当前位置:文档之家› 天然森林和草地土壤固碳功能与固碳潜力研究

天然森林和草地土壤固碳功能与固碳潜力研究

天然森林和草地土壤固碳功能与固碳潜力研究
天然森林和草地土壤固碳功能与固碳潜力研究

土壤—微团聚体组成的测定—吸管法

FHZDZTR0010 土壤微团聚体组成的测定吸管法 F-HZ-DZ-TR-0010 土壤—微团聚体组成的测定—吸管法 1 范围 本方法适用于土壤微团聚体组成的测定。 2 原理 土壤中小于0.25mm的团聚体为微团聚体。土壤中由原生颗粒所形成的微团聚体标志着土壤在浸水状况下的结构性能和分散强度。土壤微团聚体测定与土壤颗粒组成吸管法测定基本相同,也是根据司笃克斯定律,利用不同直径微团聚体的沉降时间不同,将悬浮液分级。所不同的是在颗粒分散时,为了保持土壤的微团聚体免遭破坏,在分散过程中只用物理方法(振荡)处理分散样品,而不加入化学分散剂。然后根据土壤微团聚体测定结果与土壤颗粒组成测定结果中的小于0.002mm粒级含量计算出土壤分散系数和结构系数。土壤分散系数用作表示土壤微团聚体在水中被破坏的程度,土壤分散系数愈大,则微团聚体的稳固性愈低。土壤结构系数用作鉴定微团聚体的水稳定性。 3 仪器 3.1 振荡机。 3.2 土壤颗粒分析吸管(图1)。 图1 土壤颗粒分析吸管

3.3 搅拌棒(图2)。 3.4 量筒,1000mL 。 3.5 土壤筛,孔径2mm 、1mm 、0.5mm 。 3.6 烧杯,50mL ,200mL 。 3.7 洗筛,直径6cm ,孔径0.25mm 。 3.8 锥形瓶,500mL 。 4 操作步骤 4.1 称取通过2mm 筛孔的10g (精确至0.001g )风干土样置于500mL 锥形瓶中,加入200mL 水,加塞浸泡24h ,然后在振荡 机上振荡2h 。在1000mL 量筒上放一大漏斗,在量筒口放一孔 径0.25mm 洗筛,将悬浮液通过筛孔洗入量筒中,留在锥形瓶内的土粒,用水全部洗入洗筛内,注意切不可用橡皮头玻璃棒洗擦土粒,以免破坏微团聚体,最后将量筒内的悬浮液用水加至1000mL 。 图2 搅拌棒 将盛有悬浮液的1000mL 量筒放在温度变化较小的平稳试验台上,避免振动,避免阳光直接照射。 将留在洗筛内的砂粒洗入已知质量的50mL 烧杯(精确至0.001g )中,烧杯置于低温电热板上蒸去大部分水分,然后放入烘箱中,于105℃烘6h ,再在干燥器中冷却后称至恒量(精确至0.001g )。 同时取温度计悬挂在盛有1000mL 水的1000mL 量筒中,并将量筒与待测悬浮液量筒放在一起,记录水温(℃),即代表悬浮液的温度。 4.2 吸取悬浮液 根据悬浮液的温度、土壤密度与颗粒直径,按表1土壤颗粒分析吸管法吸取各粒级时间表,吸取各粒级颗粒。吸取各级颗粒的装置如图3所示。 表1 土壤颗粒分析吸管法吸取各粒级时间表 在不同温度下吸取悬液所需时间 10℃ 12.5℃ 15℃ 17.5℃ 20℃ 土壤 密度 粒径mm 吸液深度cm h min s h min s h min s h min s h min s 2.40 0.05 0.02 0.002 25 25 8 9 2 17 31 51 50 15 8 2 16 53 39 38 7 8 2 15 17 29 33 42 7 2 14 47 20 35 1 7 2 13 18 12 42 27 2.45 0.05 0.02 0.002 25 25 8 9 2 17 11 45 13 39 8 2 16 34 34 4 24 8 2 15 0 24 1 29 7 2 14 30 15 5 54 7 2 13 3 7 14 25 2.50 0.05 0.02 0.002 25 25 8 8 2 16 53 39 39 7 8 2 15 17 28 32 17 7 2 14 44 19 31 34 7 2 13 15 11 37 55 6 2 12 49 3 47 18 2.55 0.05 0.02 0.002 25 25 8 8 2 16 36 34 7 2 8 2 15 1 24 2 16 7 2 14 29 15 2 34 7 2 13 1 7 11 52 6 1 12 36 59 23 6 2.60 0.05 0.02 0.002 25 25 8 8 2 15 19 29 36 54 7 2 14 46 19 33 13 7 2 13 15 10 36 32 6 2 12 48 2 46 42 6 1 12 23 55 0 44 2.65 0.05 0.02 0.002 25 25 8 8 2 15 4 25 8 45 7 2 14 32 15 7 5 7 2 13 2 7 11 21 6 1 12 36 59 23 19 6 1 11 12 52 38 8 2.70 0.05 0.02 0.002 25 25 8 7 2 14 50 20 41 31 7 2 13 18 11 42 48 6 2 12 49 3 48 56 6 1 12 24 55 1 40 6 1 11 1 45 17 11 2.75 0.05 0.02 0.002 25 25 8 7 2 14 37 16 16 4 7 2 13 6 7 19 16 6 1 12 38 59 26 13 6 1 11 13 52 40 41 5 1 10 50 49 59 55 2.80 0.05 0.02 0.002 25 25 8 7 2 1 3 24 13 53 22 6 2 12 54 4 57 26 6 1 1 2 27 56 6 10 6 1 11 3 49 21 19 5 1 10 46 43 40 9

