2008年度新苗人才计划项目

项目名称:壳寡糖的酶法制备和分离技术的研究 一、立项背景及意义 壳寡糖(Chitooligosaccharide),又名甲壳低聚糖,是由氨基葡萄糖通过β-1,4-糖苷键连接而成的聚合度约为2-20的低聚糖,其分子量低于5000,具有稳定的三维结构。壳寡糖可运用壳聚糖经过生物酶技术降解制得。 壳聚糖广泛存在于自然界的虾壳、蟹壳和真菌中,虽然有特殊的生物活性,但由于其分子量大、水溶性差,在人体不易被吸收而使其应用受到限制。作为一种生物技术产品,壳寡糖几乎包括了所有壳聚糖的所有优点,它具有良好的生物

相容性和生物降解性、亲水性、吸附性、生物学活性等多种理化特征以及天然、高效、毒副作用少、抗药性不显著、性能多样等特点。科学研究表明,壳寡糖的功能作用和生物活性比起壳聚糖将提高数十倍、应用领域更加广泛、人体吸收率近100%(壳聚糖吸收率6.48%),而且增加了促进钙吸收的新的功能作用,具有较高的科技含量和附加值,发达国家称其为“软黄金”。 壳寡糖具有三调(免疫调节、调节pH值、调节荷尔蒙)、三降(降血脂、降血糖、降血压)、三排(排胆固醇、排重金属离子、排毒素)、三抑(抑制癌细胞、抑制癌细胞转移、抑制癌毒素)等功能,同时,还具有抗自由基、防辐射、抗炎、止血以及促进伤口愈合等功能。壳寡糖及其衍生产品可广泛应用于医药、保健、食品、日化、农业等领域。在医药保健领域具有提高免疫、活化细胞、调节血糖血脂血压胆固醇、预防治疗癌症、强化肝功、促进钙吸收、增殖肠道有益菌等功能;在食品饮料领域是一种良好的健康食品添加剂,可增殖乳酸菌、双歧杆菌等人体有益菌100倍以上;在日化领域具有营养皮肤、抑菌、保湿等功能,性能优于传统的透明质酸等产品;在农业领域可激活植物免疫系统和酶系活性,能促进植物生长、提高作物产量和品质、增强抗病力、增殖生物菌肥有益菌群等,具有药肥双效功能,被誉为“不是农药的农药,不是化肥的化肥”,市场前景极其广阔。 目前壳寡糖产品的年需求量在6000吨以上。在精细化工领域,由于壳寡糖的绿色天然的特性符合世界日化产品的发展趋势,含天然活性物质的化妆品顺应回归自然、科学美容的消费趋势,欧洲现已有60多个与壳寡糖相关的化妆品品牌,年需求壳寡糖1500吨。我国化妆品年销售额从1982年的2亿元人民币发展到2001年的400亿元,居亚洲第二位。在生物医药领域,从中国产业发展研究中心统计可知, 2005年我国医药生物技术工业总产值将达到400亿-500亿元。在保健食品领域,韩国于1996年即批准壳寡糖为功能性保健食品,我国现在已有许多保健品及药品等年需求壳寡糖上百吨的保健食品生产厂家,国许多医药保健品公司正在申报壳寡糖保健食品文号,预计年需求量将以高于30%的速度递增。在农林畜牧领域,因壳寡糖具有良好的抗病虫害功能,且有安全、微量、高效、成本低等优势,可使水果、蔬菜、粮食增产10%-30%,因而可以应用于生物农药产品,部分替代化学农药。目前我国农业病虫害共2000余种,受灾面积数10亿亩。因此壳寡糖在农林畜牧上的应用对我国的农业可持续发展具有重要意义,以壳寡糖为基础的生物农药将有广阔的发展空间。科技部已将“壳寡糖新产品的开发应用”列为国家“九五”攻关计划项目和“十五”招投标项目,要求建立数条年产500吨以上的壳寡糖生产线,到2015年总产值可达1100亿-1300亿元,从而满足国市场的需求。壳寡糖的级别不同,售价差额较大。农业专用壳寡糖市场价为400元/公斤;食品级壳寡糖市场价为600元/公斤;而化妆品级壳寡糖市场价为150元/公斤。随着壳寡糖应用围的不断扩大,加之作为一种性能优异的基础原料,市场需求量将呈稳步上升趋势。同时,壳寡糖作为一种中间原料,出口市场稳定。

