当前位置:文档之家› 报告一土壤固碳过程与微生物驱动机制

报告一土壤固碳过程与微生物驱动机制

报告一土壤固碳过程与微生物驱动机制
报告一土壤固碳过程与微生物驱动机制

13

报告一:土壤固碳过程与微生物驱动机制

【主讲人】

罗煜副教授

浙江大学环境与资源学院

报告二:半干旱草原生态系统生产力与碳交换过程对

降水变化的响应

【主讲人】

陈世苹研究员

草地生物地球化学研究组

报告三:高寒草地土壤有机碳分解温度敏感性的调控机制

【主讲人】

秦书琪博士生

高寒生态格局与过程研究组

植被与环境变化国家重点实验室

State Key Laboratory of Vegetation and Environmental Change

侯学煜青年生态论坛

(第13讲)

报告人:罗煜

报告题目:土壤固碳过程与微生物驱动机制

罗煜,副教授,浙江大学“青年求是学者”,“浙江省

杰出青年基金”获得者,担任中国植物营养与肥料学会

委员,获中国土壤学会优秀青年学者、国际腐植酸协会

奖等。主要采用同位素、分子生物学、高分辨质谱等技

术,开展土壤-植物-微生物连续体中碳素分配周转过

程及驱动机制研究。主持国家自然科学基金2项,浙

江省杰出青年科学基金项目1项。以第一或通讯作者

发表SCI论文15篇,其中中科院分区1区论文11篇

(含Soil Biol Biochem 6篇,ESI高被引论文3篇,单篇最高引用350次)。参与Microbiome、Global Change Biol等期刊审稿(约40篇/年),任Biol Fert Soils(中科院1区,下同)、Plant Soil(1区)等期刊客座编辑,Biogeosciences(2区)及Eur J Soil Sci(1区)副主编。

摘要:主要开展土壤-植物-微生物连续体中碳素分配周转过程及机制的研究,选取具有不同分子结构(梯度微生物可利用性)的植物碳源(根际沉积碳、秸秆碳、生物质炭),明确其对土壤有机碳积累分解的贡献,并深入探究微生物机制与非生物因子的调控作用。另浅析了今后潜在研究方向:1)土壤有机碳固持的界面过程;2)参与土壤有机碳转化过程的核心微生物。

报告题目:半干旱草原生态系统生产力与碳交换过程对降水变化的响应

陈世苹,中国科学院植物研究所研究员,主要从事草

原生态系统碳循环及其对全球变化的响应方面的研

究,通过结合野外控制实验和通量连续观测技术手段,

对草原生态系统碳循环关键过程对全球变化响应及

相关机制进行了系统研究。主持和承担科技部重大基

础研发专项、中国科学院战略性先导科技专项、国家

重点基础研究发展计划973项目、国家自然科学基金

青年基金、面上项目等多项国家级科研项目。发表学

术论文40余篇,包括PNAS,Global Change Biology,Ecology,Functional Ecology, Agricultural and Forest Meteorology, Soil Biology & Biochemistry等国际主流期刊。

摘要:水分是我国北方半干旱草原生态系统最重要的限制因子,全球气候变化导致的降水格局改变正深刻影响着半干旱草原生产力及其稳定性。通过建立在内蒙古典型半干旱草原长期降水格局控制实验平台,我们研究了降水量变化对草原生产力和碳循环关键过程的影响。发现草原地上和地下生产力对降水量变化均呈现非线性响应,其对减水处理响应的敏感性显著高于对增水处理的响应;随着降水量增加,草原植被地上地下生产力的分配比例并未发生明显变化,而是通过改变地下根系的垂直分布格局适应降水格局变化所导致的土壤水分可利用性的变化。随着降水量的增加,植物光合碳固定对降水变化的响应显著高于呼吸过程,并决定了草原生态系统资源利用效率和生产力;草原生态系统土壤呼吸异养组分所占比例随着降水量增加显著提高,这将进一步影响土壤有机碳库稳定性。以上这些结果对预测未来全球变化背景下草原生态系统结构和功能稳定性响应格局具有重要的意义。

报告题目:高寒草地土壤有机碳分解温度敏感性的调控机制

秦书琪,中国科学院植物研究所2018级博士研究生,导师

为杨元合研究员。研究方向为土壤碳动态及其驱动机制,主

要基于长期培养、碳分解模型以及控制实验等研究手段探讨

土壤有机碳分解及其温度敏感性的生物与非生物机制。曾获

硕士、博士国家奖学金。部分研究成果发表于Science

Advances期刊。

摘要:土壤有机碳分解的温度敏感性(Q10)在一定程度上决定着陆地生态系统碳循环与气候变暖之间反馈关系的方向与强度,是陆地生态系统碳循环中的关键参数。尽管已有许多研究关注Q10及其调控机制,然而迄今为止,学术界尚未能全面解析底物、环境、微生物等属性对温度敏感性的影响机制。本研究以青藏高原高寒草地为研究对象,基于自然土壤剖面形成的理化性质梯度,并结合长期培养实验、碳分解模型以及控制实验等多种手段,揭示了土壤有机碳分解温度敏感性垂直变异的调控机制。研究结果表明深层土壤中较低的微生物丰度与较强的团聚体保护使其温度敏感性显著低于表层土壤。进一步研究发现,不同碳组分温度敏感性的调控机制存在差异:活性碳分解温度敏感性的垂直变异主要受微生物群落调控,而惰性碳分解的温度敏感性则主要受团聚体保护的影响。上述结果揭示了土壤碳稳定性机制在调节碳分解过程对气候变暖响应中的关键作用,相关结果为准确认识陆地生态系统碳循环与气候变暖之间的反馈关系提供了启示。

土壤微生物生物量的测定方法

土壤微生物生物量的测定方法1土壤微生物碳的测定方法(熏蒸提取----仪器分析法) 基本原理 新鲜土样经氯仿熏蒸后(24h),土壤微生物死亡细胞发生裂解,释放出微生 物生物量碳,用一定体积的LK 2SO 4 溶液提取土壤,借用有机碳自动分析仪测定微 生物生物量碳含量。根据熏蒸土壤与未熏蒸土壤测定有机碳的差值及转换系数(K EC),从而计算土壤微生物生物量碳。 实验仪器 自动总有机碳(TOC)分析仪(Shimadzu Model TOC—500,JANPAN)、真空干燥器、烧杯、三角瓶、聚乙烯熟料管、离心管、滤纸、漏斗等。 实验试剂 1)无乙醇氯仿(CHCL 3 ); 2)L硫酸钾溶液:称取87g K 2SO 4 溶于1L蒸馏水中 3)工作曲线的配制:用L硫酸钾溶液配制10ugC/L、30ugC/L、50ugC/L、 70ugC/L、100ugC/L系列标准碳溶液。(其实一般情况下, 仪器会自带的标曲,一般不用自己做的) 操作步骤 土壤的前处理(过筛和水分调节略) 熏蒸 称取新鲜(相当于干土,这个可以根据自己土样的情况而定)3份分别放入25ml小烧杯中。将烧杯放入真空干燥器中,并放置盛有无乙醇氯仿(约2/3)的15ml烧杯2或3只,烧杯内放入少量防暴沸玻璃珠,同时放入一盛有NaOH溶液的小烧杯,以吸收熏蒸过程中释放出来的CO 2 ,干燥器底部加入少量水以保持容器湿度。盖上真空干燥器盖子,用真空泵抽真空,使氯仿沸腾5分钟。关闭真空干燥器阀门,于25℃黑暗条件下培养24小时。 抽真空处理 熏蒸结束后,打开真空干燥器阀门(应听到空气进入的声音,否则熏蒸不完