森林碳汇及潜力

森林碳汇及潜力 20世纪以来,全球气候发生了明显变化,大气中CO2浓度急剧上升及由此导致的温室效应及气候异常成为目前人类面临的最严峻的环境问题之一[1]。森林生态系统作为陆地生态系统的主体,是CO2的重要碳库,维持着陆地生态系统植被碳库的86%以上和土壤碳库的73%。森林每年光合作用固定的碳约占整个陆地生态系统的2/3,相当于人类活动所释放碳量的10倍之多。森林碳库发生细微的变化就会对全球气候系统产生巨大的影响,在减缓全球气候变化和全球碳循环中起着不可替代的作用[2]。因此,准确地估算森林生态系统的固碳现状,不仅是应对气候变化的需要,对合理经营和管理森林、促进森林生态系统固碳功能的增加也具有重要意义[3]。近20年来,国内外学界针对森林生态系统的植被和土壤碳储量、碳密度和碳汇功能等进行了大量的研究[4-6],但多数研究集中在全球层面上或是国家层面上的森林整体碳储量估算研究[5-8]。这些研究由于涵盖的生物气候类型、植被类型、基础数据来源、研究方法、数据处理模型等的复杂多样,估算的结果存在很大差异,彼此间也缺乏可比性。另外,有关森林生态系统碳储量的研究主要关注于乔木层,对林下植物、枯落物和土壤碳库的研究较少,以致结果不能直接用于指导较小尺度上森林生态系统固碳、增汇的经营管理,需要对省、地、县等不同区域层面的森林碳库分别进行研究。贵州省是我国南方重点林区之一,也是我国木材主要产地和生态建设的主要阵地。但是缺乏关于贵州省森林生态

系统碳储量、森林碳汇等全面系统的研究。本文以贵州省森林资源为研究对象,估算其乔木林、竹林、灌木林和经济林碳汇现状,旨在了解贵州省的森林碳汇现状,为我国区域尺度的森林生态系统碳汇功能,以及我国森林生态系统碳储量和碳循环的研究提供基础数据,为持续固碳增汇的森林经营提供科学参考,并据此进一步说明森林碳汇对减少全区域碳排放的重要贡献。 1试验地概况 贵州省地处东经103o36'~109°35'、北纬24°37'~29°13',面积17.6万km2,平均海拔1100m,全省林业用地面积8.77×106hm2,森林面积7.03×106hm2,森林覆盖率39.93%。乔木林5.49×106hm2,竹林1.1×105hm2;活立木总蓄积 3.10×108m3,其中:乔木林蓄积3.03×108m3。 2研究方法 2.1数据来源 本研究采用的森林资源数据为2000~2010年贵州省森林资源二类调查的汇总数据[9]。

浅议发展林业碳汇的意义

浅议发展林业碳汇的意义 刘准桥 070106114 摘要:温室气体CO2在大气中含量的增加,引起全球气候恶化,生态环境遭到破坏,自然灾害频繁发生。森林的碳汇功能巨大,是改善全球气候的关键部分。本文主要论述了林业碳汇的概念,发展背景,功能,并介绍了影响林业碳汇能力的一些因素,而且探讨了提高森林碳汇的相关措施。 关键词:森林;碳汇;影响因素;措施; An Analysis on the Significance of Developing Forestry Carbon Sequestration Liu Zhun-qiao 070106114 (Nanjing Forestry University) Abstract:The concentration of greenhouse gases CO2 is raising in atmospheric. The climate become warmer and warmer. Ecosystem is destroyed. Natural calamity often occur. Forest is functioning as a principal carbon sink. This article introduced background ,concept and function of forestry carbon sequestration and the key factor of the ability of carbon sequestration ,besides take measure with improving the level of carbon sequestration. Key words: forest, carbon sequestration, influencing factor, measure

土壤团聚体分离方法

土壤微团聚体颗粒分离依据Stemmer 等方法并略作修改,沿用国际制土壤颗粒分级划定粒组。 1.从冰箱中取出土样,将大块土用手轻轻掰成小块土。 2.称取未处理土样35.0 g,水土质量比为5∶1,置于盛有175 ml 自来水 的烧杯中,浸泡1h左右(因为土样较湿,不需要浸泡太长时间)。 3.用探针式超声波发生器(JYD-650)低能量(170 J·L-1)超声分散5 min。 4.用湿筛法分离出2.00~0.20 mm 粒径的土壤颗粒。即0.20 mm筛在下, 2.00 mm筛在上,将两筛置于盆中,然后将超声震荡的土壤悬浮液倒 入筛中,用自来水将筛中的土壤颗粒全部冲下去。0.20 mm筛上残留的土壤颗粒即为2.00~0.20 mm 粒径的土壤颗粒。 5.然后用沉降虹吸法分离盆中的土壤悬液得到0.20~0.02 mm 粒径的土 壤颗粒。首先,通过Stokes 定律计算沉降时间,即 t=s/[(2/9)*gr2*((d1-d2)/η)](参考《土壤胶体》第二册p11) 其中,s 为沉降距离(10cm) g 为重力加速度(981cm/s2) r 为沉降土粒半径(cm) d1 为土粒密度 d2 为介质密度 η为介质的粘滞系数(水的粘滞系数表见《土壤物理性质测定法》p31 ,温度4℃) (本次试验参考各粒级土壤颗粒沉降时间表:10分53秒)然后进行沉降,至少沉降三次,沉降杯中得到0.20~0.02 mm 粒径的土壤颗粒。6.继而采用离心法分离出0.02~0.002 mm、<0.002 mm 粒径的土壤颗 粒。离心时间与转速由公式计算得到。 t =[ηlog(x2-x1)]/[3.81n2r2(d1-d2)] 其中,x1为中心轴到液面的距离; x2 为中心轴到离心管底的距离; n 为离心机每秒转数。 (选t为10分钟,温度为4℃,x1=8,x2=15,分离出<0.002 mm粒径的土壤颗粒,转速为640转/分)沉淀为0.02~0.002 mm 粒径的土壤颗粒,用自来水将0.02~0.002 mm 粒径的土壤颗粒洗出。上清液为<0.002 mm 粒径的土壤颗粒。 7.用高速离心法分离得到<0.002 mm 粒径的土壤颗粒,4800转/分, 10min 。

