当前位置:文档之家› 控制系统时域及频域性能指标的联系

控制系统时域及频域性能指标的联系

控制系统时域及频域性能指标的联系
控制系统时域及频域性能指标的联系

控制系统时域与频域性能指标的联系

经典控制理论中,系统分析与校正方法一般有时域法、复域法、频域法。时域响应法是一种直接法,它以传递函数为系统的数学模型,以拉氏变换为数学工具,直接可以求出变量的解析解。这种方法虽然直观,分析时域性能十分有用,但是方法的应用需要两个前提,一是必须已知控制系统的闭环传递函数,另外系统的阶次不能很高。

如果系统的开环传递函数未知,或者系统的阶次较高,就需采用频域分析法。频域分析法不仅是一种通过开环传递函数研究系统闭环传递函数性能的分析方法,而且当系统的数学模型未知时,还可以通过实验的方法建立。此外,大量丰富的图形方法使得频域分析法分析高阶系统时,分析的复杂性并不随阶次的增加而显著增加。

在进行控制系统分析时,可以根据实际情况,针对不同数学模型选用最简洁、最合适的方法,从而使用相应的分析方法,达到预期的实验目的。

系统的时域性能指标与频域性能指标有着很大的关系,研究其内在联系在工程中有着很大的意义。一、系统的时域性能指标

延迟时间t d

阶跃响应第一次达到终值h(∞)的

50%所需的时间

上升时间

t r

阶跃响应从终值的10%上升到终值的90%所需的时间;对有振荡的系统,

也可定义为从0到第一次达到终值所需的时间

峰值时间t

p

阶跃响应越过终值h(∞)达到第一个峰值所需的时间

调节时间

t

s

阶跃响应到达并保持在终值h(∞)的±5%误差带内所需的最短时间

超调量%σ 峰值h(

t

p

)超出终值h(∞)的百分比,即

%σ=

()

()()

∞∞-h h h t p ?100%

二、系统频率特性的性能指标

采用频域方法进行线性控制系统设计时,时域内采用的诸如超调量,调整时间等描述系统性能的指标不能直接使用,需要在频域内定义频域性能指标。

1、零频振幅比M(0):即ω为0时闭环幅频特性值。它反映了系统 的稳态精度, M(0)越接近于1,系统的精度越高。M(0)≠1时,表明系统有稳态误差。

2、谐振峰值Mr :为幅频特性曲线的A(ω)的最大值。一般说来,Mr 的大小表明闭环控制系统相对稳定性的好坏。Mr 越大,表明系统对某个频率的正弦信号反映强烈,有共振倾向,系统的平稳性较差,相应阶跃响应的超调量越大。对应的ωr

为谐振频率。

3、谐振频率ωr

:出现最大值Mmax 时对应的频率。

4、带宽

b

ω

幅频特性下降至零频幅比的70.7﹪,或下降3dB 时对应的频率称为带宽(也成为闭环

截止频率)。带宽用于衡量控制系统的快速性,带宽越宽,表明系统复现快速变化信号的能力越强,阶跃响应的上升时间和调节时间就越短。带宽是控制系统及控制元件的重要性能指标。

三、闭环频域性能指标与时域性能指标的关系

1、二阶系统的相互联系

对于二阶系统,其频域性能指标和时域性能指标之间有着严格的数学关系

(1)、谐振峰值Mr 和时域超调量δ之间的关系

幅频特性的谐振峰值Mr

在二阶系统Φ(s)=

ωωωξn

2n

2

2

2

s ++s n

中,

2(n

ωM 令

()

=0dM d ωω

,得谐振频率=

r ωω

求得幅频特性峰值

r M 二阶系统的超调量

-%=100%e ξπδ?

由此可看出,谐振峰值Mr 仅与阻尼比ξ有关,超调量%σ也仅取决于阻尼比ξ。

ξ越小,Mr 增加的越快,这时超调量%σ也很大,超过40%,一般这样的系统不符和瞬态

响应指标的要求。

当0.4< ξ<0.707时,Mr 与δ%的变化趋势基本一致,此时谐振峰值Mr=1.2 ~ 1.5,超调量%σ=20% ~30%,系统响应结果较满意。

当ξ>0.707时,无谐振峰值,Mr 与%σ的对应关系不再存在,通常设计时,ξ取在0.4至0.7之间

(2)、谐振频率

r

ω

与峰值时间p t

的关系

=r

ωω

t =

p πω

p t 与r

ω

之积为

p

r

t ω

由此可看出,当

ξ为常数时,谐振频率 r ω与峰值时间 p t 成反比, r ω值愈大,p

t 愈小,表示系统时间响应愈快

(3)、闭环谐振峰值Mr 和相角裕度γ的关系

()

()=M()j j e

αωφωω ()

()=()j G j A e

?ωωω

0()

(180-)

()=()=()=()(-cos -sin )

j c j c c c c G j A e

A e

A j ?ωγωωωωγγ0

=180+()c

γ?ω 0()=180-c ?ωγ

()()

M()=

=1+()1-()cos -()sin c c c c G j A G j A jA ωωωωωγωγ

一般Mr 极大值发生在c ω附近。

()11

=0()()sin sin dM A Mr dA ωωωγγ

?≈?≈

故1

sin Mr γ

在开环截止频率c ω附近,上述近似程度就越高。 (4)、γ和ξ的关系

2

()==1()(+2)n c c

c c n

G j G j j j ω

ωωωωξω∠

2

n

)

1/2

2

=c n

ωξ

ω

2=180+(-90-arctg

)=90-arctg =arctg 22c

c

n

n

n

c

ωωξω

γξωξωω

得出

1/2

=arctg 2γξ??????????

对于二阶系统,一般要求:

0030<<700.27<<0.8γξ?