苯甲酰氯的合成方法大全综述

苯甲酰氯的合成方法 摘要叙述了苯甲酰氯的物理性质和化学性质,介绍了实验室中合成苯甲酰氯和工业生产苯甲酰氯的方法,探讨了苯甲酸与三氯苄在三氯化铁催化剂作用下反应制备苯甲酰氯时影响苯甲酰氯产率的主要因素, 确定了最适宜的反应条件,即:苯甲酸与三氯苄配比以1:1为最佳,反应温度控制在110℃左右时为宜,使用三氯化铁为催化剂苯甲酰氯的产率最高,催化剂的用量以0.25 % 为宜,反应时间以60分钟为最好。 关键词苯甲酰氯;合成;苯甲酸 Synthesis Methods of Benzoyl Chloride Abstract Describes the physical and chemical properties of benzoyl chloride, introduced the methods of laboratory synthesis of benzoyl chloride and industrial production of benzoyl chloride, discussed the main factors effecting benzoyl chloride production in reaction preparation of benzoyl chloride of benzoic acid and benzyl trichloride under the action of catalyst of ferric chloride, determined the optimum reaction conditions, that is:benzoic acid and benzyl trichloride ratio of 1:1 is the best, reaction temperature control at 110 degrees Celsius is appropriate, the rate of benzoyl chloride is highest when using ferric chloride as catalyst, the appropriate amount of catalyst is 0.25 %, the reaction time is 60minutes for the best. Keywords Benzoyl chloride; Synthesis; Benzoic acid 1 前言 苯甲酰氯是重要的有机合成中间体,广泛地应用于农药、医药、香料和助剂等的合成中。苯甲酰氯还是重要的苯甲酰化和苄基化试剂。苯甲酰氯主要用于生产过氧化苯甲酰、二苯酮类化合物、苯甲酸苄酯等重要化工原料。 2 苯甲酰氯的物理性质 苯甲酰氯是一种无色透明液体。有强烈的刺激气味。熔点- 1. 0 ℃,沸点197. 2 ℃,相对密度 1. 2120 (20 ℃)。苯甲酰氯能够燃烧,遇水、氨水或乙醇逐渐分解成苯甲酸、苯甲酰胺或苯甲酸乙酯和盐酸。 3苯甲酰氯的化学性质 苯甲酰氯较脂肪族酰氯稳定,但由于其中含有较活泼的氯,故决定了其化学活泼性很强,主要用作苯甲酰化剂。苯甲酰氯可以发生水解作用、还原反应、胺化反应、酯化反应、缩合反应、氯化反应等化学反应。 4苯甲酰氯的实验室合成法 目前常用的合成苯甲酰氯的方法主要有以下几种:

壳寡糖产业化可行性报告

国家“九五”攻关科技成果(96-C03-01-01) 壳寡糖产业化可行性报告 中国科学院大连化学物理研究所 天然产物与糖工程课题组 2001年7月

壳寡糖产业化可行性报告 第一部分:项目背景及进展 该课题是国家科技部“九五”攻关项目,于2000年8月通过由中国科学院组织的专家鉴定,该项工艺是首次利用酶工程、生化反应分离耦合技术和纳米滤膜浓缩和纯化技术制备低聚氨基葡萄糖,经查新,国内外未见报道。首次开发出低聚氨基葡萄糖保健食品和生物农药,同时研制开发的奥利奇善胶囊获得卫生部保健食品证书,中科6号(好普)生物农药获农业部农药检定所新农药登记证书。并率先实现了低聚氨基葡萄糖生物农药的产业化及在植物病害防治方面的应用,达到了国际领先水平。(意见详见成果鉴定证书)。 (一)项目的意义和必要性 由于我国保护知识产权法律的制定与实施,以及加入WTO日趋临近,研制创新药物是十分迫切的任务,需要下大力气研究开发具有我国自主知识产权的新型药物。开发治疗重大疾病的药物,关键在于发现具有生物活性的化合物或优秀的先导化合物,然后进行结构改造和优化,选择适宜的加工技术和产业化工程,进而开发出创新药物。我国具有丰富的生物资源和天然药物宝库,从生物资源中寻找新型先导化合物和创制新药,利用生物加工技术开发和利用我国的生物资源,从而促进生物来源药物生产的高技术化。 继基因工程、蛋白质工程之后,糖工程已成为最引人注目的生物技术新领域。近年来的研究表明,无论是在基本的生命过程中,如受精、发生、发育、分化、神经系统、免疫系统恒态维持方面,还是在疾病的发生、发展中,如炎症及自身免疫疾病、老化、癌细胞异常增生及转移、病原菌感染等过程中,都涉及寡糖链的参与。以寡糖片段干扰疾病的发生、发展以及致病菌的侵染,将是从病理上的根治与预防。因此,通过多糖降解、化学合成、转化及分子修饰等手段寻找具有生理活性的天然寡糖药物已成为国际上寡糖药物开发的热点,利用该技术开发寡糖类新型药物对人类健康意义重大。 地球上两大生物群体,即细胞壁中具有甲壳质的生物和具有纤维素的生物,具有甲壳质的生物进化为菌类、节足动物,具有纤维素的生物则进化为植物和脊椎动物。两大生物群体彼此互相攻击、防卫,又相互利用、依存,以维持自己的生命,形成食物链。在一个多世纪前就发现了甲壳质,但它的优异功能只是在近40年,特别是近十年才被人们逐步认识,已形成了一门新兴学科—甲壳质化学。 几丁质又名甲壳质,存在于昆虫、甲壳类动物外骨骼和真菌细胞壁及一些绿藻中,它是由

薄膜制备方法

薄膜制备方法 1.物理气相沉积法(PVD):真空蒸镀、离子镀、溅射镀膜 2.化学气相沉积法(CVD):热CVD、等离子CVD、有机金属CVD、金属CVD。 一、真空蒸镀即真空蒸发镀膜,就是制备薄膜最一般的方法。这种方法就是把装有基片的真空室抽成真空,使气体压强达到10ˉ2Pa以下,然后加热镀料,使其原子或者分子从表面气化逸出,形成蒸汽流,入射到温度较低的基片表面,凝结形成固态薄膜。其设备主要由真空镀膜室与真空抽气系统两大部分组成。 保证真空环境的原因有①防止在高温下因空气分子与蒸发源发生反应,生成化合物而使蒸发源劣化。②防止因蒸发物质的分子在镀膜室内与空气分子碰撞而阻碍蒸发分子直接到达基片表面,以及在途中生成化合物或由于蒸发分子间的相互碰撞而在到达基片前就凝聚等③在基片上形成薄膜的过程中,防止空气分子作为杂质混入膜内或者在薄膜中形成化合物。 蒸发镀根据蒸发源的类别有几种: ⑴、电阻加热蒸发源。通常适用于熔点低于1500℃的镀料。对于蒸发源的要求为a、熔点高 b、饱与蒸气压低 c、化学性质稳定,在高温下不与蒸发材料发生化学反应 d、具有良好的耐热性,功率密度变化小。 ⑵、电子束蒸发源。热电子由灯丝发射后,被电场加速,获得动能轰击处于阳极的蒸发材料上,使蒸发材料加热气化,而实现蒸发镀膜。特别适合制作高熔点薄膜材料与高纯薄膜材料。优点有a、电子束轰击热源的束流密度高,能获得远比电阻加热源更大的能量密度,可以使高熔点(可高达3000℃以上)的材料蒸发,并且有较高的蒸发速率。b、镀料置于冷水铜坩埚内,避免容器材料的蒸发,以及容器材料与镀料之间的反应,这对于提高镀膜的纯度极为重要。c、热量可直接加到蒸发材料的表面,减少热量损失。 ⑶、高频感应蒸发源。将装有蒸发材料的坩埚放在高频螺旋线圈的中央,使蒸发材料在高频电磁场的感应下产生强大的涡流损失与磁滞损失(铁磁体),从而将镀料金属加热蒸发。常用于大量蒸发高纯度金属。 分子束外延技术(molecular beam epitaxy,MBE)。外延就是一种制备单晶薄膜的新技术,它就是在适当的衬底与合适条件下,沿衬底材料晶轴方向逐层生长新单晶薄膜的方法。外延薄膜与衬底属于同一物质的称“同质外延”,两者不同的称为“异质外延”。 10—Pa的超真空条件下,将薄膜诸组分元素的分子束流,在严格监控之下,直接喷MBE就是在8 射到衬底表面。其中未被基片捕获的分子,及时被真空系统抽走,保证到达衬底表面的总就是新分子束。这样,到达衬底的各元素分子不受环境气氛的影响,仅由蒸发系统的几何形状与蒸发源温度决定。 二、离子镀就是在真空条件下,利用气体放电使气体或被蒸发物质离化,在气体离子或被蒸发物质离子轰击作用的同时,把蒸发物或其反应物蒸镀在基片上。 常用的几种离子镀: (1)直流放电离子镀。蒸发源:采用电阻加热或电子束加热; 充入气体: 充入Ar或充入少量反应气体; 离化方式:被镀基体为阴极,利用高电压直流辉光放电离子加速方式:在数百伏至数千伏的电压下加速,离化与离子加速一起进行。 (2)空心阴极放电离子镀(HCD,hollow cathode discharge )。等离子束作为蒸发源,可充入Ar、其她惰性气体或反应气体;利用低压大电流的电子束碰撞离化, 0至数百伏的加速电压。离化与离子加速独立操作。 (3)射频放电离子镀。电阻加热或电子束加热,真空,Ar,其她惰性气体或反应气体; 利用射频等离子体放电离化, 0至数千伏的加速电压,离化与离子加速独立操作。 (4)低压等离子体离子镀。电子束加热,惰性气体,反应气体。等离子体离化, DC或AC