森林碳汇的作用及发展对策

森林碳汇的作用及发展对策 【摘要】随着温室气体二氧化碳排放量的不断增加,全球气候的恶化进一步加剧,在这样的背景下生态环境遭到了极大地破坏,自然灾害也开始频繁发生。森林作为地球之肺,在改善气候方面具有重要的作用。本文就将主要以森林碳汇的作用以及发展对策为切入点,对其进行简要的介绍和分析,并对如何更好地发挥森林碳汇作用作出相应的建议。 【关键词】森林;碳汇;作用;发展对策 引言 碳汇是指植物通过光合作用,将大气中的温室气体二氧化碳吸收,并以生物量的形式储存在植物体内和土壤中,以此降低二氧化碳气体在大气中的浓度的过程。森林碳汇实质的意义就是通过森林活动来减少大气中二氧化碳气体浓度,清除大气中的温室气体以及避免由此引起的碳的汇集和储存所造成的危害。森林是生态系统的主体,是地球碳循环的重要组成部分。相关的实践调查表明,森林在一年之中能够吸收大量温室气体,并且通过自身的生物原理将二氧化碳转变为氧气,虽然当前森林仅占陆地面积的1/3,但森林植被区的碳储存量却几乎占到陆地碳总容量的一半。因此,做好森林碳汇是解决全球气候变暖问题的重要举措。 一、森林碳汇的发展背景以及作用介绍 (一)森林碳汇的发展背景 森林碳汇的发展背景主要是伴随着人类社会的不断发展与进步,尤其是工业革命以后,由于全球经济的迅猛前进,全球化程度不断加深,使得各种自然资源不断损耗,致使大气中产生了大量的温室气体二氧化碳,使全球平均气温得到了提升。在这样的条件背景下,只有减少大气中的温室气体排放,才能从根本上解决气候变暖这一问题。而通过植树造林和森林保护的措施吸收固定的二氧化碳的方法在成本上相对于工业减排的成本具有很大的优势,因此利用生态系统将二氧化碳以生物量的形式在一定程度上属于更加科学有效的方法。陆地主要生态系统是以森林生态系统为主,所以森林系统在解决温室效应方面的作用是不可磨灭的。 (二)森林碳汇的作用 森林碳汇对于生态环境的作用是至关重要的。森林碳汇能够通过造林、植被达到生态恢复的目的。森林碳汇不仅可以缓解并解决全球气候变暖的问题,而且在一定程度上具备良好的净化空气,减少雾霾,防止水土流失,保护生物多样性,提高土壤肥力等多方面的作用。而在经济成本方面,增加森林碳汇成本较少,实施起来也比较方便,使其成为如今最有效净化空气的方法。森林在减缓气候变化的功能中有碳汇,防止或降低向空气中排放二氧化碳,同时通过改善生态环境,

实验四土壤团聚体组成测定

实验四 土壤团聚体组成测定 一、目的意义 土壤团聚体即团粒结构,是指土壤所含的大小不同、形状不一、有一定孔隙度和机械稳 定性的团聚体之和,是鉴定土壤肥力状况的指标之一。根据其在静水或流水中的崩解情况, 分为水稳性和非水稳性团粒结构两种。测定土壤团聚体的组成,有利于农业上及时采取措施 改善土壤结构,为植物生长提供良好的水肥气热环境,促进作物高产。 二、图样采集处理 在具有代表性的地方,不干不湿时采集土样,深度依需要而定,但应尽量保持原状,带回室 内后,将土块轻轻剥成 10-12mm直径的小块,弃去粗根和小石块,然后将图样风干。 三、测定方法 (一) 仪器:1000ml 沉降瓶,白铁水桶、土壤筛干筛、湿筛各一套,并附有装筛子的架子、 天平(感量 0.01g)、铝盒、烘箱、干燥器、震筛机(机械筛分用) (二) 操作步骤 1. 干筛 称取风干土样 1000g,通过孔径为 10、7、5、3、2、0.5、0.25mm的筛组进行干筛,摇 动 10 个来回,取上两层,余者摇 5 个来回,筛完后将各层样品分别称重(精确到 0.01g), 计算各级干筛团聚体百分含量,计入结果表内。 机械筛分:10 秒钟——5 秒钟 2. 湿筛 (1)根据干筛法求得的各级团聚体百分含量,将风干样品按比例配成 50g; (2)为防止堵塞筛孔,故不把 0.25mm 的团聚体倒入准备湿筛的样品内,但在计算时需 计入这一数据。 (3)将配好的样品倒入 1000ml 沉降瓶,沿瓶壁徐徐注水浸润土壤至饱和,浸泡10 分钟, 再缓缓注满,橡皮塞封口。 (4)数分钟后颠倒沉降瓶,直至瓶中样品完全沉淀,再倒转,往复 6 次。 (5)将湿筛组用薄板夹住放入盛有水的大铁桶中,水面高出筛组约 10cm (6)将沉降瓶倒立进入顶层晒面,轻轻移去盖子,使土粒落在筛子上(持续到溶液基本 澄清为止),盖上塞子,取出沉降瓶。 (7)手压顶部盖子缓提速降,上下 10次取上 2层,再 5 次取其余层 (8)将各层的土粒借白瓷盘和洗瓶转移到铝盒中,倾去上清液,105℃烘干称重(精确到 0.01g),然后计算各级团聚体百分含量,并计入结果表内。 四、结果计算 各级团聚体含量(%)=各级团聚体的烘干重/烘干样品重*100 各级团聚体总和为总团聚体百分含量。 各级团聚体占总团聚体的百分含量(%)=各级团聚体%/总团聚体% 结果分析表(各级团聚体含量%) >10 10-7 7-5 (干) 5-3 3-2 2-1 1-0.5 0.5-0.25 <0.25(干、湿)