2、带宽

b ω

与时域性能的关系

(1)、一阶系统

一阶系统的闭环传递函数为1

()=1+s TS

φ 系统的闭环频率特性为1

()=

1+j Tj φωω

系统的闭环幅频特性为

()=()M j ωφω可知,ω=0时幅值为1,即零频振幅比M(0)=1, 则L(0)= 20LgM(0) = 0 闭环截止频率b ω:

由b ω的定义知 L(b ω)=L (0)-3=-3

20()=20b LgM Lg

ω (b M ω 可解得:=1/b T ω

一阶系统中调节时间、上升时间与带宽的关系

=2.2tr T =3ts T → =2.2/b tr ω,=3/b ts ω

(2)、二阶系统

标准二阶系统的开环传递函数为 2()=

(s+2)

n

n G s s ω

ξω

二阶系统的闭环传递函数为22

2

()=+2+n

n

n

s s s ωφξωω

闭环频率特性为2

2

2

2

2

2

()==()+2++2-n

n

n

n

n

n

j j j j ωω

φωωξωωωωξωωω

系统的闭环幅频特性为2

()=()n

M j ωφω

可知, ω=0时幅值为1,即零频振幅比M(0)=1,

则L(0)= 20LgM(0) = 0

闭环截止频率b ω

由b ω的定义知 L(b ω)=L (0)-3=-3 可解得:2

(=0.707n

b M ω

=b

ωω

阻尼比不变,自然振荡频率越大,带宽越大;自然振荡频率不变,阻尼比越小,带宽越大;可知带宽与系统响应速度成正比!

(3)、带宽b ω

与调节时间

ts 的关系

调整时间 3.5

=n

ts ξω

=b

ωω

b ω

ts 之积为

b

ts ω由此可看出,当阻尼比ξ给定后,闭环截止频率b ω与过渡过程时间s t 成反比关系。换

言之,

b ω

愈大(频带宽度0 -

b ω

愈宽),系统的响应速度愈快。

(4)、系统带宽的选择

带宽频率是一项重要指标。其选择要求要既能以所需精度跟踪输入信号,又能拟制噪声扰动信号。在控制系统实际运行中,输入信号一般是低频信号,而噪声信号是高频信号。

(5)、带宽指标取决于下列因素:

a) 对输入信号的再现能力。大的带宽相应于小的上升时间,即相应于快速特性。粗略地说,

带宽与响应速度成正比。 b) 对高频噪声必要的滤波特性。

为了使系统能够精确地跟踪任意输入信号,系统必须具有大的带宽。但是,从噪声的观点来看,带宽不应当太大。因此,对带宽的要求是矛盾的,好的设计通常需要折衷考虑。具有大带宽的系统需要高性能的元件,因此,元件的成本通常随着带宽的增加而增大。

3、典型二阶系统频域指标与时域指标的关系

闭环频域指标:

Mr

=r ω

=b ω

)

1/2

2

=c

ωξ

ω

闭环阶跃响应时域指标:

-%=100%e

ξπσ?

tp=/=/(d πωπω

=(-)/=(-)/(d tr πβωπβω

3.5

=

(=0.05,0<<0.9)n

ts ξξω

?

因此,若知道频域指标中的任两个,就可解算出ξ,n ω,从而求出时域指标。反之,给出时域指标的任两个,就可确定闭环频域指标。

ξ -%=100%e

σ?

ξ↑,,,,Mr ts γσ↓↑↓↓,相对稳定性好,超调小,振荡次数少。

,n

ξω↑不变时,c

,,,,n

b

tr tp ωωω↓↓↓↑↑,系统灵敏度下降。

,n

ωξ↑不变时,c

,,r

b

ωωω↑↑↑,系统灵敏,速度快。

4、高阶系统频域指标与时域指标 谐振峰值 1=

sin Mr γ

超调量 =0.16+0.4(-1)Mr σ 1 1.8Mr ≤≤

调节时间 c

=K ts π

ω

2

=2+1.5(-1)+2.5(-1)K Mr Mr 1 1.8Mr ≤≤

大作业1(机电控制系统时域频域分析)

《机电系统控制基础》大作业一 基于MATLAB的机电控制系统响应分析 哈尔滨工业大学 2013年11月4日

1 作业题目 1. 用MATLAB 绘制系统2 ()25()() 425 C s s R s s s Φ== ++的单位阶跃响应曲线、单位斜坡响应曲线。 2. 用MATLAB 求系统2 ()25 ()()425 C s s R s s s Φ==++的单位阶跃响应性能指标:上升时间、峰值时间、调节时间和超调量。 3. 数控直线运动工作平台位置控制示意图如下: X i 伺服电机原理图如下: L R (1)假定电动机转子轴上的转动惯量为J 1,减速器输出轴上的转动惯量为J 2,减速器减速比为i ,滚珠丝杠的螺距为P ,试计算折算到电机主轴上的总的转动惯量J ; (2)假定工作台质量m ,给定环节的传递函数为K a ,放大环节的传递函数为K b ,包括检测装置在内的反馈环节传递函数为K c ,电动机的反电势常数为K d ,电动机的电磁力矩常数为K m ,试建立该数控直线工作平台的数学模型,画出其控制系统框图; (3)忽略电感L 时,令参数K a =K c =K d =R=J=1,K m =10,P/i =4π,利用MATLAB 分析kb 的取值对于系统的性能的影响。

2 题目1 单位脉冲响应曲线 单位阶跃响应曲线

源代码 t=[0:0.01:1.6]; %仿真时间区段和输入 nC=[25]; dR=[1,4,25]; fi=tf(nC,dR); %求系统模型 [y1,T]=impulse(fi,t); [y2,T]=step(fi,t); %系统响应 plot(T,y1); xlabel('t(sec)'),ylabel('x(t)'); grid on; plot(T,y2); xlabel('t(sec)'),ylabel('x(t)'); grid on; %生成图形 3 题目2 借助Matlab,可得: ans = 0.4330 0.6860 25.3826 1.0000 即