氨基寡糖素介绍

氨基寡糖素 百科名片 氨基寡糖素,也称为农业专用壳寡糖,是根据植物的生长需要,采用独特的生物技术生产而成,分为固态和液态两种类型。壳寡糖本身含有丰富的C、N, 可被微生物分解利用并作为植物生长的养份。 目录 简介 特性机理 功能作用 使用典列 注意事项 简介 壳寡糖可改变土壤微生物区系, 促进有益微生物的生长而抑制一些植物病原菌。壳寡糖可刺激植物生长,使农作物和水果蔬菜增产丰收。壳寡糖可诱导植物的抗病性, 对多种真菌、细菌和病毒产生免疫和杀灭作用,对小麦花叶病、棉花黄萎病、水稻稻瘟病、番茄疫病等病害具有良好的防治作用。同时,壳寡糖对多种植物病原菌具有一定程度的直接抑制作用。浩瀚农业壳寡糖在上应用具有微量(PPM级)、高效、低成本、无公害等特点,对我国农业可持续性发展具有重要意义。目前,氨基寡糖素杀菌农药已经在我国进行了大面积的推广应用,对我国农业的可持续性发展具有重要意义。 特性机理 氨基寡糖素(壳寡糖)是指D-氨基葡萄糖以β-1.4糖苷键连接的低聚糖,由几丁质降解得壳聚糖后再降解制得,或由微生物发酵提取的低毒杀菌剂。氨基寡糖素(农业级壳寡糖)能对一些病菌的生长产生抑制作用,影响真菌孢子萌发,诱发菌丝形态发生变异、孢内生化发生改变等。能激发植物体内基因,产生具有抗病作用的几丁酶、葡聚糖酶、保素及PR蛋白等,并具有细胞活化作用,有助于受害植株的恢复,促根壮苗,增强作物的抗逆性,促进植物生长发育。氨基寡糖素溶液,具有杀毒、杀细菌、杀真菌作用。不仅对真菌、细菌、病毒具有极强的防治和铲除作用,而且还具有营养、调节、解毒、抗菌的功效。可广泛用于防治果树、蔬菜、地下根茎、烟草、中药材及粮棉作物的病毒、细菌、真菌引起的花叶病、小叶病、斑点病、炭疽病、霜霉病、疫病、蔓枯病、黄矮病、稻瘟病、青枯病、软腐病等病害。 功能作用 一、诱导杀菌农药壳寡糖以其来源广泛、诱抗活性高并能调节植物生长发育等优势,逐渐成为国内外关注热点。作为生物农药,壳寡糖在防病和抗病方面有着多种机制,除了作为活性信号分子,迅速激发植物的防卫反应,启动防御系统,使植物产生酚类化合物、木质素、植保素、病程相关蛋白等抗病物质,并提高与抗病代谢相关的防御酶和活性氧清