谈谈森林的碳汇功能

谈谈森林的碳汇功能 【摘要】森林具有碳汇功能。森林吸收二氧化碳,通过森林等植物的生物学特性,即光合作用吸收二氧化碳,放出氧气,把大气中的二氧化碳固定到植物体和土壤中,清除已排放到大气中的二氧化碳。 【关键词】森林;碳汇功能;森林吸收二氧化碳;放出氧气 1.森林的碳汇功能 自20世纪80年代以来,全球气候变暖已成为不争的事实,由此引起的一系列生态问题日益引起国际社会的广泛关注。预测到2100年,全球平均气温将升高1.8~4摄氏度,海平面升高18~59厘米,将给人类生产、生活和生存带来诸多重大不利影响。导致全球气候变暖的主要原因是由于工业革命以来,煤炭、石油、天然气等矿物能源的大量开采和使用,向大气中过量地排放了以二氧化碳为主的温室气体的结果。排放到大气中的二氧化碳浓度大大增加,打破了地球在宇宙当中的吸热和散热的平衡状态,导致全球气候变暖。 应对气候变化,关键是减少温室气体在大气中的积累,其做法是减少温室气体的排放(减排)和增加温室气体的吸收(增汇)。减少温室气体的排放主要是通过降低能耗、提高能效、使用清洁能源来实现。而增加对温室气体的吸收,主要是通过森林等植物的生物学特性,即光合作用吸收二氧化碳,放出氧气,把大气中的二氧化碳固定到植物体和土壤中,这个过程和机制实际上就是清除已排放到大气中的二氧化碳,因此,森林具有碳汇功能。由于森林吸收二氧化碳投入少、成本低、简单易行,有利于保护生物多样性。我国政府把林业纳入减缓和适应气候变化的重点领域,要求全力打好”森林碳汇”这张牌,充分发挥林业在应对气候变化中的特殊作用。 森林是陆地生态系统中最大的碳库。研究显示: 全球陆地生态系统中存储了2.48万亿吨碳,其中1.15万亿吨碳存储在森林生态系统中。在生长季节,l公顷阔叶林每天可以吸收1吨二氧化碳;森林每生长1 立方米木材,就能从空气中吸收1.83吨二氧化碳,同时释放1.62吨氧气。从20世纪80年代到现在,工业排放的二氧化碳由森林生态系统吸收的达到24%~36%,足以说明森林碳汇功能的重要意义。 我国通过发展和保护森林,固定了大量二氧化碳等温室气体,在减缓气候变暖方面发挥了巨大作用。1980年-2005年,我国通过持续地开展造林和森林经营、控制毁林,净吸收和减少碳排放累计达51.1亿吨。仅2004年中国森林净吸收了约5亿吨二氧化碳当量,占同期全国温室气体排放总量的8%以上。据中国林科院依据第七次森林资源清查结果和森林生态定位监测结果评估,目前我国森林植被总碳储量高达78.11亿吨,森林生态系统年涵养水源量4947.66亿立方米,年固土量70.35亿吨,年保肥量3.64亿吨,年吸收大气污染物量0.32亿吨,年滞尘量50.01亿吨。发展碳汇林业是黑龙江省经济社会可持续发展中的一件大事,

土壤水稳性大团聚体分析

实验报告 2009111720 杜洋 2009111719 万鹏鹏一.实验名称 土壤水稳性大团聚体分析 二.实验目的 本实验的目的是使用土壤团聚体分析仪测定土壤水稳性大团聚体的含量。 三.实验原理 土壤团聚体,是指土壤中大小、形状不一、具有不同孔隙度和机械稳定性、水稳定性的结构单位,通常将粒径>0.25mm的结构单位成为大团聚体。大团聚体分为水稳性和非水稳性两种,非水稳性大团聚体组成用干筛法测定,水稳性大团聚体组成用湿筛法测定。筛分法根据土壤大团聚体在水中的崩解情况识别其水稳性程度,测定分干筛和湿筛两个程序进行,最后筛分出各级水稳性大团聚体,分别称其风干后质量,再换算为占原风干土样总质量的百分比。 四.实验材料和仪器 (1)土壤:褐土 (2)白铁盒:10cm*10cm*10cm (3)套筛,高5cm,直径20cm,孔径分别为8mm、5mm、2mm、1mm、0.5mm、 0.25mm,共七个。(在实际的实验过程中,我们没有使用8mm的筛子) (4)团聚体分析仪,含四套筛子,每套有五个筛子,孔径分别为5mm、2mm、1mm、 0.5mm、0.25mm,另含有4个配套的水桶,电动团聚体分析仪在水中上下震动 的速度为每分钟30次(可调节,一般设定为30次每分钟),振幅为4cm(日本 为3.8cm)。 (5)直径12cm的蒸发皿,5个/组 (6)喷雾器、胶头滴管(这次试验我没并没有用到这两样实验器材,因为我们选择直接放入水中而不是先润湿,这样的结果是实验误差相比之下较大)。 五.操作步骤 (1)采样:通常是采耕层土壤,根据需要也可以分层采样。采样是要注意土壤的湿度,最好在土不粘铲,接触不变形为宜。用饭盒在田间多点采集有代表性的原 状土样。以保持原来的结构状态。从原土样剥去与铲面接触变形部分,采样量 为1.5-2.0Kg。运输时要避免震动和翻倒。 (2)干筛分析:将风干土样混匀,取其一少部分(一般不小于1kg,精确至0.1g)。 永孔径为5mm、2mm、1mm、0.5mm、0.25mm筛子进行筛分。筛完后,将各 级筛子上的团聚体及粒径<0、25的土粒分别称量,计算干筛的各级团聚体占土 样总量的百分含量。然后按其百分比,配成1份质量为20g的土样,做湿筛法 分析。 (3)湿筛分析:在团聚体分析仪上进行湿筛分析,一次可同时分析4个土样。分析前向4个水桶中加水,使得套筛在运动达到最高点的时候,筛子上缘可以正好 与水面平齐。将套筛放入水桶中,然后开动马达使套筛上下移动,升降4cm, 10分钟后提出水面,将筛组拆分。留在筛子上的各级团聚体用细水流冲入蒸发 皿,加热蒸干,称量其重量。 六.结果计算 (1)分级记录表