CPU的主要性能参数

CPU的主要性能参数 主频 通常所说的某某CPU是多少兆赫的,而这个多少兆赫就是“CPU的主频”。主频也叫时钟频率,单位是GHZ,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。 有人以为认为CPU的主频指的是CPU运行的速度,实际上这个认识是很片面的。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力是没有直接关系的。当然,主频和实际的运算速度是有关的,但目前还没有一个确定的公式能够定量两者的数值关系,因为CPU的运算速度还要看CPU的流水线的各方面的性能指标(缓存、指令集,CPU的位数等等)。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。因此主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。 外频 外频是CPU与主板上其它设备进行数据传输的物理工作频率,也就是系统总线的工作频率。它代表着CPU与主板和内存等配件之间的数据传输速度。单位也是MHz。CPU标准外频主要有66MHz、100MHz、133MHz、166MHz、200MHz几种。 外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。 倍频 倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应——CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。 理论上倍频是从1.5一直到无限的,但需要注意的是,倍频是以以0.5为一个间隔单位。 倍频一般是不能改的,现在的CPU基本都对倍频进行了锁定。 CPU的其它参数

控制系统性能指标

本章主要内容: 1控制系统的频带宽度 2系统带宽的选择 3确定闭环频率特性的图解方法 4闭环系统频域指标和时域指标的转换 五、闭环系统的频域性能指标

1 控制系统的频带宽度 1 频带宽度 当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,对应的频率称为带宽频率,记为ωb。即当ω> ωb 2。Ig ΦO)∣<20?∣ΦQ,0)∣-3 而频率范围 根据带宽定义,对高于带宽频率的正弦输入信号,系统输岀将呈现较大的衰减,因此选取适当的带宽,可以抑制高频噪声的影响。但带宽过窄又会影响系统正弦输入信号的能力,降低瞬态响应的速度。因此在设计系统时,对于频率宽度的确定必须兼顾到系统的响应速度和抗高频干扰的要求。 2、丨型和II型系统的带宽 Φ(-0 = -―- 凶为开环系s?j?ι翌,,E 所以20 Igl Φ(J?) = 2Glg 1 / JiT応孑=20Ig-L 二阶系虬的例环传禺为, (】)(,¥,〕= — ~ Λ'+2CΓ?1S +Λ?; 1 圜为I (I I(√,3) =L ∕∣ T此∕?>3+4ζ,T?∕∕? = ?∣2 叫=叫[(1 -2√2) + √(l-2ζ*3)2+l P 2、系统带宽的选择 由于系统会受多种非线性因素的影响,系统的输入和输岀端不可避免的存在确定性扰动和随机噪声,因此控制系统的带宽的选择需综合考虑各种输入信号的频率范围及其对系统性能的影响,即应使系统对输入信号具有良好的跟踪能力和对扰动信号具有较强的抑制能力。 总而言之,系统的分析应区分输入信号的性质、位置,根据其频谱或谱密度以及相应的传递函数选择合适带宽,而系统设计主要是围绕带宽来进行的。 3、确定闭环频率特性的图解方法 b)称为系统带宽

游戏性能指标说明教学文案

DrawCall的理解 drawcall是CPU对底层图形绘制接口的调用命令GPU执行渲染操作,渲染流程采用流水线实现,CPU和GPU并行工作,它们之间通过命令缓冲区连接,CPU向其中发送渲染命令,GPU接收并执行对应的渲染命令。 这里drawcall影响绘制的原因主要是因为每次绘制时,CPU都需要调用drawcall而每个drawcall都需要很多准备工作,检测渲染状态、提交渲染数据、提交渲染状态。而GPU本身具有很强大的计算能力,可以很快就处理完渲染任务。 当DrawCall过多,CPU就会很多额外开销用于准备工作,CPU本身负载,而这时GPU可能闲置了。 解决DrawCall:过多的DrawCall会造成CPU的性能瓶颈:大量时间消耗在DrawCall准备工作上。很显然的一个优化方向就是:尽量把小的DrawCall合并到一个大的DrawCall中,这就是批处理的思想。下面是一些具体实施方案: 1. 2. 合并的网格会在一次渲染任务中进行绘制,他们的渲染数据,渲染状态和shader 都是一样的,因此合并的条件至少是:同材质、同贴图、同shader。最好网格顶点格式也一致。 3.

4. 尽量避免使用大量小的网格,当确实需要时,进行合并。 5. 6. 避免使用过多的材质,尽量共享材质。 7. 8. 9. 合并本身有消耗,因此尽量在编辑器下进行合并确实需要在运行时合并的,将静态 的物体和动态的物体分开合并:静态的合并一次就可以,动态的只要有物体发生变换就要重新合并。 FPS(每秒传输帧数(Frames Per Second)) 例如:75Hz的刷新率刷也就是指屏幕一秒内只扫描75次,即75帧/秒。而当刷新率太低时我们肉眼都能感觉到屏幕的闪烁,不连贯,对图像显示效果和视觉感观产生不好的影响。在FPS游戏例如CS中也是一样的,游戏里的每一帧就是一幅静止画面,而“FPS”值越高也就是“刷新率”越高,每秒填充的帧数就越多,那么画面就越流畅。当显卡能提供的“FPS”值不足以满足游戏的“FPS”时玩家就会感觉丢帧,也就是画面不连贯,以至影响游戏操作结果。 主频 主频也叫时钟频率,单位是兆赫(MHz)或千兆赫(GHz),用来表示CPU的运算、处理数据的速度。通常,主频越高,CPU处理数据的速度就越快。CPU的主频=外频×倍频系数。主频和实际的运算速度存在一定的关系,但并不是一个简单的线性关系。所以,CPU的主频与CPU实际的运算能力是没有直

