当前位置:文档之家› 运动控制系统仿真课程设计

运动控制系统仿真课程设计

运动控制系统仿真课程设计
运动控制系统仿真课程设计

开环直流调速系统的动态建模与仿真

电控学院 运动控制系统仿真课程设计 院(系):电气与控制工程学院 专业班级: 姓名: 学号:

开环直流调速系统的动态建模与仿真 摘要: MATLAB仿真在科学研究中的地位越来越高,如何利用MATLAB仿真出理想的结果,关键在于如何准确的选择MATLAB的仿真。本文就简单的开环直流调速系统的MATLAB仿真这个例子,通过对MATLAB的仿真,得到不同的仿真结果。通过仿真结果的对比,对MATLAB的仿真进行研究。从而总结出如何在仿真过程中对MATLAB的仿真做到最优选择。 详细介绍了用MATLAB语言对《电机与拖动》中直流电动机调速仿真实验的仿真方法和模型建立。其仿真结果与理论分析一致,表明仿真是可信的,可以替代部分实物实验。首先在分析直流调速系统原理的基础上, 介绍了基于数学模型的仿真, 在仿真中可灵活调节相关参数, 优化参数设计。其次完成了基于系统框图, 并分析了调速系统的抗干扰能力。采用工程设计方法对开环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的MATLAB 仿真模型。分析系统起动的转速和电流的仿真波形,并进行调试,使开环直流调速系统趋于合理与完善。

1.1课题背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。 长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。以使系统模型等为计算机所接受,然后再编制成计算机程序,并在计算机上运行。因此产生了各种仿真算法和仿真软件。 由于对模型建立和仿真实验研究较少,因此建模通常需要很长时间,同时仿真结果的分析也必须依赖有关专家,而对决策者缺乏直接的指导,这样就大大阻碍了仿真技术的推广应用。 MATLAB提供动态系统仿真工具Simulink,则是众多仿真软件中最强大、最优秀、最容易使用的一种。它有效的解决了以上仿真技术中的问题。在Simulink 中,对系统进行建模将变的非常简单,而且仿真过程是交互的,因此可以很随意的改变仿真参数,并且立即可以得到修改后的结果。另外,使用MATLAB中的各种分析工具,还可以对仿真结果进行分析和可视化。 Simulink可以超越理想的线性模型去探索更为现实的非线性问题的模型,如现实世界中的摩擦、空气阻力、齿轮啮合等自然现象;它可以仿真到宏观的星体,至微观的分子原子,它可以建模和仿真的对象的类型广泛,可以是机械的、电子的等现实存在的实体,也可以是理想的系统,可仿真动态系统的复杂性可大可小,可以是连续的、离散的或混合型的。Simulink会使你的计算机成为一个实验室,用它可对各种现实中存在的、不存在的、甚至是相反的系统进行建模与仿真。传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面提出了更高要求,

自动控制系统课程设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:自动控制理论课程设计 设计题目:直线一级倒立摆控制器设计 院系:电气学院电气工程系 班级: 设计者: 学号: 指导教师: 设计时间:2016.6.6-2016.6.19 手机: 工业大学教务处

*注:此任务书由课程设计指导教师填写。

直线一级倒立摆控制器设计 摘要:采用牛顿—欧拉方法建立了直线一级倒立摆系统的数学模型。采用MATLAB 分析了系统开环时倒立摆的不稳定性,运用根轨迹法设计了控制器,增加了系统的零极点以保证系统稳定。采用固高科技所提供的控制器程序在MATLAB中进行仿真分析,将电脑与倒立摆连接进行实时控制。在MATLAB中分析了系统的动态响应与稳态指标,检验了自动控制理论的正确性和实用性。 0.引言 摆是进行控制理论研究的典型实验平台,可以分为倒立摆和顺摆。许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等,都可以通过倒立摆系统实验直观的表现出来,通过倒立摆系统实验来验证我们所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。 本次课程设计中以一阶倒立摆为被控对象,了解了用古典控制理论设计控制器(如PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,掌握MATLAB仿真软件的使用方法及控制系统的调试方法。 1.系统建模 一级倒立摆系统结构示意图和系统框图如下。其基本的工作过程是光电码盘1采集伺服小车的速度、位移信号并反馈给伺服和运动控制卡,光电码盘2采集摆杆的角度、角速度信号并反馈给运动控制卡,计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,通过皮带带动小车运动从而保持摆杆平衡。

【VIP专享】运动控制系统课程设计报告

《运动控制系统》课程设计报告 时间 2014.10 _ 学院自动化 _ 专业班级自1103 _ 姓名曹俊博 __ 学号 41151093 指导教师潘月斗 ___ 成绩 _______

摘 要 本课程设计从直流电动机原理入手,建立V-M双闭环直流调速系统,设计双闭环直流调速系统的ACR和ASR结构,其中主回路采用晶闸管三相桥式全控整流电路供电,触发器采用KJ004触发电路,系统无静差;符合电流超调量σi≤5%;空载启动到额定转速超调量σn≤10%。并详细分析系统各部分原理及其静态和动态性能,且利用Simulink对系统进行各种参数给定下的仿真。 关键词:双闭环;直流调速;无静差;仿真 Abstract This course is designed from DC motor, establish the principles of V-M double closed loop DC speed control system design, the double closed loop dc speed control system and the structure, including ACR ASR the main loop thyristor three-phase bridge type all control the power supply and trigger the rectifier circuit KJ004 trigger circuit, the system without the static poor; Accord with current overshoots sigma I 5% or less; No-load start to the rated speed overshoot sigma n 10% or less. And detailed analysis of the system principle and the static and dynamic performance, and the system of simulink to various parameters set simulation. Key Words:double closed loop;DC speed control system;without the static poor;simulation