全,重做),取出盛有氯仿(可重复利用)和稀NaOH溶液的小烧杯,清洁干燥器,反复抽真空(5或6次,每次3min,每次抽真空后最好完全打开干燥器盖子),直到土壤无氯仿味道为止。同时,另称等量的3份土壤,置于另一干燥器中为不熏蒸对照处理。(注意:熏蒸后不可久放,应该快速浸提)※ 浸提过滤 从干燥器中取出熏蒸和未熏蒸土样,将土样完全转移到80ml聚乙烯离心管中,加入40ml L硫酸钾溶液(土水比为1:4,考虑到土样的原因,此部分熏蒸和不熏蒸土均为4g,即,4g土:16ml的硫酸钾溶液,当然这个加入量要根据TOC仪器的进入量决定)300r/min振荡30min,用中速定量滤纸过滤。同时作3个无土壤基质空白。土壤提取液最好立即分析,或—20℃冷冻保存(但使用前需解冻摇匀)(注意这部分很重要,有研究结果表明:提取液如果不立即分析,请保存在—20℃,否则将影响浸提液的效果,其次,过滤时不要用普通的定性或定量滤纸,以免长久杂质会堵塞仪器的管路,建议使用那种一次性塑料注射器,配一个的滤头,一个才1元)。 TOC仪器测定 吸取上述土壤提取液10ul(这个要根据仪器自己的性能决定,但是一般情况下,在测定土壤滤液时候,要对其进行稀释,如果不稀释,一方面超过原来仪器的标曲,另一方面可能堵塞仪器。)注入自动总有机碳(TOC)分析仪上,测定提取液有机碳含量。由于总有机碳分析仪型号较多,不同的型号则操作程序存在较大差异,这里以本实验室使用的有机碳分析仪(Shimadzu Model TOC---500,JAPAN)为例。 计算 SMBC=(E C CHCL3—E C CK)*TOC仪器的稀释倍数*原来的水土比/ 2 土壤微生物生物量氮(茚三酮比色法) 土壤微生物生物氮一般占土壤全氮的2%—7%,是土壤中有机—无机态氮转化的一个重要环节,关于土壤微生物氮的测定常见的熏蒸浸提法有两种,一是全氮测定法,另一个是茚三酮比色法,如下 基本原理(茚三酮比色法)

导学案(教师版)探究土壤微生物的分解作用

班级 小组 姓名 评价等级 沅江三中四环八步教学模式 生物模块三导学案 第1页(共6页) 探究土壤微生物的分解作用(教师版) 【学习目标】 1.设计和进行对照实验,尝试探究土壤微生物的分解作用,进一步培养探究和创造能力。 2.分析土壤微生物分解淀粉的情况。 3.学会检测淀粉和还原糖的方法,并根据现象作出合理判断和解释。 案例1: 探究土壤微生物对落叶的作用 一、提出问题: 秋天,落叶纷飞。春天,绿草如茵。且不见落叶痕迹!落叶去哪里了? 结合上面的实例,你能提出什么问题呢?请写下来。 落叶在土壤中能被分解掉,这究竟主要是土壤的物理化学因素的作用,还是土壤中微生物的作用呢 ? 注意: (1)要选择有研究意义的问题作为课题来研究 (2)要选择我们能力范围之内的问题作为实验研究课题。 二、作出假设: 落叶是在土壤微生物的作用下腐烂的 提示:假设既可以是基于已有的知识或经验作出的解释,也可以是想像或猜测。 三、设计实验 1、设计方案 (1)实验原理: 微生物能分泌多种水解酶将大分子有机物分解成小分子有机物,如纤维素酶、淀粉酶可将纤维素、淀粉水解成葡萄糖。然后被分解者吸收到细胞中进行氧化分解,最终形成CO2、水和各种无机盐,同时释放能量。 (2)、实验材料: 土壤、落叶、 (3)、实验器具: 玻璃容器、标签、塑料d 袋、恒温箱、纱布。 (4)、实验设计步骤: ①取两个圆柱形的玻璃容器,一个贴上“甲组”标签,另一个贴上“乙组”标签。 ②将准备好的土壤分别放入两个玻璃容器中,将其中乙组放入恒温箱, 60℃灭菌1h 。 ③取 大小、形态相同的落叶12片,分成2份,分别用包好,埋入2个容器中,深度约5cm 。 ④将2 个容器放于实验室相同的环境中, 一段时间后,取纱布包。 ⑤观察比较对照组与实验组落叶的 腐烂程度。 提示: (1)要确定实验变量是什么 需要控制的变量有哪些如何控制这些变量 ; (2)要注意实验步骤的先后顺序。 (3)要注意写出具体的实验步骤以便指导实验的进行。