壳寡糖_综述

壳寡糖 1. 壳寡糖的基本概念 壳寡糖,又称寡聚氨基葡糖、甲壳低聚糖,是指2-10个氨基葡萄糖以β-1,4-糖苷键连接而成的低聚壳聚糖,是由壳聚糖解聚而制成的。以普通虾蟹壳为原料,经脱钙、脱蛋白、脱色、及脱乙酰基反应后,运用酶生物技术和先进分离技术制备而成的氨基寡聚糖类产品。是天然糖中唯一大量存在的碱性氨基多糖,壳寡糖是甲壳素、壳聚糖系列产品的高级产品,具备水溶性好、生物活性高、功能作用大、应用领域广、易被人体吸收等突出特点,在国外素有人体第六大生命要素、软黄金之美誉,在医药、功能性食品、日化、农业等领域应用广泛。壳寡糖作为新世纪前瞻性生物技术产品,具备广泛的应用前景。 图1 壳寡糖的生产工艺工程 2.壳寡糖的生物活性 2.1 壳寡糖的免疫调节作用 壳聚糖具有激活机体系统、介导机体系统的系列生物学效应,提高吞噬细胞的系统功能。巨噬细胞表面存在着细菌多糖的受体,而壳聚糖作为细

菌多糖的类似物,能刺激巨噬细胞活化,产生如下反应:促进其吞噬功能,增强它在其它免疫应答中的协同效应,从而实现机体对T细胞、NK细胞和B细胞的调节,介导机体的细胞免疫应答和体液免疫应答。因此,壳聚糖具有对机体的免疫调节作用。 2.2 控制胆固醇 人类健康的最大问题之一是胆固醇,它导致许多严重的疾病。壳聚糖有两个机制降低胆固醇。一个是阻止脂肪的吸收,另一个是将人体血液内的胆固醇排泄掉。首先,壳聚糖抑制那些助于脂肪吸收的脂肪酶的活性。脂肪酶分解脂肪使人体进行吸收。另外一个是排泄胆酸。一旦胆酸排泄,则血液中的胆固醇被用于制造胆酸。这两种机制使得壳聚糖成为强胆固醇清除剂。壳聚糖是一种天然材料,具有强大的阴离子吸附力,适用于降低胆固醇而没有任何副作用。 2.3 抑制细菌活性 壳聚糖在弱酸溶剂中易于溶解,这种溶液特别含有氨基(NH2+)。这些氨基通过结合负电子来抑制细菌。壳聚糖的抑制细菌活性,使其在医药、纺织和食品等领域有着广泛的应用。 2.4 预防和控制高血压 对高血压最有影响力的因素之一就是氯离子(Cl-)。它通常通过食盐摄入。近来许多人都过量消费盐。血管紧缩素转换酶(ACE:Angiotensin Converting Enzyme)产生血管紧缩素II,一种引起血管收缩的材料,其活力来自氯离子。高分子壳聚糖象膳食纤维一样发挥作用,在肠内不被吸收。壳聚糖通过自身的氯离子和氨根离子之间的吸附作用,排泄氯离子。因此,壳聚糖降低血管紧缩素II。它有助于防止高血压,特别是那些过量摄入食盐的人群。 2.5 吸附和排泄重金属 壳聚糖的一个显著特性是吸附能力。许多低分子量的材料,比如金属离子、胆固醇、甘油三酯、胆酸和有机汞等,都可以被壳聚糖吸附。特别是壳聚糖不仅可以吸附镁、钾,而且可以吸附锌、钙、汞和铀。壳聚糖的吸附活性可以有选择地发挥作用。这些金属离子在人体中浓度太高是有害的。比如,血液中铜离子(Cu2+)浓度过高会导致铜中毒,甚至产生致癌后