第三章控制系统的时域分析法知识点

第三章 控制系统的时域分析法 一、知识点总结 1.掌握典型输入信号(单位脉冲、单位阶跃、单位速度、单位加速度、正弦信号)的拉氏变换表达式。 2.掌握系统动态响应的概念,能够从系统的响应中分离出稳态响应分量和瞬态响应分量;掌握系统动态响应的性能评价指标的概念及计算方法(对于典型二阶系统可以直接应用公式求解,非典型二阶系统则应按定义求解)。 解释:若将系统的响应表达成拉普拉氏变换结果(即S 域表达式),将响应表达式进行部分分式展开,与系统输入信号极点相同的分式对应稳态响应;与传递函数极点相同的分式对应系统的瞬态响应。将稳态响应和瞬态响应分式分别进行拉氏逆变换即获得各自的时域表达式。 性能指标:延迟时间、上升时间、峰值时间、调节时间、超调量 3.掌握一阶系统的传递函数形式,在典型输入信号下的时域响应及其响应特征;掌握典型二阶系统的传递函数形式,掌握欠阻尼系统的阶跃响应时域表达及其性能指标的计算公式和计算方法;了解高阶系统的性能分析方法,熟悉主导极点的概念,定性了解高阶系统非主导极点和零点对系统性能的影响。 tr tp ts td

4.熟悉两种改善二阶系统性能的方法和结构形式(比例微分和测速反馈),了解两种方法改善系统性能的特点。 5.掌握系统稳定性分析方法:劳斯判据的判断系统稳定性的判据及劳斯判据表特殊情况的构建方法(首列元素出现0,首列出现无穷大,某一行全为0);掌握应用劳斯判据解决系统稳定裕度问题的方法。了解赫尔维茨稳定性判据。 6.掌握稳态误差的概念和计算方法;掌握根据系统型别和静态误差系数计算典型输入下的稳态误差的方法(可直接应用公式);了解消除稳态误差和干扰误差的方法;了解动态误差系数法。 二、相关知识点例题 例1. 已知某系统的方块图如下图1所示,若要求系统的性能指标为: δδ%=2222%,tt pp=1111,试确定K和τ的值,并计算系统单位阶跃输入下的特征响应量:tt,tt。 图1 解:系统闭环传递函数为:Φ(s)=CC(ss)RR(ss)=KK ss2+(1+KKKK)ss+KK 因此,ωnn=√KK,ζζ=1+KKKK2√KK, δ%=e?ππππ?1?ππ2?ζζ=0.46, t pp=ππωωdd=1ss?ωdd=ωnn?1?ζζ2=3.14 ?ωnn=3.54 K=ωnn2=12.53,τ=2ζζωnn?1KK=0.18 t ss=3ζζωωnn=1.84ss

控制系统的频域分析实验报告

实验名称: 控制系统的频域分析 实验类型:________________同组学生姓名:__________ 一、实验目的和要求 用计算机辅助分析的方法,掌握频率分析法的三种方法,即Bode 图、Nyquist 曲线、Nichols 图。 二、实验内容和原理 (一)实验原理 1.Bode(波特)图 设已知系统的传递函数模型: 1 1211121)(+-+-+???+++???++=n n n m m m a s a s a b s b s b s H 则系统的频率响应可直接求出: 1 1211121)()()()()(+-+-+???+++???++=n n n m m m a j a j a b j b j b j H ωωωωω MATLAB 中,可利用bode 和dbode 绘制连续和离散系统的Bode 图。 2.Nyquist(奈奎斯特)曲线 Nyquist 曲线是根据开环频率特性在复平面上绘制幅相轨迹,根据开环的Nyquist 线,可判断闭环系统的稳定性。 反馈控制系统稳定的充要条件是,Nyquist 曲线按逆时针包围临界点(-1,j0)p 圈,为开环传递函数位于右半s 一平面的极点数。在MATLAB 中,可利用函数nyquist 和dnyquist 绘出连续和离散系统的乃氏曲线。 3.Nicho1s(尼柯尔斯)图 根据闭环频率特性的幅值和相位可作出Nichols 图,从而可直接得到闭环系统的频率特性。在 MATLAB 中,可利用函数nichols 和dnichols 绘出连续和离散系统的Nichols 图。 (二)实验内容 1.一系统开环传递函数为 ) 2)(5)(1(50)(-++=s s s s H 绘制系统的bode 图,判断闭环系统的稳定性,并画出闭环系统的单位冲击响应。 2.一多环系统 ) 10625.0)(125.0)(185.0(7.16)(+++=s s s s s G 其结构如图所示 试绘制Nyquist 频率曲线和Nichols 图,并判断稳定性。 (三)实验要求

cpu的简介及主要性能指标

CPU的簡介及主要性能指標 什麽是CPU? CPU是英語※Central Processing Unit/中央處理器§的縮寫, CPU一般由邏輯運算單元、控制單元和存儲單元組成。在邏輯運算和控制單元中包括一些寄存器,這些寄存器用於CPU在處理資料過程中資料的暫時保存。 CPU主要的性能指標有: 主頻即CPU的時鐘頻率(CPU Clock Speed)。 這是我們最關心的,我們所說的233、300等就是指它,一般說來,< 主頻越高,CPU的速度就越快,整機的就越高。 時鐘頻率: CPU的外部時鐘頻率,由電腦主板提供,以前一般是66MHz,也有主板支援75各83MHz,目前Intel公司最新的晶片組BX以使用100 MHz的時鐘頻率。另外VIA 公司的MVP3、MVP4等一些非Intel的晶片組也開始支援100MHz的外頻。精英公司的BX主板甚至可以支援133 MHz的外頻。 內部緩存(L1 Cache): 封閉在CPU晶片內部的快取記憶體,用於暫時存儲CPU運算時的部分指令和資料,存取速度與CPU主頻一致,L1緩存的容量單位一般爲KB。L1緩存越大,CPU 工作時與存取速度較慢的L2緩存和記憶體間交換資料的次數越少,相對電腦的運算速度可以提高。 外部緩存(L2 Cache): CPU外部的快取記憶體,PentiumPro處理器的L2和CPU運行在相同頻率下的,但成本昂貴,所以 PentiumII運行在相當於CPU頻率一半下的,容量爲512K。爲降低成本Inter公司生産了一種不帶L2的CPU命爲賽揚,性能也不錯。 MMX技術是※多媒體擴展指令集§的縮寫。 MMX是Intel公司在1996年爲增強Pentium CPU在音像、圖形和通信應用方面而採取的新技術。爲CPU增加57條MMX指令,除了指令集中增加MMX指令外,還將CPU晶片內的L1緩存由原來的 16KB增加到32KB(16K指命+16K資料),因此MMX CPU 比普通 CPU在運行含有MMX指令的程式時,處理多媒體的能力上提高了 60%左右。