土壤固碳

1. 陕西省栎林土壤固碳特征及影响因素分析 通过分析不同林龄段0-100cm 土层土壤有机碳含量 分析不同地区不同林龄段栎林的土壤性状,包括容重、土壤全氮、全磷,并分析这些土壤特性与土壤有机碳含量之间的关系。 分析栎林林下枯落物现存量、根系生物量的变化规律,采用相关分析,分析其对土壤有机碳含量变化的影响 土壤样品的调查 采用剖面法加土钻法。其中土壤剖面用于土壤容重样品的采集,土钻法用于土壤有机碳、全氮、全磷的测定。土壤容重的测定采用“环刀法”。在所选择的栎林样地内,选择一块未受人为干扰、植被结构和土壤均具有代表性的地段,挖掘一个1 m 深的土壤剖面,不够 1 m 的挖至基岩为止(每个样点的 3 个样地内分别挖取一个剖面)。然后沿土壤剖面按照0-10 cm、10-20 cm、20-30 cm、30-50 cm 及50-100 cm 分层,并用环刀依次分层取土,每层取两个重复,带回室内测定土壤容重。土钻法取样层次与土壤剖面取样层次一致。是用内径=5cm 的土钻,分层取土,每层随机钻取3钻土,混合成一个混合样,带回室内风干处理。 根系的调查 根系的调查也是采用根钻法(内径=9cm)进行。在样地的上、中、下部位分别设置若干采样点,采集0-20 cm、20-40 cm的土层,分层混合装袋,每层 3 个重复。将样品在就近河边进行浸泡、冲洗、过筛,挑拣出根系,自然风干。带回室内在65℃烘箱中烘干至恒重,换算出单位面积的细根生物量。 枯落物的采集 在每个样点的3个样地内分别设置3个1 m31 m的小样方,待样方内草本植物调查结束,测量样方内枯落物层的厚度,包括未分解层、半分解层及腐殖质厚。测定完毕将样方内的枯落物全部收集并称重。 将野外采回的土壤样品自然风干后,磨碎过0.25 mm 筛孔,供土壤有机碳、全氮及全磷测定使用。土壤有机碳含量测定采用GB7857-87 中规定的重铬酸钾-硫酸氧化法测定, 全氮含量测定采用GB7173-87中规定的半微量开氏法, 全磷含量测定采用GB7852-87规定的硫酸-高氯酸溶-钼锑抗比色法。 某一土层的土壤有机碳储量(SOCi,t2hm-2)计算公式为:SOCi=Ci3Di

土壤大团聚体组成的测定—筛分法

土壤大团聚体组成的测定—筛分法 1 范围 本方法适用于土壤大团聚体组成的测定。 2 原理 土壤团聚体是指土壤中大小、形状不一、具有不同孔隙度和机械稳定性、水稳定性的结构单位,通常将粒径>0.25mm的结构单位称为大团聚体。大团聚体分为非水稳定性和水稳定性两种,非水稳定性大团聚体组成用干筛法测定,水稳定性大团聚体组成用湿筛法测定。筛分法根据土壤大团聚体在水中的崩解情况识别其水稳定性程度,测定分干筛和湿筛两个程序进行,最后筛分出各级水稳定性大团聚体,分别称其质量,再换算为占土样的质量百分数。 注1:湿筛法不适用于一般有机质含量少的、结构性差的土壤,因这些土壤在水中振荡后,除了筛内留下一些已被水冲洗干净的石块、砾石和砂粒外,其他部分几乎全部通过筛孔进入水中。 注2:粘重的土壤风干后会结成紧实的硬块,即使用干筛法将其分成不同直径的粒级,也不能代表它们是非水稳定性大团聚体。 3 仪器 3.1 平口沉降筒,1000 mL,带有橡皮塞。 3.2 水桶(搪瓷桶或铁桶),直径不小于40 cm,高不小于45 cm。 3.3 套筛,5 cm高,直径20 cm,孔径分别为10 mm、7mm、5mm、3mm、2mm、1mm、0.5 mm、0.25 mm,共8个,有底和盖,并附有能装5个套筛的铁架子1个。 3.4 团聚体分析仪,手摇或电动,含4套筛子,每套有6个筛子,孔径分别为5 mm、3 mm、 2 mm、1 mm、0.5 mm、0.25 mm,电动团聚体分析仪在水中上下振荡速度为每分钟30次。 3.5 白铁盒或铝制盒,10 cm × 10 cm × 10 cm。 4 操作步骤 4.1 采样:通常是采耕层土壤,根据需要也可分层采样。采样时要注意土壤的湿度,最好在土不沾铲,接触不变形时为宜。用白铁盒或铝制盒在田间多点(3~5点)采集有代表性的原状土样,以保持原来的结构状态。运输时要避免震动和翻倒。运回实验室内,沿土壤的自然结构轻轻地剥开,将原状土剥成直径为10 mm ~ 12 mm 的小土块,同时防止外力的作用而变形,并剔去粗根和小石块。将土样摊平,置于透气通风处,让其自然风干。 4.2 干筛分析:将风干的土样混匀,取其中一部分(一般不小于1 kg,精确至0.01 g)。用孔径分别为10 mm、7 mm、5 mm、3 mm、2 mm、1 mm、0.5 mm、0.25 mm筛子进行筛分(筛子附有底和盖)筛完后,将各级筛子上的团聚体及粒径<0.25 mm的土粒分别称量(精确至0.01 g),计算干筛的各级团聚体占土样总量的百分含量。然后按其百分比,配成2份质量为50 g(精确至0.01 g)的土样,作湿筛分析使用。 4.3 湿筛分析:在团聚体分析仪上进行湿筛分析,一次可同时分析4个土样。先将孔径为 5 mm、3 mm、2 mm、1 mm、0.5 mm、0.25 mm套筛用铁架夹住放入水桶中,再将称量的土样小心地放入1000 mL平口沉降筒中,用洗瓶沿筒壁徐徐加水,使土样湿润逐渐达到饱和(目的是驱除团聚体内的闭塞空气),湿润10 min。小心沿沉降筒壁加满水,筒口用橡皮塞塞紧,上下倒转沉降筒,反复10次。然后将沉降筒倒置于水中的团聚体分析仪的套筛上面,迅速在水中将塞子打开,轻轻晃动沉降筒,使之既不接触筛网,也不离开水面。当粒