土壤微生物量碳测定方法

土壤微生物量碳测定方法及应用 土壤微生物量碳(Soil microbial biomass)不仅对土壤有机质和养分的循环起着主要作用,同时是一个重要活性养分库,直接调控着土壤养分(如氮、磷和硫等)的保持和释放及其植物有效性。近40年来,土壤微生物生物量的研究已成为土壤学研究热点之一。由于土壤微生物的碳含量通常是恒定的,因此采用土壤微生物碳(Microbial biomass carbon, Bc)来表示土壤微生物生物量的大小。测定土壤微生物碳的主要方法为熏蒸培养法(Fumigation-incubation, FI)和熏蒸提取法(Fumigation-extraction, FE)。 熏蒸提取法(FE法) 由于熏蒸培养法测定土壤微生物量碳不仅需要较长的时间而且不适合于强酸性土壤、加 入新鲜有机底物的土壤以及水田土壤。Voroney (1983)发现熏蒸土壤用·L-1K 2SO 4 提取液提取 的碳量与生物微生物量有很好的相关性。Vance等(1987)建立了熏蒸提取法测定土壤微生物 碳的基本方法:该方法用·L-1K 2SO 4 提取剂(水土比1:4)直接提取熏蒸和不熏蒸土壤,提取 液中有机碳含量用重铬酸钾氧化法测定;以熏蒸与不熏蒸土壤提取的有机碳增加量除以转换 系数K EC (取值来计算土壤微生物碳。 Wu等(1990)通过采用熏蒸培养法和熏蒸提取法比较研究,建立了熏蒸提取——碳自动一起法测定土壤微生物碳。该方法大幅度提高提取液中有机碳的测定速度和测定结果的准确度。 林启美等(1999)对熏蒸提取-重铬酸钾氧化法中提取液的水土比以及氧化剂进行了改进,以提高该方法的测定结果的重复性和准确性。 对于熏蒸提取法测定土壤微生物生物碳的转换系数K EC 的取值,有很多研究进行了大量的 研究。测定K EC 值的实验方法有:直接法(加入培养微生物、用14C底物标记土壤微生物)和间接法(与熏蒸培养法、显微镜观测法、ATP法及底物诱导呼吸法比较)。提取液中有机碳的 测定方法不同(如氧化法和仪器法),那么转换系数K EC 取值也不同,如采用氧化法和一起法 K EC 值分别为(Vance等,1987)和(Wu等,1990)。不同类型土壤(表层)的K EC 值有较大不 同,其值变化为(Sparling等,1988,1990;Bremer等,1990)。Dictor等(1998)研究表 明同一土壤剖面中不同浓度土层土壤的转换系数K EC 有较大的差异,从表层0-20cm土壤的K EC 为,逐步降低到180-220cm土壤的K EC 为。 一、基本原理 熏蒸提取法测定微生物碳的基本原理是:氯仿熏蒸土壤时由于微生物的细胞膜被氯仿破 坏而杀死,微生物中部分组分成分特别是细胞质在酶的作用下自溶和转化为K 2SO 4 溶液可提取 成分(Joergensen,1996)。采用重铬酸钾氧化法或碳-自动分析仪器法测定提取液中的碳含量,以熏蒸与不熏蒸土壤中提取碳增量除以转换系数K EC 来估计土壤微生物碳。 二、试剂配制 (1)硫酸钾提取剂(·L-1):取分析纯硫酸钾溶解于蒸馏水中,定溶至10L。由于硫酸钾较难溶解,配制时可用20L塑料桶密闭后置于苗床上(60-100rev·min-1)12小时即可完全溶解。 (2) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:称取130℃烘2-3小时的K 2 Cr 2 O 7 (分析纯)9.806g 于1L大烧杯中,加去离子水使其溶解,定溶至1L。K 2Cr 2 O 7 较难溶解,可加热加快其溶 解。 (3) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:取经130℃烘2-3小时的分析纯重铬酸钾4.903g, 用蒸馏水溶解并定溶至1L。

凯氏定氮法:土壤微生物量氮测定

土壤微生物量氮的测定方法 1.试剂配制: (1)混合催化剂:按照硫酸钾:五水硫酸铜:硒粉=100:10:1,称取硫酸钾100g、 五水硫酸铜10g、硒粉1g。均匀混合后研细,贮于瓶中。 (2)密度为1.84浓硫酸。 (3)40%氢氧化钠:称400g氢氧化钠于烧杯中,加蒸馏水600ml,搅拌使之全部溶 解定容至1L。 (4)2%硼酸溶液:称20g硼酸溶于1000ml水中,再加入20ml混合指示剂。(按体 积比100:2加入混合指示剂) (5)混合指示剂:称取溴甲酚绿0.5g和甲基红0.1克,溶解在100ml95%的乙醇中, 用稀氢氧化钠或盐酸调节使之呈淡紫色,此溶液pH应为4.5。 (6)0.01mol的盐酸标准溶液:取比重1.19的浓盐酸0.84ml,用蒸馏水稀释至 1000ml,用基准物质标定之。 (7)0.5M K2SO4溶液:称取K2SO4 87.165g溶解于蒸馏水中,搅拌溶解,(可加 热)定容至1L。 (8)去乙醇氯仿的配制:在通风柜中,量取100毫升氯仿至500毫升的分液漏斗 中,加入200毫升的蒸馏水,加塞,上下振荡10下,打开塞子放气,而后加塞再振荡10下,反复3次,将分液漏斗置于铁架台上,静止溶液分层,打开分液漏斗下端的阀,将下层溶液(氯仿)放入200毫升的烧杯中,将剩余的溶液倒入水槽,用自来水冲洗。再将烧杯中的氯仿倒入分液漏斗中,反复3次。将精制后的氯仿倒入棕色瓶中,加入无水分析纯的CaCl2 10g,置于暗处保存。 2.试验步骤:。 (1)制样:称取新鲜土壤(30.0g)于放置烧杯中,加约等于田间持水量60%水在25℃下培养7~15d。取15.0g土于烧杯,置于真空干燥器中,同时内放一装有用100ml精制氯仿的小烧杯,密封真空干燥器,密封好的真空干燥器连到真空泵上,抽真空至氯仿沸腾5分钟,静置5分钟,再抽滤5分钟,同样操作三次。干燥器放入25℃培养箱中24小时后,抽真空15-30分钟以除尽土壤吸附的氯仿。按照土:0.5M K2SO4=1:4(烘干土算,一般就是湿土:0.5M K2SO4=1:2),加入0.5M K2SO4溶液(空白直接称取15.0g土,加同样比例0.5M K2SO4溶液)震荡30分钟,过滤。 (2)测定:滤液要是不及时测定,需立即在-15℃以下保存,此滤液可用于微生物碳氮的测定。微生物碳测定只吸取2ml,采用重铬酸钾-硫酸亚铁滴定法测定。微生物氮吸取滤液10ml于消化管中,加入2g催化剂,在再加5ml浓硫酸,管口放一弯颈小漏斗,将消化管置于通风橱内远红外消煮炉的加热孔中。打开消煮炉上的所有加热开关进行消化,加热至微沸,关闭高档开关,继续加热。消煮至