计算机性能指标

计算机性能指标 (1)运算速度。运算速度是衡量计算机性能的一项重要指标。通常所说的计算机运算速度(平均运算速度),是指每秒钟所能执行的指令条数,一般用“百万条指令/秒”(mips,Million Instruction Per Second)来描述。同一台计算机,执行不同的运算所需时间可能不同,因而对运算速度的描述常采用不同的方法。常用的有CPU时钟频率(主频)、每秒平均执行指令数(ips)等。微型计算机一般采用主频来描述运算速度,例如,Pentium/133的主频为133 MHz,Pentium Ⅲ/800的主频为800 MHz,Pentium 4 1.5G的主频为1.5 GHz。一般说来,主频越高,运算速度就越快。 (2)字长。计算机在同一时间内处理的一组二进制数称为一个计算机的“字”,而这组二进制数的位数就是“字长”。在其他指标相同时,字长越大计算机处理数据的速度就越快。早期的微型计算机的字长一般是8位和16位。目前586(Pentium, Pentium Pro, PentiumⅡ,PentiumⅢ,Pentium 4)大多是32位,现在的大多数人都装64位的了。 (3)内存储器的容量。内存储器,也简称主存,是CPU可以直接访问的存储器,需要执行的程序与需要处理的数据就是存放在主存中的。内存储器容量的大小反映了计算机即时存储信息的能力。随着操作系统的升级,应用软件的不断丰富及其功能的不断扩展,人们对计算机内存容量的需求也不断提高。目前,运行Windows 95或Windows 98操作系统至少需要 16 M的内存容量,Windows XP则需要128 M以上的内存容量。内存容量越大,系统功能就越强大,能处理的数据量就越庞大。 (4)外存储器的容量。外存储器容量通常是指硬盘容量(包括内置硬盘和移动硬盘)。外存储器容量越大,可存储的信息就越多,可安装的应用软件就越丰富。目前,硬盘容量一般为10 G至60 G,有的甚至已达到120 G。 (5)I/O的速度 主机I/O的速度,取决于I/O总线的设计。这对于慢速设备(例如键盘、打印机)关系不大,但对于高速设备则效果十分明显。例如对于当前的硬盘,它的外部传输率已可达20MB/S、4OMB/S以上。 (6)显存

一阶系统时域分析

1.已知一单位负反馈系统的单位阶跃响应曲线如下图所示,求系统的闭环传递函数。 解答: ①max ()100100()X X %%e %X δ-∞=?=?∞ 由 2.1820.090.6082e ξ-==?= ②0.8 4.946m n t ω==?= ③2222224.4648.9222 6.01424.46 6.01424.46 n B n n W K s s s s s s ωωω=?=?=++++++ 2.已知系统如下图所示,求系统的单位阶跃响应,并判断系统的稳定性。 解答: ()() ()210 1101061010.511B s s W s s s s s +==+++++ 3.16n ω==, 260.95n ξωξ=?

( )()1sin n t c X t ξωωθ-= ,arctg θ= ()31 3.2sin 0.98718.19t e t -=-+? (5分) 系统根为 1,2632P j -= =-±,在左半平面,所以系统稳定。 3.一阶系统的结构如下图所示。试求该系统单位阶跃响应的调节时间t s ;如果要求t s (5%)≤ 0.1(秒),试问系统的反馈系数应取何值? (1)首先由系统结构图写出闭环传递函数 得 T =0.1(s ) 因此得调节时间 t s =3T =0.3(s),(取5%误差带) (2)求满足t s (5%) ≤0.1(s )的反馈系数值。 假设反馈系数K t (K t >0) ,那么同样可由结构图写出闭环传递函数 由闭环传递函数可得 T = 0.01/K t 100()10()100()0.1110.1c B r X s s W s X s s s ===++?1001/()1000.0111t B t t K s W s K s s K ==+?+

控制系统的时域分析

实验报告 实验名称:实验1:控制系统的时域分析 课程名称:自控控制原理 专业:电气工程及其自动化 班级:130037 学生姓名:施苏伟 班级学号:13003723 指导教师:杨杨 实验日期:2015 年10 月16日

一、实验目的 1.观察控制系统的时域响应; 2.记录单位阶跃响应曲线; 3.掌握时间响应分析的一般方法; 4.初步了解控制系统的调节过程。 二.实验步骤: 1.将‘实验一代码’这个文件夹拷贝到桌面上; 2.开机进入Matlab6.1 运行界面(其他版本亦可); 3.通过下面方法将当前路径设置为‘实验一代码’这个文件夹所在的路径 4.Matlab 指令窗>>后面输入指令:con_sys; 进入本次实验主界面。 5.分别双击上图中的三个按键,依次完成实验内容。

6.本次实验的相关Matlab 函数: 传递函数G=tf([num],[den])可输入一传递函数,其中num、den 分别表示分子、分母按降幂排列的系数。 三、仿真结果: (一)观察一阶系统G=1/(T+s)的时域响应: T=5s T=8s

T=13s 结果分析:一阶系统 G=1/(T+s)的,通过观察曲线发现,随着时间常数T的增大,同种响应要达到相同响应的时间增大,说明T越大,响应越慢。 (二)二阶系统的时域性能分析 (1)