城市森林生态系统服务功能的价值评估研究

城市森林生态系统服务功能的价值评估研究 【摘要】森林作为陆地生态系统的主体,在全球生态系统中发挥举足轻重的作用,其服务功能价值的评估是研究的一个热点。本文阐述了城市森林的概念以及当前城市森林生态系统服务功能及其研究评估的方法,以求为我国可持续发展的政策与生态环境保护提供科学依据。 【关键词】城市;森林生态系统;服务功能;价值;评估 提高城市绿地系统生态服务功能,促进城市生态系统的改善,满足市民接近和回归自然的渴望,已成为城市化建设亟待解决的重大课题。提高绿地生态功能,促进城市绿化的可持续发展则是当今主流的研究方向。 1.城市森林的概念和内涵 城市森林与城市林业的概念主要差异性在于城市林业主要侧重于行业的经营和管理,将城市园林绿化纳入林业经营管理的范畴,是一个多方面的经营管理体系;而城市森林是将城市绿地主要以森林的形式进行构筑和管理,是一个比较狭义的概念[1]。因此,城市森林是建立在改善城市生态环境的基础上,借鉴地带性自然森林群落的种类组成、结构特点和演替规律,以乔木为骨架,以木本植物为主体,艺术地再现地带性群落特征的城市绿地。 2.城市森林生态系统服务功能 2.1生态服务功能的含义 广义上的生态系统服务包括生态系统产品和生态系统服务,生态系统服务是指生态系统与生态系统过程所形成及所维持的人类赖以生存的自然环境条件与效用[2]。一般而言,生态服务功能(Ecosystem services)是指自然生态系统及其物种共同支撑和维持人类生存的条件和过程;它能够比较清晰地描述人类对生命支持系统的依赖性,为人们评价各种技术和社会经济发展方式的长远影响提供了一种参考,以防止和减少自我毁灭性的经济和社会活动[3]。 2.2城市森林生态系统的生态服务功能 森林生态系统的生态服务功能是指森林生态系统及其生态过程为人类提供的自然环境条件与效用[4]。从复合生态系统的角度来看,它不仅包括该系统为人类提供食品、医药和其他工农业生产的原料这内部效益,更重要的是支撑与维持地球的生命支持系统,维持生命物质的生物地化循环与水文循环,维持生物物种与遗传多样性,净化环境,维持大气化学的平衡与稳定的外部公益作用。 3.城市森林生态系统服务功能价值评估主要研究方法

中国农田土壤固碳潜力与速率:认识挑战与研究建议“土壤与可持续发展”专题

中国农田土壤固碳潜力与速率:认识、挑战与研究建议“土壤 与可持续发展”专题 导读 土壤有机碳作为土壤肥力形成的基础,不但影响土壤质量、功能和粮食产量,而且在全球气候变化中扮演重要角色。在我国土壤资源同时面临保障粮食安全、发挥生态系统服务功能和应对气候变化等多重挑战的背景下,准确把握中国农田土壤固碳潜力及速率,对于实现土壤资源合理利用和农业可持续发展具有重要意义。文章首先介绍了对中国农田土壤有机碳变化速率和土壤固碳潜力的基本认识以及研究中面临 的挑战,而后从基础研究、土壤信息平台、方法体系及研究成果与国家农业管理决策支撑方面提出了研究建议。 文/赵永存徐胜祥王美艳史学正(中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室) 土壤是陆地生态系统的核心,是人类赖以生存的重要自然资源。土壤有机碳(soil organic carbon,SOC)作为土壤肥力形成的基础,不但影响土壤质量和功能,而且在全球气候变化中扮演重要角色。SOC 是土壤肥力的决定性因素,其含量高低、质量好坏直接影响土壤肥力属性,即土壤有效持水量、保肥能力、养分利用效率、土壤微生物数量和活性,进而显著影响作物产量。同时,作为土壤碳库的重要组成部

分,SOC 通过土壤微生物分解释放二氧化碳(CO2),而大气中的CO2 则通过光合作用被固定到植物体,植物根系、凋落物及人为归还使得植物体中的部分碳再次归还到土壤中。因此,SOC 具有一定的大气CO2 浓度调节功能。地球上SOC 储量巨大且较为活跃,因而其微小变化就可能对大气CO2 浓度产生重大影响,进而影响全球气候变化。 我国人多地少,耕地土壤质量总体不高,随着工业化和城市化进程的高速发展,人地、人粮矛盾日益突出,土壤资源正同时面临着保障粮食安全、发挥生态系统服务功能和应对气候变化等多重挑战。而农田作为受人为管理措施影响最为强烈的土壤利用方式,其SOC 库最为活跃。同时,农田SOC 库也是唯一可在较短时间尺度上通过合理利用而进行适度 调节的碳库。因此,准确把握农田SOC 变化速率及固碳潜力对于实现我国土壤资源高效利用及农业可持续发展战略,意义十分重大。 1 我国农田土壤固碳潜力及速率的基本认识 国家尺度农田SOC变化速率估算主要采用Meta 分析、土壤调查数据差减和过程模型模拟3类方法。Meta分析采用已发表文献中的SOC 数据,计算SOC 变化速率;调查数据差减法通过两期土壤调查采样的SOC实测数据直接差减计算变化速率;过程模型模拟则采用SOC周转机理模型,在气候、土壤、农业管理措施等因子驱动下,实现SOC变