45095酰氯制备方法综述

酰氯制备方法综述 来源:中国化工信息网 2007年1月29日 酰氯是一种重要的羧酸衍生物,在有机合成、药物合成等方面都有着重要的应用,主要可以发生水解、醇解、氨(胺)解、与有机金属试剂反应、还原反应、α氢卤化等多种反应。酰氯是最活泼的酰基化试剂,极限结构的共振杂化体。这种共振效应稳定了整个分子,也加强了羰基碳原子与离去基团的键。共振效应是一种稳定效应,它依赖于成键原子轨道的交盖,酰氯受这种共振的影响可能是最小的,因为这种共振需要碳原子的2p轨道与氯原子的3p轨道交盖,这两种轨道的大小不同,它们之间的交盖不大,对Cl来说,结构(Ⅱ)的贡献不大,酰氯由于共振影响而受到的稳定作用是最小的,因此,酰氯是最活泼的酰基化试剂。在一些羧酸不能进行或进行非常缓慢的反应中将羧酸制成酰氯使反应活性和产率大大提高。 目前,制备酰氯的方法最常用的SOCl 2 ,三氯化磷,五氯化磷,三光气等,本文对几种方法进行论述。 1 二氯亚砜法 1.1 二氯亚砜在酰氯制备中的应用 脂肪酸(包括不饱和脂肪酸)芳香酸,有机磺酸和取代酸(如氨基酸和卤代酸等)在催化剂存在下均能与氯化亚砜生成酰氯,催化剂通常使用N,N-二甲基甲酰胺(DMF)、N,N-二甲基苯胺和吡啶等。反应过程中氯化亚砜一般先与催化剂结合,然后再与羧酸反应生成酰氯。 (1)三甲基乙酸在己内酰胺催化下与氯化亚砜反应生成三甲基乙酰氯,产率96%。 (CH 3) 3 CCOOH→(SOCl 2 己内酰胺)→(CH 3 ) 3 COCl (2)对(间)苯二甲氯化亚砜酸和氯化亚砜反应制得对(间)苯二甲酰氯。 这两种产品主要用于有机合成,是目前广泛使用的增塑剂对苯二甲酸二异辛脂(DOTP)和邻苯二甲酸二异辛酯的合成原料。 (3)邻氯苯甲酸和氯化亚砜反应生成邻氯苯甲酰氯。 该产品主要用于有机合成以及医药,染料中间体的合成。 (4)用丁(庚、辛、癸)酸和氯化亚砜反应制得丁(庚、辛、癸)酰氯,用十六碳酸和氯化亚砜反应制得十六碳酰氯,这4种产品常用于医药中间体的合成。 CH 3(CH 2 ) n COOH→(SOCl 2 )→CH 3 (CH 2 ) n COCl n=4-20 (5)硬脂酸和氯化亚砜反应制得的硬脂酸酰氯可用于合成护肤品,双硬脂酸曲酸脂和制备造纸工业的中性施胶剂——烷基烯酮二聚体(AKD)。 (6)有机磺酸在催化剂存在下与氯化亚砜反应一般生成磺酰氯也可由有机磺酸钠直接与氯化亚砜反应生成磺酰氯。 1.2 氯化亚砜在制备酰氯中的优、缺点 利用氯化亚砜制备酰氯反应条件温和,在室温或稍加热即可反应。产物除酰氯外其他均为气体,往往不需提纯即可应用,纯度好,产率高。如果所生成酰氯的沸点与氯化亚砜的沸点相近,与氯化亚砜不宜分离;另外此方法氯化亚砜用量大,生产成本高,且设备腐蚀严重。