土壤微生物测定方法

土壤微生物测定 土壤微生物活性表示土壤中整个微生物群落或其中的一些特殊种群状态,可以反映自然或农田生态系统的微小变化。土壤微生物活性的表征量有:微生物量、C/N、土壤呼吸强度和纤维呼吸强度、微生物区系、磷酸酶活性、酶活性等。 测定指标: 1、土壤微生物量(MierobialBiomass,MB) 能代表参与调控土壤能量和养分循环以及有机物质转化相对应微生物的数量,一般指土壤中体积小于5Χ103um3的生物总量。它与土壤有机质含量密切相关。 目前,熏蒸法是使用最广泛的一种测定土壤微生物量的方法阎,它是将待测土壤经药剂熏蒸后,土壤中微生物被杀死,被杀死的微生物体被新加人原土样的微生物分解(矿化)而放出CO2,根据释放出的CO2:的量和微生物体矿化率常数Kc可计算出该土样微生物中的碳量。 因此碳量的大小就反映了微生物量的大小。 此外,还有平板计(通过显微镜直接计数)、成份分析法、底物诱导呼吸法、熏蒸培养法(测定油污染土壤中的微生物量—碳。受土壤水分状况影响较大,不适用强酸性土壤及刚施 用过大量有机肥的土壤等)、熏蒸提取法等,均可用来测定土壤微生物量。 熏蒸提取-容量分析法 操作步骤: (1)土壤前处理和熏蒸 (2)提取 -1K2SO 4(图将熏蒸土壤无损地转移到200mL聚乙烯塑料瓶中,加入100mL0.5mol·L 水比为1:4;w:v),振荡30min(300rev·min -1),用中速定量滤纸过滤于125mL塑料瓶中。熏蒸开始的同时,另称取等量的3份土壤于200mL聚乙烯塑料瓶中,直接加入100mlL0.5mol·L -1K2SO4提取;另作3个无土壤空白。提取液应立即分析。 (3)测定 吸取10mL上述土壤提取液于150mL消化管(24mmх295mm)中,准确加入10mL0.018 mol·L -1K2Cr2O7—12mol·L-1H2SO4溶液,加入2~3玻璃珠或瓷片,混匀后置于175±1℃ 磷酸浴中煮沸10min(放入消化管前,磷酸浴温度应调至179℃,放入后温度恰好为175℃)。冷却后无损地转移至150mL三角瓶中,用去离子水洗涤消化管3~5次使溶液体积约为80mL, 加入一滴邻菲罗啉指示剂,用0.05mol·L -1硫酸亚铁标准溶液滴定,溶液颜色由橙黄色 变 为蓝色,再变为红棕色,即为滴定终点。 (4)结果计算

土壤微生物生物量碳及其影响因子研究进展(精)

土壤微生物生物量碳及其影响因子研究进展3 黄辉(1陈光水(1谢锦升(1黄朝法(2 (1.福建师范大学福州350007;2.福建省林业调查规划院福州350003 摘要:笔者较为全面地综述了国内外土壤微生物生物量碳的研究成果。笔者针对土壤微生物生物量碳主要受到碳氮限制、树种类型、土地利用方式、管理措施、土壤湿度和温度、土壤质地等因素的影响,提出了今后的研究应集中在以下几个方面:(1加强不同尺度土壤微生物生物量碳的影响因子及调控机理研究;(2进一步加强不同土壤类型下土壤微生物生物量碳动态及调控机理研究;(3对影响土壤微生物生物量碳高低不确定性的因子进行深入研究;(4加强其他因子对土壤微生物生物量碳影响的研究;(5探讨全球气候变化对土壤微生物生物量碳的影响。 关键词:微生物生物量碳;土壤;影响因子;全球变化 Adva nces on Soil Microbial Biomass Ca rbon a nd Its Effect Factor Huang Hui(1Che n Gua ngshui(1Xie J ingsheng(1Huang Chaof a(1 (1.Fujia n N or mal U niversity Fuzhou350007;2.Fujian Provincial Forest ry Survey a nd Planning Institute Fuzhou350003 Abstract:The aut hors review current knowledge of t he p roperty and deter mination of soil microbial biomass carbon a nd several f act ors cont rolling its dynamics bot h at home a nd abroad.By now,t here are several f ac2 t ors influe ncing soil microbial biomass carbon w hich include inhere nt p roperties of t he soil like texture,mois2 ture and temp erature a nd etc.Besides t hese,external f act ors(C a nd N limitation,sp ecies typ e,ma nageme nt measures and diff ere nces in la nd usealso cont rol on soil microbial biomass carbon.Despite intensive resear2 ches in recent years,t he uncertainties of soil microbial biomass still re main f or f urt her studies:(1St re ngt he2 ning eff ect f act ors of soil microbial biomass carbon a nd its cont rol mecha nism at diff erent scale;(2Paying

农业生态系统碳循环研究2013

农业生态系统碳循环研究 摘要:在人们对温室效应理解不断加深的同时,全球碳循环的研究也随着技术的进步不断深入。与人类生产生活关系最密切的是陆地生态系统碳循环研究,而农业生态系统碳循环研究是其中最为重要的一部分。经过国内外研究者的努力,已对农业生态系统碳源/汇效益、碳循环影响因素、模拟模型、碳通量及农业生态系统对全球变暖的响应等诸多研究内容取得极为重要的成果。但在一些问题上尚存在不小争议,对一些过程尚不能清楚认识,对一些因素尚不能准确联系。 关键词:农业生态系统;碳循环;低碳农业; 近百年来,全球变暖已成为不争事实,温度的上升对整个地球环境和人类生产生活产生了巨大的影响,产生了一系列严重的和不可逆转的后果:草原和荒漠面积增加,森林面积减少;热带扩展,副热带、暖热带和寒带缩小,寒温带略有增加;农业的种植决策、品种布局和品种改良、土地利用、农业投入和技术改进等受到影响;加剧了目前日趋紧张的水资源问题;改变了区域降水、蒸发分布状况;引发环境问题,增加了对人类及其生存环境的压力[1]。 随着全球气候变化研究的不断深入,对全球气候变暖形成原因的理解也产生了一些分歧:一部分人认为人类改造自然的活动是全球气候变暖的主要原因;另一部分人认为全球气候变暖是气候周期性变化的结果,太阳活动和火山活动是变化的主要原因,而人类活动不是决定性原因。但不论全球气候变暖的主要原因是什么,人类活动对整个地球系统产生的巨大影响不容忽视,人类活动排放出以CO2为主的温室气体引起了全球碳循环的变化,而这一变化又进一步影响到全球气候的变化,产生不利于人类生存及发展的变化。碳循环研究在此种局势下显示出极为重要的意义。 根据Falkowski研究结果表明,陆地生态系统蓄积了总量大约为2 000 Gt(1Gt=1×1015g)的碳[2]。尽管相较于岩石圈>60 000 000Gt和海洋38 400Gt的碳量,陆地生态系统蓄积的碳量十分微弱,但是人类主要的生产生活空间位于陆地上,人类的行为最直接的影响陆地生态系统,且产生的影响最大,使得这部分碳储量的变化体现出非同一般的可变性和极为显著的重要性。土壤碳库是温室气体重要的释放源,也是重要的吸收汇[3]。正因为人类活动的强烈影响,可以说全球碳循环中最大不确定性主要来自陆地生态系统。陆地生态系统碳循环过程可以解释为:植物通过光合作用将大气中的CO2吸收存于植物体内,形成有机化合物并固定起来,而后一部分有机物在植物的呼吸作用和土壤及枯枝落叶层中有机质腐烂过程中返回大气。这样的一个循环过程就形成了大气-陆地植被-土壤-大气整个陆地生态系统的碳循环[4]。 在人类活动中,农业生产对陆地生态系统起了巨大的影响,农业生产不仅改变了原有的土地利用方式,改变了原有植被种类,甚至改变了土壤类型,并因这些改变对原有碳循环产生了极为重要的影响。1850-1990年期间,土地利用变化造成的CO2排放量约为124Gt,而其中贡献最大的是农业的扩张。在农业活动中,耕地所造成的总净通量约占68%,牧草占13%,迁移农业占4%。人类活动已经强烈改变了原有的全球碳循环模式[5]。 1. 农业生态系统碳源?碳汇? 农业生态系统是碳汇还是碳源,这是首先需要回答的问题。 农业生态既可以是碳汇,也可以是碳源。农业碳排放主要源于农业废弃物、肠道发酵、粪便管理、农业能源利用、稻田以及生物燃烧。而农业生态系统的碳主要固定在作物和土壤中。农田生态系统中,农田管理措施、土壤性质是影响土壤有机碳固定、转化及释放的主要因素,同时还受土地利用方式、植物品种、气候变化等多种因素影响[3]。不同的农业生态系统因自身特点呈现出不同的碳通量,同一农业系统因管理方式或利用方式不同,甚至可以