加快现代林业发展增强森林碳汇功能

生态文明建设专题Ecological Civilization Construction 5 March 绿色中国 临安位于杭州市西郊,市域面积3126.8平方公里,人口52万,是杭州至黄 山国际黄金旅游线上一座充满活力的城市,被誉为长三角的一颗绿色明珠。全市 森林覆盖率76.55%,拥有天目山、清凉峰两个国家级自然保护区和青山湖国家 森林公园。先后获得了中国竹子之乡、中国山核桃之都、全国绿色小康县、国家 森林城市和全国现代林业建设示范市等荣誉。 森林是陆地最大的储碳库和最经济的吸碳器。《京都议定书》把发展林业列 为应对气候变化、固碳减排的重要途径。近几年,临安在碳汇林业方面进行了积 极探索,已经引进全国乃至世界上首个毛竹林碳汇项目。全市累计完成人工造林 28.4万亩,四旁植树710万株,幼林抚育面积1114万亩,有林地面积从10年 前的333万亩增加到354万亩,年均增加2万多亩;森林蓄积量同比增长210万To Accelerate the Development of Modern Forestry and Enhance Forest Carbon Function 加快现代林业发展 增强森林碳汇功能 文/临安市林业局局长 沈志军 浙江省委书记赵洪祝视察临安林业工作

生态文明建设专题Ecological Civilization Construction March 绿色中国立方米,年均净增20.9万立方米。临安市主要通过四个途径推动碳汇林业建设。 以稳定的政策推动碳汇林业建设 稳定的政策决定着经营者对森林经营的权力,调节着森林经营者的利益分配和参与程度,进而影响林业碳汇的增加。 一是加强政策激励。临安市委、市政府相继出台《关于加快竹笋产业 化发展的若干意见》、《关于加快山核桃产业发展的若干意见》、《关于加快推进现代林业发展的决定》等政策性文件,鼓励社会各界开展植树造林。市财政每年安排370万元专项资金,用于竹笋、山核桃等林业产业的发展。加大生态公益林补偿力度,累计配套公益林资金2100多万元,下拨公益林资金6725万元。 二是落实保护制度。认真贯彻落实《森林法》等一系列法律法规,严 格依法护林,不断增强可持续发展能力。全面停止了天然阔叶林的采伐,森林资源得到休养生息,全市累计减少森林资源消耗12余万立方米。严格实行森林采伐限额制、林地保护奖惩制等制度,坚持专业队伍护林与群众义务护绿相结合,多管齐下,建立了完善的森林资源管理机制。 三是营造宽松环境。落实国家的林业信贷扶持政策,积极争取世界银行及民间组织等各种无偿资金和优惠贷款项目,拓宽融资渠道。取消对林业生产经营者的各种不合理收费,减轻林农负担,为林业发展创造良好的环境,对在林业科研、成果转化、技术推广和科学管理等方面作出突出贡献的单位和个人,予以表彰和奖励。 以扎实的工程推动碳汇林业建设 始终坚持以工程建设为载体,以增加林业碳汇为目标,加大投入,强化管理,完善功能。 一是大力实施生态公益林建设工程。1999年以来,临安大力实施生态 公益林工程,累计完成公益林建设129万亩,占林业用地面积的33%。根据初步测算,临安市生态公益林年固定 二氧化碳75.6万吨,年释放氧气53.6万吨。去年,根据临安市公益林实际,按照区位重要性和生态效益最大化原则,对各类公益林拟定了不同的经营方案,拟订了不同的管护标准,一、二、三类林分别给予29元/亩、24.5元/亩、17元/亩不等的补偿。 二是大力实施城乡绿化建设工程。按照统筹城乡发展的要求和“森林进城、园林下乡、城乡一体、整体绿化”的发展思路,大力发展城市森林,全 良好的生态使临安成为动物的天堂

土壤团聚体分析方法docx

土壤团聚体分析方法总结 1.将取好的土过8mm筛,并把石块及大于8mm的根系挑出,风干。 2.用土壤团聚体测定仪 (套筛:2000um, 250um, 53um) 进行团聚体分级。 3.先把土壤团聚体测定仪的水桶及各级筛子洗净,并用蒸馏水冲洗一遍。再向土壤团聚体测 定仪的水桶内装入约2/3桶蒸馏水,将筛子依次套好(2000um筛子在最上面,依次是250um, 53um), 用橡皮筋固定套好的筛子,挂好,并使筛子处于上下震动的最下端,再向水桶入加入适量蒸馏水,使水面淹没约筛子高的2/3处。 4.称取50g风干土平铺于2000um筛子上,浸没10min。之后,开启测定仪,使筛子以30 次/min的频率震动10min。 5.之后,关闭测定仪,小心地将水桶及筛子一并拿出。取出每级筛子,并等筛子内水滴干, 放到试验台上。 6.将每一级筛子上的土先用药匙转至60*60cm(diameter * height)的铝盒内,然后用蒸馏 水将残留在筛子上的土冲洗到200ml烧杯内,再将烧杯内的土和溶液转至对应的铝盒。 <53um的部分留在水桶内,静置2-3小时,之后,小心缓慢地将上清液倒出,底下<53um 的部分也转至铝盒。 7.将装有蒸馏水和每一级团聚体的铝盒放入65℃烘箱内烘干。 8.将烘干的每一级团聚体称重,记为M。 9.称重完,向每一级团聚体的铝盒内加入适量(没过土壤1-2cm即可)的5 g L-1的六偏磷酸 钠(sodium hexametaphosphate),然后放在摇床上摇6min,以此破碎团聚体,再过同一级筛子,用蒸馏水冲洗直到留在筛子上的全部为砂粒,透过筛子流到下面的烧杯内为已破碎的团聚体。将烧杯内已破碎的团聚体再放入65℃烘箱内烘干。将筛子内的砂粒也转至铝盒并放入65℃烘箱内烘干。(5 g L-1的六偏磷酸钠配制方法:称取5g六偏磷酸钠放入2L烧杯内,加蒸馏水至1L,再放于280℃砂锅上加热,直到六偏磷酸钠全部溶于水为止。)10.将烘干的每一级砂粒称重记为m。则每一级团聚体重量为M-m.