结果分析:自然频率和阻尼比的适当时,通过调节相应的时间,阶跃响应可以得到稳定值。 (2)数据一:自然频率=5.96rad/sec 阻尼比=0.701

数据二:自然频率=8.2964rad/sec 阻尼比=0.701 结果分析:要达到既定范围,自然频率增大阻尼比要随之增大 (3)

电脑cpu的性能指标基础知识介绍

电脑cpu的性能指标基础知识介绍 2010年02月20日 17时20分26秒组装电脑配置网 CPU主要的性能指标有以下几点: (1)主频,也就是CPU的时钟频率,简单地说也就是CPU的工作频率。 一般说来,一个时钟周期完成的指令数是固定的,所以主频越高,CPU的速度也就越快了。不过由于各种CPU的内部结构也不尽相同,所以并不能完全用主频来概括CPU的性能。至于外频就是系统总线的工作频率;而倍频则是指CPU 外频与主频相差的倍数。用公式表示就是:主频=外频×倍频。我们通常说的赛扬433、PIII 550都是指CPU的主频而言的。 (2)内存总线速度或者叫系统总路线速度,一般等同于CPU的外频。 内存总线的速度对整个系统性能来说很重要,由于内存速度的发展滞后于CPU的发展速度,为了缓解内存带来的瓶颈,所以出现了二级缓存,来协调两者之间的差异,而内存总线速度就是指CPU与二级(L2)高速缓存和内存之间的工作频率。 (3)工作电压。工作电压指的也就是CPU正常工作所需的电压。 早期CPU(386、486)由于工艺落后,它们的工作电压一般为5V,发展到奔腾586时,已经是3.5V/3.3V/2.8V了,随着CPU的制造工艺与主频的提高,CPU 的工作电压有逐步下降的趋势,Intel最新出品的Coppermine已经采用1.6V的工作电压了。低电压能解决耗电过大和发热过高的问题,这对于笔记本电脑尤其重要。 (4)协处理器或者叫数学协处理器。在486以前的CPU里面,是没有内置协处理器的。 由于协处理器主要的功能就是负责浮点运算,因此386、286、8088等等微机CPU的浮点运算性能都相当落后,自从486以后,CPU一般都内置了协处理器,协处理器的功能也不再局限于增强浮点运算。现在CPU的浮点单元(协处理器)往往对多媒体指令进行了优化。比如Intel的MMX技术,MMX是“多媒体扩展指令集”的缩写。MMX是Intel公司在1996年为增强Pentium CPU在音像、图形和通信应用方面而采取的新技术。为CPU新增加57条MMX指令,把处理多媒体的能力提高了60%左右。 (5)流水线技术、超标量。流水线(pipeline)是 Intel首次在486芯片中开始使用的。 流水线的工作方式就象工业生产上的装配流水线。在CPU中由5~6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5~6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此

CPU主要性能指标

CPU的性能指标: 1.主频 主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人以为认为CPU的主频指的是CPU运行的速度,实际上这个认识是很片面的。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力是没有直接关系的。 当然,主频和实际的运算速度是有关的,但是目前还没有一个确定的公式能够实现两者之间的数值关系,而且CPU的运算速度还要看CPU的流水线的各方面的性能指标。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。因此主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。 2.外频 外频是CPU的基准频率,单位也是MHz。外频是CPU与主板之间同步运行的速度,而且目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。 3.前端总线(FSB)频率 前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据带宽)/8。外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8Byte/bit=800MB/s。 4.倍频系数 倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU 与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。 5.缓存 缓存是指可以进行高速数据交换的存储器,它先于内存与CPU交换数据,因此速度很快。L1 Cache(一级缓存)是CPU第一层高速缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般L1缓存的容量通常在32—256KB. L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达1MB-3MB。 6.CPU扩展指令集 CPU扩展指令集指的是CPU增加的多媒体或者是3D处理指令,这些扩展指令可以提高CPU 处理多媒体和3D图形的能力。著名的有MMX(多媒体扩展指令)、SSE(因特网数据流单指令扩展)和3DNow!指令集。 7.CPU内核和I/O工作电压 从586CPU开始,CPU的工作电压分为内核电压和I/O电压两种。其中内核电压的大小是根据CPU的生产工艺而定,一般制作工艺越小,内核工作电压越低;I/O电压一般都在1.6~3V。

控制系统性能指标

控制系统性能指标

第五章线性系统的频域分析法 一、频率特性四、稳定裕度 二、开环系统的典型环节分解 五、闭环系统的频域性能指标 和开环频率特性曲线的绘制 三、频率域稳定判据 本章主要内容: 1 控制系统的频带宽度 2 系统带宽的选择 3 确定闭环频率特性的图解方法 4 闭环系统频域指标和时域指标的转换 五、闭环系统的频域性能指标

1 控制系统的频带宽度 1 频带宽度 当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,对应的频率称为带宽频率,记为ωb。即当ω>ωb 而频率范围(0,ωb)称为系统带宽。 根据带宽定义,对高于带宽频率的正弦输入信号,系统输出将呈现较大的衰减,因此选取适当的带宽,可以抑制高频噪声的影响。但带宽过窄又会影响系统正弦输入信号的能力,降低瞬态响应的速度。因此在设计系统时,对于频率宽度的确定必须兼顾到系统的响应速度和抗高频干扰的要求。 2、I型和II型系统的带宽 2、系统带宽的选择 由于系统会受多种非线性因素的影响,系统的输入和输出端不可避免的存在确定性扰动和随机噪声,因此控制系统的带宽的选择需综合考虑各种输入信号的频率范围及其对系统性能的影响,即应使系统对输入信号具有良好的跟踪能力和对扰动信号具有较强的抑制能力。 总而言之,系统的分析应区分输入信号的性质、位置,根据其频谱或谱密度以及相应的传递函数选择合适带宽,而系统设计主要是围绕带宽来进行的。 3、确定闭环频率特性的图解方法