土壤固碳

1. 陕西省栎林土壤固碳特征及影响因素分析 通过分析不同林龄段0-100cm 土层土壤有机碳含量 分析不同地区不同林龄段栎林的土壤性状,包括容重、土壤全氮、全磷,并分析这些土壤特性与土壤有机碳含量之间的关系。 分析栎林林下枯落物现存量、根系生物量的变化规律,采用相关分析,分析其对土壤有机碳含量变化的影响 土壤样品的调查 采用剖面法加土钻法。其中土壤剖面用于土壤容重样品的采集,土钻法用于土壤有机碳、全氮、全磷的测定。土壤容重的测定采用“环刀法”。在所选择的栎林样地内,选择一块未受人为干扰、植被结构和土壤均具有代表性的地段,挖掘一个1 m 深的土壤剖面,不够 1 m 的挖至基岩为止(每个样点的 3 个样地内分别挖取一个剖面)。然后沿土壤剖面按照0-10 cm、10-20 cm、20-30 cm、30-50 cm 及50-100 cm 分层,并用环刀依次分层取土,每层取两个重复,带回室内测定土壤容重。土钻法取样层次与土壤剖面取样层次一致。是用内径=5cm 的土钻,分层取土,每层随机钻取3钻土,混合成一个混合样,带回室内风干处理。 根系的调查 根系的调查也是采用根钻法(内径=9cm)进行。在样地的上、中、下部位分别设置若干采样点,采集0-20 cm、20-40 cm的土层,分层混合装袋,每层 3 个重复。将样品在就近河边进行浸泡、冲洗、过筛,挑拣出根系,自然风干。带回室内在65℃烘箱中烘干至恒重,换算出单位面积的细根生物量。 枯落物的采集 在每个样点的3个样地内分别设置3个1 m31 m的小样方,待样方内草本植物调查结束,测量样方内枯落物层的厚度,包括未分解层、半分解层及腐殖质厚。测定完毕将样方内的枯落物全部收集并称重。 将野外采回的土壤样品自然风干后,磨碎过0.25 mm 筛孔,供土壤有机碳、全氮及全磷测定使用。土壤有机碳含量测定采用GB7857-87 中规定的重铬酸钾-硫酸氧化法测定, 全氮含量测定采用GB7173-87中规定的半微量开氏法, 全磷含量测定采用GB7852-87规定的硫酸-高氯酸溶-钼锑抗比色法。 某一土层的土壤有机碳储量(SOCi,t2hm-2)计算公式为:SOCi=Ci3Di

土壤微生物的分解作用

“土壤微生物的分解作用”探究活动解读 摘要本文通过教学参考的形式,结合探究过程,将人民教育出版社2004年版高中生物新教材中“土壤微生物的分解作用”这一实验预做情况展示出来,以便于有关师生在实际教学、学习中有所帮助。文中重点叙述了土壤微生物对落叶、淀粉的分解作用等几方面内容。 关键词土壤微生物微生物的分解作用生态系统的物质循环 一、活动目标 1.分析生态系统中的物质循环。 2.尝试探究土壤微生物的分解作用。 3.认同生物与环境是一个统一的整体。 制定以上教学目标是基于这样的认识:学生通过该实验可以探究土壤中落叶等物质的消失源于土壤微生物的分解作用,更好地理解生态系统的物质循环中从有机物到无机物的过程。从而巩固生态系统物质循环和生物与环境整体性等相关生态学知识,为今后开展土壤生态学的研究工作打下基础。 二、背景资料 “土壤微生物的分解作用”探究实验是土壤生态学中的一个重要实验,该实验的原理是:土壤中的微生物主要有细菌、真菌、放线菌、藻类和原生动物,它们在生态系统成分中主要充当分解者,通过自身产生酶的作用,将落叶、淀粉等较复杂有机物分解成简单有机物或无机物分子,在自然界物质循环中起重要作用。 土壤是微生物的良好生境,土壤中有多种类群的微生物,它们对自然界物质的转化和循环起着极为重要的作用,对农业生产和环境保护有着不可忽视的影响。根际微生物与植物的关系特别密切,不同的土壤和植物对根际微生物产生显著影响,而不同的根际微生物由于其生理活性和代谢产物的不同,也将对土壤肥力和植物营养产生积极或消极的作用。土壤微生物不仅对土壤的肥力和土壤营养元素的转化起着重要作用,而且对于进入土壤中的农药及其他有机污染物的自净、有毒金属及其化合物在土壤环境中的迁移转化等都起着极为重要的作用。这其中对土壤微生物的分解作用的研究是最基础、最深入的,这次通过本探究实验,可以为今后研究土壤理化性质及土壤微生物的其它作用,更多涉足土壤生态学打下坚实基础。 三、操作指南 材料用具: 1.土壤微生物对落叶的分解作用: 土壤、落叶、玻璃容器、标签、塑料袋、恒温箱、纱布 2.土壤微生物对淀粉的分解作用:

(新人教版)高中每日一题探究土壤微生物的分解作用必修3(生物解析版)

兴趣小组设计实验来探究土壤微生物对落叶的分解作用,下列操作及分析正确的是 A.可采用加热烘干的方法除去实验组中的土壤微生物 B.将实验组和对照组的土壤放在隔绝空气的条件下进行 C.对照组中落叶的分解速度明显高于实验组的分解速度 D.实验组和对照组可以分别选择不同种类的落叶进行实验 【参考答案】C 【名师点睛】1.去除实验组微生物的方法要以尽可能避免改变土壤理化性质为宜,加热烘干会改变土壤的理化性质。 2.对照实验的设置一定要遵循单一变量原则。该实验的自变量是土壤中微生物的有无,其余的为无关变量,例如放入土壤中的落叶的种类和数量等都应保持相同。 3.自然界土壤微生物的分解作用都是在自然条件下而不是在隔绝空气条件下进行的,故本实验也不能在隔绝空气条件下进行。 1.为探究落叶是否在土壤微生物的作用下腐烂,下列各项构成了一个实验设计,其中不符合实验目的步骤是 A.可选择带有落叶的土壤为实验材料,筛出落叶和土壤 B.将落叶平均分成两份,把土壤也平均分成两份 C.将灭菌的土壤设为实验组,不做处理的土壤设为对照组 D.将落叶分别埋入两组土壤中,观察腐烂情况