报告一土壤固碳过程与微生物驱动机制

第 13 讲 报告一:土壤固碳过程与微生物驱动机制 【主讲人】 罗煜副教授 浙江大学环境与资源学院 报告二:半干旱草原生态系统生产力与碳交换过程对 降水变化的响应 【主讲人】 陈世苹研究员 草地生物地球化学研究组 报告三:高寒草地土壤有机碳分解温度敏感性的调控机制 【主讲人】 秦书琪博士生 高寒生态格局与过程研究组 植被与环境变化国家重点实验室 State Key Laboratory of Vegetation and Environmental Change

侯学煜青年生态论坛 (第13讲) 报告人:罗煜 报告题目:土壤固碳过程与微生物驱动机制 罗煜,副教授,浙江大学“青年求是学者”,“浙江省 杰出青年基金”获得者,担任中国植物营养与肥料学会 委员,获中国土壤学会优秀青年学者、国际腐植酸协会 奖等。主要采用同位素、分子生物学、高分辨质谱等技 术,开展土壤-植物-微生物连续体中碳素分配周转过 程及驱动机制研究。主持国家自然科学基金2项,浙 江省杰出青年科学基金项目1项。以第一或通讯作者 发表SCI论文15篇,其中中科院分区1区论文11篇 (含Soil Biol Biochem 6篇,ESI高被引论文3篇,单篇最高引用350次)。参与Microbiome、Global Change Biol等期刊审稿(约40篇/年),任Biol Fert Soils(中科院1区,下同)、Plant Soil(1区)等期刊客座编辑,Biogeosciences(2区)及Eur J Soil Sci(1区)副主编。 摘要:主要开展土壤-植物-微生物连续体中碳素分配周转过程及机制的研究,选取具有不同分子结构(梯度微生物可利用性)的植物碳源(根际沉积碳、秸秆碳、生物质炭),明确其对土壤有机碳积累分解的贡献,并深入探究微生物机制与非生物因子的调控作用。另浅析了今后潜在研究方向:1)土壤有机碳固持的界面过程;2)参与土壤有机碳转化过程的核心微生物。

森林生态系统服务功能

森林的生态服务功能 森林生态系统与生态过程所形成及维持的人类赖以生存的自然环境条件与效用。主要包括森林在涵养水源、保育土壤、固碳释氧、积累营养物质、净化大气环境、森林防护、生物多样性保护和森林游憩等方面提供的生态服务功能。 一·森林是人类的资源宝库. 森林能够提供大量木材和其它林产品,还能生产有很多有经济价值的产品.当然现代森林的主要生产功能还是表现为它是―个巨大的原材料供应者.木材及木制品,在建筑,交通,采掘,轻纺,水利电力筹许多生产部门是不可缺少的物资.木材的化学加工产品及各种林副产品也是重要的原材料及出口物资. 中国有繁多的经济林木树种,林副产品极为丰富,还有大量的中草药材,多种稀有珍贵的野生动物.产品的丰富多彩,实在是举不胜举.这些产品从需要上讲,不仅在国内牵涉到各行各业,不可缺少;而且其中许多产品在国际市场上享有声誉,是国家重要的出口物资。森林中有极其丰富的物种资源,仅热带雨林中的物种就占地球上全部物种的50%.在我国的森林中,既有大量的食用植物,又有很多油料植物,还有丰富的药材资源。现代的森林仍然是地球上一个重要的能源生产者,由于世界上一些化石能源渐渐枯竭,森林作为一种可以再生的能源,正在引起越来越大的重视. 二·涵养水源 森林对降水的截留、吸收和贮存,将地表水转为地表径流或地下水的作用。主要功能表现在增加可利用水资源、净化水质和调节径流三个方面。森林是土壤的绿色保护伞.茂密的枝叶能够截留降雨,减弱水流对土壤的冲刷;林下的草本植物和枯枝落叶层,如同一层松软的海绵覆盖在土壤表面,既能吸水,又能固定土壤;庞大的根系纵横交错,对土壤有很强的粘附作用.另外,森林还能抵御风暴对土壤的侵蚀.我国的有关观测结果表明,有林地水土流失量比荒坡地小得多.森林能够蓄水保肥,消洪补枯.防止水土流失,涵养水源. 森林是巨型蓄水库.降雨落到树下的枯枝落叶和疏松多孔的林地土壤里,会被蓄积起来,就像水库蓄水一样.雨过天晴,大量的水分又通过树木的蒸腾作用,蒸发到大气中,使林区空气湿润,降水增加.森林对于减轻旱涝灾害起着非常重要的作用。 三·保育土壤 森林中活地被物和凋落物层层截留降水,降低水滴对表土的冲击和地表径流的侵蚀作用;同时林木根系固持土壤,防止土壤崩塌泻溜,减少土壤肥力损失以及改善土壤结构的功能。风蚀是土壤流失的一种灾害.风力可以吹失表土中的肥土和细粒,使土壤移动,转移.在风沙危害严重的地区,更是风起沙飞,往往埋没了农田和村庄.风对农作物的直接危害更为普遍. 四·净化大气环境 森林生态系统对大气污染物(如二氧化硫、氟化物、氮氧化物、粉尘、重金属等)的吸收、过滤、阻

相关主题
文本预览
相关文档 最新文档