壳寡糖

内部资料严禁外传 三木堂溶排通五大成分之 —壳寡糖 壳寡糖是一种什么物质?是糖生物工程的产物,是继基因工程、蛋白质工程后生物工程领域最后一个重要的研究领地。 随着科学的不断发展,科学家们发现细胞糖链中所蕴藏的生命信息是生物体内核酸和蛋白质的上千倍,壳寡糖是生物细胞中真正主宰生命的使者,自然界中蛋白质、脂肪、水、矿物质、微量元素统称为五大要素,而糖类也是人类赖以生存的基本要素,称第六要素。 壳寡糖作用机理: 人体细胞寡糖糖链是细胞重要成分,具有“通讯”、“识别”、“调控”功能,而壳寡糖之所以有多种神奇功能, 正是源于寡糖是自然界中唯一带正电荷的碱性氨基多糖,同时具有游离的氨基和羟基,又是人体细胞的重要组成部分。 壳寡糖的历史: 蒸汽机的发明,基因的发现、互联网的应用,人类的每一次重大发现,都标志着人类的文明翻过新的一页。近年来,生物工程和生命科学研究上的一项项突破,如基因、蛋白质、碳水化合物组学等,也为人类健康长寿的梦想增添着一个又一个自信的砝码,而随着科学研究的深化,一个真正具有突破性历史价值的领域展现在全球生命科学科研工作者的面前。由于糖生物工程被公认为是人类生物工程领域中最后一个巨大前沿,所以全球范围内掀起的从未有过的研究热潮,必将实现人类健康文明史上的一次重要跨越。 每一个重大的科学发现都经历了各种曲折的历程,壳寡糖的研究应用也一样。 1811年法国学者布拉克诺首先在蘑菇中发现了甲壳几丁质,紧接着1823法国学者欧吉尔在昆虫的外壳中也发现了类似的物质,并命名为Chitin(甲克质),1894年德国科学家在此基础上发现几丁聚糖。可是由于没有加工提取的合适方法,也没有发现其特殊的功能,在其后的100年中,甲壳质慢慢的被科学界所遗忘。 广岛原子弹事件后,有学者发现,小螃蟹“死里逃生”。关于甲壳质的研究才重新成为科学界的热点。通过多年的实验研究,日本科学家终于找出了让小螃蟹死里逃生的神奇物质,它就是藏在螃蟹壳中的壳寡糖。又经过科学家们10年的研究证实,这种甲壳质中的有效成分----壳寡糖具有增强机体免疫力、调节血脂、防癌抗癌和抑制肿瘤转移等多项生理功效,甚至具有抗炎止痛等多种应用价值。 随着科学家对糖生物学研究的深入,壳寡糖越来越多的功能和特性得到了证实并引起世界各国的高度重视。美国,欧洲,日本,在上个世纪90年代,相继投入大量人力物力着手展开壳寡糖的制备与应用研究。 1993年,美国第一届糖生物工程学会上,著名生物学家,哈特主席说,生物化学中最后一个重大的前沿,糖生物学的时代正在加速来临。 接下来的10多年时间里,中国的糖生物学,奇迹般的突飞猛进式发展。 1995年中国科学院大连化学物理研究所筹备成立天然产物与糖生物工程课题组。 1996年中科院1805课题组壳寡糖的制备与保健食品的开发课题列入“九五”重点科技攻关计划,归属国家“8 63”计划。 2009年国家发改委将壳寡糖产业列入“十二五”产业计划。 众多的科技成果,离不开党和国家的高度重视与支持,中国糖生物工程的发展与壮大更离不开党和国家领导人的关心和重视。面对糖生物学这一世界生物科技的前沿领域。国家三代领导人都非常关注。 1986年邓小平同志视察中国科学院,提出国家863科学计划,为糖生物工程制品的研发奠定了基础。 1999年江泽民总书记亲临中科院大连化学物理研究所,对糖生物工程组的研发项目给予重点指示。 2002年,胡锦涛主席视察中科院大连化学物理研究所,对大化所包括糖生物工程组的研究成果给予肯定,并亲切慰问工程技术人员。 壳寡糖机能疗法

相关主题
文本预览
相关文档 最新文档