2.某种甲虫以土壤中的落叶为主要食物,假如没有这些甲虫,落叶层将严重堆积,最终导致落叶林生长不良。下列叙述正确的是 A.该甲虫能促进落叶林的物质循环 B.该甲虫与落叶树之间为捕食关系 C.该甲虫属于生态系统成分中的初级消费者 D.落叶中有10%~20%的能量流入甲虫体内 3.关于土壤微生物的叙述,错误的是 A.土壤微生物参与生态系统的物质循环 B.土壤微生物可作为生态系统的分解者 C.秸秆经土壤微生物分解后可被农作物再利用 D.土壤中的硝化细菌是异养生物,不属于生产者 4.下图表示a、b、c三地区森林土壤有机物分解状况,则分解者的作用强弱依次是 A.a>b>c B.c>b>a C.c=b>a D.a>c=b 1.【答案】C 【解析】本题是通过实验探究土壤微生物对落叶的分解作用,先找出实验目的,然后根据实验目的设计实验,并结合选项描述分析判断。分解落叶的微生物往往在含有落叶的土壤中分布较多,所以可选择带有落叶的土壤为实验材料,筛出落叶和土壤,A正确;由实验目的可知,实验分两组,一组实验组,一组对照组,所以要将落叶平均分成两份,把土壤也平均分成两份,B正确; 应将灭菌的土壤设为对照组,不做处理的土壤设为实验组,C错误;将落叶分别埋入两组土壤中,观察腐烂情况,D正确。故选C。

土壤微生物生物量的测定方 法(氯仿熏蒸)

土壤微生物生物量的测定方法 1土壤微生物碳的测定方法(熏蒸提取----仪器分析法)1.1 基本原理 新鲜土样经氯仿熏蒸后(24h),土壤微生物死亡细胞发生裂解,释放出微生物生物量碳,用一定体积的0.5mol/LK2SO4溶液提取土壤,借用有机碳自动分析仪测定微生物生物量碳含量。根据熏蒸土壤与未熏蒸土壤测定有机碳的差值及转换系数(K EC),从而计算土壤微生物生物量碳。 1.2 实验仪器 自动总有机碳(TOC)分析仪(Shimadzu Model TOC—500,JANPAN)、真空干燥器、烧杯、三角瓶、聚乙烯熟料管、离心管、滤纸、漏斗等。 1.3 实验试剂 1)无乙醇氯仿(CHCL3); 2)0.5mol/L硫酸钾溶液:称取87g K2SO4溶于1L蒸馏水中 3)工作曲线的配制:用0.5mol/L硫酸钾溶液配制10ugC/L、30ugC/L、50ugC/L、 70ugC/L、100ugC/L系列标准碳溶液。(其实一般情况下,仪器会自带的标曲,一般不用自己做的) 1.4 操作步骤 1.4.1 土壤的前处理(过筛和水分调节略) 1.4.2 熏蒸 称取新鲜(相当于干土10.0g,这个可以根据自己土样的情况而定)3份分别放入25ml小烧杯中。将烧杯放入真空干燥器中,并放置盛有无乙醇氯仿(约2/3)的15ml烧杯2或3只,烧杯内放入少量防暴沸玻璃珠,同时放入一盛有NaOH溶液的小烧杯,以吸收熏蒸过程中释放出来的CO2,干燥器底部加入少量水以保持容器湿度。盖上真空干燥器盖子,

用真空泵抽真空,使氯仿沸腾5分钟。关闭真空干燥器阀门,于25℃黑暗条件下培养24小时。 1.4.2 抽真空处理 熏蒸结束后,打开真空干燥器阀门(应听到空气进入的声音,否则熏蒸不完全,重做),取出盛有氯仿(可重复利用)和稀NaOH溶液的小烧杯,清洁干燥器,反复抽真空(5或6次,每次3min,每次抽真空后最好完全打开干燥器盖子),直到土壤无氯仿味道为止。同时,另称等量的3份土壤,置于另一干燥器中为不熏蒸对照处理。(注意:熏蒸后不 可久放,应该快速浸提)※ 1.4.4 浸提过滤 从干燥器中取出熏蒸和未熏蒸土样,将土样完全转移到80ml聚乙烯离心管中,加入40ml 0.5mol/L硫酸钾溶液(土水比为1:4,考虑到土样的原因,此部分熏蒸和不熏蒸土均为4g,即,4g土:16ml的硫酸钾溶液,当然这个加入量要根据TOC仪器的进入量决定)300r/min振荡 30min,用中速定量滤纸过滤。同时作3个无土壤基质空白。土壤提取液最好立即分析,或—20℃冷冻保存(但使用前需解冻摇匀)(注意这部分很重要,有研究结果表明:提取液如果不立即分析,请保存在—20℃,否则将影响浸提液的效果,其次,过滤时不要用普通的定性或定量滤纸,以免长久杂质会堵塞仪器的管路,建议使用那种一次性塑料注射器,配一个0.2um的滤头,一个才1元)。 1.4.5 TOC仪器测定 吸取上述土壤提取液10ul(这个要根据仪器自己的性能决定,但是一般情况下,在测定土壤滤液时候,要对其进行稀释,如果不稀释,一方面超过原来仪器的标曲,另一方面可能堵塞仪器。)注入自动总有机碳(TOC)分析仪上,测定提取液有机碳含量。由于总有机碳分析仪型号较多,不同的型号则操作程序存在较大差异,这里以本实验室使用的有机碳分析仪(Shimadzu Model TOC---500,JAPAN)为例。 1.5 计算

中国农田土壤固碳潜力与速率:认识挑战与研究建议“土壤与可持续发展”专题

中国农田土壤固碳潜力与速率:认识、挑战与研究建议“土壤 与可持续发展”专题 导读 土壤有机碳作为土壤肥力形成的基础,不但影响土壤质量、功能和粮食产量,而且在全球气候变化中扮演重要角色。在我国土壤资源同时面临保障粮食安全、发挥生态系统服务功能和应对气候变化等多重挑战的背景下,准确把握中国农田土壤固碳潜力及速率,对于实现土壤资源合理利用和农业可持续发展具有重要意义。文章首先介绍了对中国农田土壤有机碳变化速率和土壤固碳潜力的基本认识以及研究中面临 的挑战,而后从基础研究、土壤信息平台、方法体系及研究成果与国家农业管理决策支撑方面提出了研究建议。 文/赵永存徐胜祥王美艳史学正(中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室) 土壤是陆地生态系统的核心,是人类赖以生存的重要自然资源。土壤有机碳(soil organic carbon,SOC)作为土壤肥力形成的基础,不但影响土壤质量和功能,而且在全球气候变化中扮演重要角色。SOC 是土壤肥力的决定性因素,其含量高低、质量好坏直接影响土壤肥力属性,即土壤有效持水量、保肥能力、养分利用效率、土壤微生物数量和活性,进而显著影响作物产量。同时,作为土壤碳库的重要组成部