1、尼科尔斯图线 设开环和闭环频率特性为 4、闭环系统频域指标和时域指标的转换 工程中常用根据相角裕度γ和截止频率ω估算时域指标的两种方法。 相角裕度γ表明系统的稳定程度,而系统的稳定程度直接影响时域指标σ%、ts。 1、系统闭环和开环频域指标的关系 系统开环指标截止频率ωc与闭环带宽ωb有着密切的关系。对于两个稳定程度相仿的系统,ωc 大的系统,ωb也大;ωc小的系统,ωb也小。 因此ωc和系统响应速度存在正比关系,ωc可用来衡量系统的响应速度。又由于闭环振荡性指标谐振Mr和开环指标相角裕度γ都能表征系统的稳定程度。 系统开环相频特性可表示为

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 思考与习题祥解 题 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 【 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响 (5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关 答:(1)二阶系统特征根在复平面上分布情况如图所示。 图 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 @ 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=~;对于随动控制系统ξ=~。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 & (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s ! 解:(a )稳定; (b )稳定; (c )不稳定。

控制系统的时域分析实验报告

课程名称:控制理论指导老师:成绩: 实验名称:控制系统的时域分析实验类型:冋组学生姓名: 、实验目的和要求 1用计算机辅助分析的办法,掌握系统的时域分析方法。 2. 熟悉SimUlink仿真环境。 二、实验内容和原理 (一)实验原理 系统仿真实质上就是对系统模型的求解,对控制系统来说,一般模型可转化成某个微分方程或差分方程表示,因此在仿真过程中,一般以某种数值算法从初态出发,逐步计算系统的响应,最后绘制出系统的响应曲线,进而可分析系统的性能。控制系统最常用的时域分析方法是,当输入信号为单位阶跃和单位冲激函数时,求出系统的输出响应,分别称为单位阶跃响应和单位冲激响应。在MATLAB中,提供了求取连 续系统的单位阶跃响应函数step,单位冲激响应函数impulse,零输入响应函数initial等等。 (二)实验内容 二阶系统,其状态方程模型为 U X I y = [1.9691 6.4493] +[0] U X2 1?画出系统的单位阶跃响应曲线; 2. 画出系统的冲激响应曲线; 3. 当系统的初始状态为x0=[1,0]时,画出系统的零输入响应; 4. 当系统的初始状态为零时,画出系统斜坡输入响应; (三)实验要求 1. 编制MATLAB程序,画出单位阶跃响应曲线、冲击响应曲线、系统的零输入响应、斜坡输入响应; 2. 在SimUIink仿真环境中,组成系统的仿真框图,观察单位阶跃响应曲线并记录之。 三、主要仪器设备 计算机一台以及matlab软件,SimUIink仿真环境 四、操作方法与实验步骤 1、程序解决方案: 在MATLAB 中建立文件shiyu.m ,其程序如下: %时域响应函数 fun ction G1 = shiyu( A,B,C,D)

第5章_用MATLAB进行控制系统频域分析

第5章 用MATLAB 进行控制系统频域分析 一、基于MATLAB 的线性系统的频域分析基本知识 (1)频率特性函数)(ωj G 。 设线性系统传递函数为: n n n n m m m m a s a s a s a b s b s b s b s G ++???++++???++=---1101110)( 则频率特性函数为: n n n n m m m m a j a j a j a b j b j b j b jw G ++???++++???++=---)()()()()()()(1101110ωωωωωω 由下面的MATLAB 语句可直接求出G(jw)。 i=sqrt(-1) % 求取-1的平方根 GW=polyval(num ,i*w)./polyval(den ,i*w) 其中(num ,den )为系统的传递函数模型。而w 为频率点构成的向量,点右除(./)运算符表示操作元素点对点的运算。从数值运算的角度来看,上述算法在系统的极点附近精度不会很理想,甚至出现无穷大值,运算结果是一系列复数返回到变量GW 中。 (2)用MATLAB 作奈魁斯特图。 控制系统工具箱中提供了一个MATLAB 函数nyquist( ),该函数可以用来直接求解Nyquist 阵列或绘制奈氏图。当命令中不包含左端返回变量时,nyquist ()函数仅在屏幕上产生奈氏图,命令调用格式为: nyquist(num,den) nyquist(num,den,w) 或者 nyquist(G) nyquist(G,w) 该命令将画出下列开环系统传递函数的奈氏曲线: ) () ()(s den s num s G = 如果用户给出频率向量w,则w 包含了要分析的以弧度/秒表示的诸频率点。在这些频率点上,将对系统的频率响应进行计算,若没有指定的w 向量,则该函数自动选择频率向量进行计算。 w 包含了用户要分析的以弧度/秒表示的诸频率点,MATLAB 会自动计算这些点的频率响应。 当命令中包含了左端的返回变量时,即: [re,im,w]=nyquist(G) 或

控制系统时域与频域性能指标的联系

控制系统时域与频域性能指标的联系 经典控制理论中,系统分析与校正方法一般有时域法、复域法、频域法。时域响应法是一种直接法,它以传递函数为系统的数学模型,以拉氏变换为数学工具,直接可以求出变量的解析解。这种方法虽然直观,分析时域性能十分有用,但是方法的应用需要两个前提,一是必须已知控制系统的闭环传递函数,另外系统的阶次不能很高。 如果系统的开环传递函数未知,或者系统的阶次较高,就需采用频域分析法。频域分析法不仅是一种通过开环传递函数研究系统闭环传递函数性能的分析方法,而且当系统的数学模型未知时,还可以通过实验的方法建立。此外,大量丰富的图形方法使得频域分析法分析高阶系统时,分析的复杂性并不随阶次的增加而显著增加。 在进行控制系统分析时,可以根据实际情况,针对不同数学模型选用最简洁、最合适的方法,从而使用相应的分析方法,达到预期的实验目的。 系统的时域性能指标与频域性能指标有着很大的关系,研究其内在联系在工程中有着很大的意义。 一、系统的时域性能指标 延迟时间t d 阶跃响应第一次达到终值h (∞)的50%所需的时间 上升时间 t r 阶跃响应从终值的10%上升到终值的90%所需的时间;对有振荡的系 统,也可定义为从0到第一次达到终值所需的时间 峰值时间t p 阶跃响应越过终值h (∞)达到第一个峰值所需的时间 调节时间 t s 阶跃响应到达并保持在终值h (∞)的±5%误差带内所需的最短时间 超调量%σ 峰值h( t p )超出终值h (∞)的百分比,即 %σ= () ()() ∞∞-h h h t p ?100% 二、系统频率特性的性能指标 采用频域方法进行线性控制系统设计时,时域内采用的诸如超调量,调整时间等描述系统性能的指标不能直接使用,需要在频域内定义频域性能指标。