分,SOC 通过土壤微生物分解释放二氧化碳(CO2),而大气中的CO2 则通过光合作用被固定到植物体,植物根系、凋落物及人为归还使得植物体中的部分碳再次归还到土壤中。因此,SOC 具有一定的大气CO2 浓度调节功能。地球上SOC 储量巨大且较为活跃,因而其微小变化就可能对大气CO2 浓度产生重大影响,进而影响全球气候变化。 我国人多地少,耕地土壤质量总体不高,随着工业化和城市化进程的高速发展,人地、人粮矛盾日益突出,土壤资源正同时面临着保障粮食安全、发挥生态系统服务功能和应对气候变化等多重挑战。而农田作为受人为管理措施影响最为强烈的土壤利用方式,其SOC 库最为活跃。同时,农田SOC 库也是唯一可在较短时间尺度上通过合理利用而进行适度 调节的碳库。因此,准确把握农田SOC 变化速率及固碳潜力对于实现我国土壤资源高效利用及农业可持续发展战略,意义十分重大。 1 我国农田土壤固碳潜力及速率的基本认识 国家尺度农田SOC变化速率估算主要采用Meta 分析、土壤调查数据差减和过程模型模拟3类方法。Meta分析采用已发表文献中的SOC 数据,计算SOC 变化速率;调查数据差减法通过两期土壤调查采样的SOC实测数据直接差减计算变化速率;过程模型模拟则采用SOC周转机理模型,在气候、土壤、农业管理措施等因子驱动下,实现SOC变

微生物碳氮的测定方法——熏蒸提取法

二、土壤微生物量碳、氮的测定方法—熏蒸提取法 1.主题内容与适用范围 本方法采用氯仿熏蒸—提取测定土壤微生物量碳、氮,适用范围广,既适用于中性和微碱性土壤,也适用于强酸性土壤,并且适用于滞水土壤(如水稻土)和新施有机肥土壤。 2.方法提要 土样经氯仿熏蒸和未熏蒸两种不同处理后,用K 2SO 4 溶液浸提,提取液一部分用K 2 CrO 7 (重络酸钾)氧化法测定微生物量碳,另一部分用浓H 2SO 4 消煮、碱化蒸馏法测定微生 物量氮。 3.提取液的制备 3.1仪器、设备:抽气皿(真空干燥器)、无醇氯仿、抽气机、大铝盒、分析天平(感量: 0.01g)、小烧杯(50ml)、大塑料瓶(250ml)、大三角瓶(150ml)、40C的 冰箱、定量滤纸(15cm)、漏斗、保鲜膜 3.2试剂的制备:0.5 M K 2SO 4 溶液(化学纯)、 无醇氯仿(提纯方法:用1N H 2SO 4 溶液与氯仿(CHCl 3 三氯甲烷)按体积比2:1 于分液漏斗中振荡混匀,净置分离,共做3次;再用水代替硫酸与氯仿2:1 混匀,振荡分离,共5次,将提纯的氯仿放入到棕色试剂瓶中,加一勺无 水硫酸钠,保存) 3.3分析步骤: 3.3.1 称取12.50g鲜土(取土要准确、均匀,不要夹入有机残体)于大铝盒中。在抽气皿中放入盛有25ml无醇氯仿的小烧杯,小烧杯中放几张小纸片以便于观察沸腾。放入装土的大铝盒,连上抽气机,抽真空使氯仿沸腾5分钟,关紧活塞,关闭抽气机。包上黑布,置于阴暗处(250C)熏蒸24小时。到时间后,取出小烧杯后反复抽真空2~3次(每次5分钟),排除氯仿。 另称取一批同等重量的土放入大塑料瓶中,不做熏蒸处理,同样包上黑布,置于阴暗处24小时。 3.3.2 将步骤(3.1.1)中的两批土样转移到离心管中(红壤适宜离心管)。用注射器注入每 瓶50ml 0.5M K 2SO 4 溶液,盖紧瓶塞,振荡30分钟,离心5分钟后取出,用15ml定量滤纸 过滤到150ml大三角瓶中,应立即测定。如不立即测定,用保鲜膜封口(防止污染和挥发),保存在40C的冰箱中。 4.生物量碳的测定—K 2CrO 7 氧化法 4.1仪器、设备:DOC测定仪(冷凝装置4套、配套沸瓶装16个)、玻璃沸珠、1500W电炉两 个、变压器两个、滴定管(25ml) 4.2试剂的制备:蒸馏水、混合酸(浓硫酸:浓磷酸=2:1,分析纯) 、0.1000N K 2CrO 7 标准溶 液 邻菲罗啉指示剂、66.7mM(0.4 N)K 2CrO 7 溶液(19.6125g/L,分析纯) 0.02M (NH 4) 2 Fe(SO 4 ) 2 溶液:取15.69g/L溶于蒸馏水,用20ml浓硫酸(98%, 分析纯)酸化,而后定容至1L、4.3分析步骤: 4.3.1吸取2ml 0.4 N K 2CrO 7 溶液放入沸瓶,再吸15ml 混酸放入沸瓶,混合,加入等量的 玻璃球(约一小药匙,10个)。吸取步骤(3.2.2)中的过滤液8~10ml(根据含碳量多少而

报告一土壤固碳过程与微生物驱动机制

第 13 讲 报告一:土壤固碳过程与微生物驱动机制 【主讲人】 罗煜副教授 浙江大学环境与资源学院 报告二:半干旱草原生态系统生产力与碳交换过程对 降水变化的响应 【主讲人】 陈世苹研究员 草地生物地球化学研究组 报告三:高寒草地土壤有机碳分解温度敏感性的调控机制 【主讲人】 秦书琪博士生 高寒生态格局与过程研究组 植被与环境变化国家重点实验室 State Key Laboratory of Vegetation and Environmental Change

侯学煜青年生态论坛 (第13讲) 报告人:罗煜 报告题目:土壤固碳过程与微生物驱动机制 罗煜,副教授,浙江大学“青年求是学者”,“浙江省 杰出青年基金”获得者,担任中国植物营养与肥料学会 委员,获中国土壤学会优秀青年学者、国际腐植酸协会 奖等。主要采用同位素、分子生物学、高分辨质谱等技 术,开展土壤-植物-微生物连续体中碳素分配周转过 程及驱动机制研究。主持国家自然科学基金2项,浙 江省杰出青年科学基金项目1项。以第一或通讯作者 发表SCI论文15篇,其中中科院分区1区论文11篇 (含Soil Biol Biochem 6篇,ESI高被引论文3篇,单篇最高引用350次)。参与Microbiome、Global Change Biol等期刊审稿(约40篇/年),任Biol Fert Soils(中科院1区,下同)、Plant Soil(1区)等期刊客座编辑,Biogeosciences(2区)及Eur J Soil Sci(1区)副主编。 摘要:主要开展土壤-植物-微生物连续体中碳素分配周转过程及机制的研究,选取具有不同分子结构(梯度微生物可利用性)的植物碳源(根际沉积碳、秸秆碳、生物质炭),明确其对土壤有机碳积累分解的贡献,并深入探究微生物机制与非生物因子的调控作用。另浅析了今后潜在研究方向:1)土壤有机碳固持的界面过程;2)参与土壤有机碳转化过程的核心微生物。