cpu性能指标

cpu性能指标 CPU的英文全称是Central Processing Unit,即中央处理器。CPU从雏形出现到发展壮大的今天,由于制造技术的越来越先进,其集成度越来越高,内部的晶体管数达到几百万个。虽然从最初的CPU发展到现在其晶体管数增加了几十倍,但是CPU的内部结构仍然可分为控制单元,逻辑单元和存储单元三大部分。CPU的性能大致上反映出了它所配置的那部微机的性能,因此CPU的性能指标十分重要。CPU性能主要取决于其主频和工作效率。 主频 也就是CPU的时钟频率,简单地说也就是CPU的工作频率。一般说来,一个时钟周期完成的指令数是固定的,所以主频越高,CPU的速度也就越快了。不过由于各种CPU 的内部结构也不尽相同,所以并不能完全用主频来概括CPU的性能。至于外频就是系统总线的工作频率;而倍频则是指CPU外频与主频相差的倍数。用公式表示就是:主频=外频×倍频。我们通常说的赛扬433、PIII 550都是指CPU的主频而言的。 内存总线速度或者叫系统总路线速度 一般等同于CPU的外频。内存总线的速度对整个系统性能来说很重要,由于内存速度的发展滞后于CPU的发展速度,为了缓解内存带来的瓶颈,所以出现了二级缓存,来协调两者之间的差异,而内存总线速度就是指CPU与二级(L2)高速缓存和内存之间的工作频率。 工作电压 工作电压指的也就是CPU正常工作所需的电压。早期CPU(386、486)由于工艺落后,它们的工作电压一般为5V,发展到奔腾586时,已经是3.5V/3.3V/2.8V了,随着CPU 的制造工艺与主频的提高,CPU的工作电压有逐步下降的趋势,Intel最新出品的Coppermine 已经采用1.6V的工作电压了。低电压能让可移动便携式笔记本,平板的电池续航时间提升,第二低电压能使CPU工作时的温度降低,温度低才能让CPU工作在一个非常稳定的状态,第三,低电压能使CPU在超频技术方面得到更大的发展。 协处理器或者叫数学协处理器 在486以前的CPU里面,是没有内置协处理器的。由于协处理器主要的功能就是负责浮点运算,因此386、286、8088等等微机CPU的浮点运算性能都相当落后,自从486以后,CPU一般都内置了协处理器,协处理器的功能也不再局限于增强浮点运算。现在CPU的浮点单元(协处理器)往往对多媒体指令进行了优化。比如Intel的MMX技术,MMX是“多媒体扩展指令集”的缩写。MMX是Intel公司在1996年为增强Pentium CPU在音像、图形和通信应用方面而采取的新技术。为CPU新增加57条MMX指令,把处理多媒体的能力提高了60%左右。 流水线技术、超标量

控制系统性能指标

第五章线性系统的频域分析法 一、频率特性四、稳定裕度 二、开环系统的典型环节分解 五、闭环系统的频域性能指标 和开环频率特性曲线的绘制 三、频率域稳定判据 本章主要内容: 1 控制系统的频带宽度 2 系统带宽的选择 3 确定闭环频率特性的图解方法 4 闭环系统频域指标和时域指标的转换 五、闭环系统的频域性能指标

1 控制系统的频带宽度 1 频带宽度 当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,对应的频率称为带宽频率,记为ωb。即当ω>ωb 而频率范围(0,ωb)称为系统带宽。 根据带宽定义,对高于带宽频率的正弦输入信号,系统输出将呈现较大的衰减,因此选取适当的带宽,可以抑制高频噪声的影响。但带宽过窄又会影响系统正弦输入信号的能力,降低瞬态响应的速度。因此在设计系统时,对于频率宽度的确定必须兼顾到系统的响应速度和抗高频干扰的要求。 2、I型和II型系统的带宽 2、系统带宽的选择 由于系统会受多种非线性因素的影响,系统的输入和输出端不可避免的存在确定性扰动和随机噪声,因此控制系统的带宽的选择需综合考虑各种输入信号的频率范围及其对系统性能的影响,即应使系统对输入信号具有良好的跟踪能力和对扰动信号具有较强的抑制能力。 总而言之,系统的分析应区分输入信号的性质、位置,根据其频谱或谱密度以及相应的传递函数选择合适带宽,而系统设计主要是围绕带宽来进行的。 3、确定闭环频率特性的图解方法

1、尼科尔斯图线 设开环和闭环频率特性为 4、闭环系统频域指标和时域指标的转换 工程中常用根据相角裕度γ和截止频率ω估算时域指标的两种方法。 相角裕度γ表明系统的稳定程度,而系统的稳定程度直接影响时域指标σ%、ts。 1、系统闭环和开环频域指标的关系 系统开环指标截止频率ωc与闭环带宽ωb有着密切的关系。对于两个稳定程度相仿的系统,ωc大的系统,ωb也大;ωc小的系统,ωb也小。 因此ωc和系统响应速度存在正比关系,ωc可用来衡量系统的响应速度。又由于闭环振荡性指标谐振Mr和开环指标相角裕度γ都能表征系统的稳定程度。 系统开环相频特性可表示为

相关主题
文本预览
相关文档 最新文档