土壤微生物量碳氮测定方法

1.23.1 土壤微生物碳的测定——TOC-V CPH有机碳分析仪 一、方法原理 土壤有机碳的测量方法主要有两种,即氯仿熏蒸培养法和氯仿熏蒸—直接浸提法。 1.氯仿熏蒸培养法[1]:土壤经氯仿熏蒸后再进行培养,测定培养时间内熏蒸与未熏蒸处理所释放CO2之差来计算土壤生物量碳。 2.氯仿熏蒸直接浸提法[2]:土壤经氯仿熏蒸后直接浸提进行,测定浸提液中的碳含量,以熏蒸和不熏蒸土壤中总碳的差值为基础计算土壤微生物含碳量。 直接提取法与氯仿熏蒸培养法相比,直接提取法具有简单、快速、测定结果的重复性较好等优点。直接提取法测定土壤微生物量的碳的方法日趋成熟。现在氯仿熏蒸—K2SO4提取法已成为国内外最常用的测定土壤微生物碳的方法。本实验以氯仿熏蒸直接浸提法为例介绍土壤微生物量碳氮的浸提与测定。 二、主要仪器 振荡机、真空干燥器、真空泵、TOC-V CPH有机碳分析仪。 二、试剂 1.氯仿(去乙醇):普通氯仿一般含有乙醇作为稳定剂,使用前要去除乙醇。将氯仿按照1︰2(v/v)的比例与蒸馏水一起放入分液漏斗中,充分振动,慢慢放出底部氯仿,重复3次。得到的无乙醇氯仿加入无水CaCl2,以除去氯仿中的水分。 2.0.5 mol·L-1 K2SO4浸提液:43.57g分析纯K2SO4定溶至1L。 四、操作步骤 称取过2mm筛的新鲜土样12.5g六份,置于小烧杯中。将其中三份小烧杯放入真空干燥器中,干燥器底部放3个烧杯,其中一个放氯仿,烧杯内放少许玻璃珠(防爆),另一个放水(保持湿度),再放一杯稀NaOH。抽真空时,使氯仿剧烈沸腾3-5 min,关掉真空干燥器阀门,在暗室放置24 h。熏蒸结束后,打开干燥器阀门,取出氯仿,在通风厨中使氯仿全部散尽。另三份土壤放入另一干燥器中,但不放氯仿。 将熏蒸的土样全部转移至150 mL三角瓶中,加入50mL 0.5 mol·L-1 K2SO4 (土水比为1:4),振荡30min,过滤。未熏蒸土样操作相同,同时做空白。 五、结果计算 土壤微生物量碳 =(熏蒸土壤有机碳-未熏蒸土壤有机碳)/0.45 式中:0.45——将熏蒸提取法提取液的有机碳增量换算成土壤微生物生物量碳所采用的转换系数(kEc)。 一般量容法采用的kEc值为0.38,仪器分析法kEc 取值0.45。 六、注意事项 1.氯仿致癌,操作时应在通风厨中进行。 2.打开真空干燥器时,要听声音,如没空气进去的声音,试验需重做。 3.应注意试剂的厂家,有些厂家的K2SO4试剂不宜浸提土壤微生物量碳。 4.浸提液应立即用TOC-V CPH有机碳分析仪测定或在-18℃下保存。 1.23.2土壤微生物量氮的测定 一、方法原理 土壤微生物态氮是土样在CHCl3熏蒸后直接浸提氮含量,并进行测定,以熏蒸和不熏蒸

土壤有机质提升与土壤固碳核算技术规范

ICS点击此处添加ICS号 点击此处添加中国标准文献分类号DB/T 地方标准 DB XX/ XXXXX—XXXX 土壤有机质提升与土壤固碳核算技术规范Technical Specifications for Soil Carbon Sequestration Accounting of the Farmland 点击此处添加与国际标准一致性程度的标识 (征求意见稿) XXXX-XX-XX发布XXXX-XX-XX实施

目次 前言................................................................................ II 1 适用范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 土壤固碳技术管理措施 (2) 5 核算方法 (2) 6 数据收集及数据质量 (5) 参考文献 (6)

前言 本标准由北京市农业局提出并归口管理。 本标准由北京市农业局组织实施。 本标准按照GB/T 1.1《标准化工作导则第1部分:标准的结构和编写》给出的规则起草。 本标准主要起草单位:北京低碳农业协会、北京嘉娅低碳农业研究中心、北京嘉博文生物科技有限公司、有机废弃物生物转化北京市工程研究中心(北京博文合众生物科技有限公司)。 本标准主要起草人:吴建繁、于家伊、张文、孙志岩、贾小红、杨军香

土壤有机质提升与土壤固碳核算技术规范 1 适用范围 本标准规定了针对土壤有机碳变化带来的土壤固碳变化量核算方法。 本标准适用于旱田、水田、菜田、果园的土壤固碳变化量评价。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,只有该引用版才适用。凡是不注日期的引用文件,其最新版本(包括任何修改文件)适用于本标准。 NY/T 85-1988 土壤有机质测定法 NY/T 1121.4-2006 土壤检测第4部分:土壤容重的测定 NY/T 1121.1-2006 土壤检测第1部分:土壤样品的采集、处理和贮存 3 术语和定义 下列术语和定义适用于本文件。 3.1 土壤固碳 Soil carbon Sequestration 通过采用管理措施,提高土壤的有机质含量,增加土壤碳库储量。 3.2 增施外源性碳Increased Exogenous Carbon 增施外源的有机物质或有机物料,能够在达到稳定后提高土壤碳储量,包括增施符合标准的有机肥、生物有机肥、有机源土壤调理剂、有机源生物腐植酸肥料及外源秸秆等。 3.3 二氧化碳当量Carbon Dioxide Equivalent(CO2e) 用作比较不同温室气体排放的量度单位,在辐射强度上与某种GHG质量相当的CO2的量。GHG二氧化碳当量等于给定气体的质量乘以它的全球变暖潜势。 3.4 土壤有机质Soil Organic Matter 土壤中形成的和外加入的所有动、植物残体不同阶段的各种分解产物和合成产物的总称。它包括高度腐解的腐殖物质、解剖结构尚可辨认的有机残体和各种微生物体。 3.5 土壤有机质含量Soil Organic Matter Content 每千克土壤中的土壤有机质含量。 3.6 土壤有机碳Soil Organic Carbon 土壤有机质中所含有的碳元素。

相关主题
文本预览
相关文档 最新文档