机电控制系统课程设计

JIANG SU UNIVERSITY 机电系统综合课程设计 ——模块化生产教学系统的PLC控制系统设计 学院:机械学院 班级:机械 (卓越14002) 姓名:张文飞 学号: 3140301171 指导教师:毛卫平 2017年 6月

目录 一: MPS系统的第4站PLC控制设计 (3) 1.1第四站组成及结构 (3) 1.2 气动回路图 (3) 1.3 PLC的I/O分配表,I/O接线图(1、3、6站电气线路图) (4) 1.4 顺序流程图&梯形图 (5) 1.5 触摸屏控制画面及说明,控制、信息软元件地址表 (10) 1.6 组态王控制画面及说明 (13) 二: MPS系统的两站联网PLC控制设计 (14) 2.1 PLC和PLC之间联网通信的顺序流程图(两站)&从站梯形图 (14) 2.2 通讯软元件地址表 (14) 三:调试过程中遇到的问题及解决方法 (18) 四:设计的收获和体会 (19) 五:参考文献 (20)

一:MPS系统的第4站PLC控制设计 1.1第四站组成及结构: 由吸盘机械手、上下摆臂部件、料仓换位部件、工件推出部件、真空发生器、开关电源、可编程序控制器、按钮、I/O接口板、通讯接口板、多种类型电磁阀及气缸组成,主要完成选择要安装工件的料仓,将工件从料仓中推出,将工件安装到位。 1.吸盘机械手臂机构:机械手臂、皮带传动结构真空吸嘴组成。由上下摆臂装置带动其旋转完成吸取小工件到放小工件完成组装流程的过程。 2.上下摆臂结构:由摆臂缸(直线缸)摆臂机械装置组成。将气缸直线运动转化为手臂旋转运动。带动手臂完成组装流程。 3.仓料换位机构:由机构端头换仓缸带动仓位装置实现换位(蓝、黑工件切换)。 4.推料机构:由推料缸与机械部件载料平台组成。在手臂离开时将工件推出完成上料。 5.真空发生器:当手臂在工件上方时,真空发生器通气吸盘吸气。 5.I/O接口板:将桌面上的输入与输出信号通过电缆C1与PLC的I/O相连。 6.控制面板:完成设备启动上电等操作。(具体在按钮上有标签说明)。

控制系统仿真课程设计报告.

控制系统仿真课程设计 (2011级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2014年6月

控制系统仿真课程设计一 ———交流异步电机动态仿真 一 设计目的 1.了解交流异步电机的原理,组成及各主要单元部件的原理。 2. 设计交流异步电机动态结构系统; 3.掌握交流异步电机调速系统的调试步骤,方法及参数的整定。 二 设计及Matlab 仿真过程 异步电机工作在额定电压和额定频率下,仿真异步电机在空载启动和加载过程中的转速和电流变化过程。仿真电动机参数如下: 1.85, 2.658,0.2941,0.2898,0.2838s r s r m R R L H L H L H =Ω=Ω===, 20.1284Nm s ,2,380,50Hz p N N J n U V f =?===,此外,中间需要计算的参数如下: 21m s r L L L σ=-,r r r L T R =,22 2 s r r m t r R L R L R L +=,10N m TL =?。αβ坐标系状态方程: 其中,状态变量: 输入变量: 电磁转矩: 2p m p s r s L r d ()d n L n i i T t JL J βααωψψβ=--r m r r s r r d 1d L i t T T ααβαψψωψ=--+r m r r s r r d 1d L i t T T ββαβψψωψ=-++22s s r r m m m s r r s s 2r r r r d d i R L R L L L L i u t L T L L ααβαα σψωψ+=+-+22 s s r r m m m s r r s s 2 r r r r d d i R L R L L L L i u t L T L L ββαββ σψωψ+=--+[ ] T r r s s X i i αβαβωψψ=[ ] T s s L U u u T αβ=()p m e s s s s r n L T i i L βααβ ψψ=-

运动控制系统仿真作业

运动控制系统仿真作业 利用Matlab解运动控制系统习题 习题2-5在转速、电流双闭环调速系统中,两个调节器均采用PI调节器。当系统带额定负载运行时,转速反馈线突然断线,系统重新进入稳态后,电流调节器的输入偏差电压是否为零?为什么? 解:(一)结合电流、转速调节器的设计建立转速、电流双闭环调速系统模型。设有某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电动机:220V,136A,1460r/min,e C=0.132V2min/r,允 许过载倍数λ=1.5; 晶闸管装置放大系数s K=40; 电枢回路总电阻R=0.5Ω; 时间常数l T=0.03s,m T=0.18s; 电流反馈系数β=0.05V/A(≈10V/1.5N I); 转速反馈系数α=0.007V2min/r(≈10V/N n)。 设计要求:设计电流调节器,要求电流超调量5%iσ=。设计转速调节器,要求转速无静差,空载起动到额定转速时的转速超调量10%iσ=,并检验转速超调量的要求能否得到满足。 1.设计电流调节器 1)确定时间常数 ①整流装置滞后时间常数s T。三相桥式电路的平均失控时间s

T=0.0017s。②电流滤波时间常数oi T。取oi T=0.002s。 ③电流环小时间常数之和£i T。按小时间常数近似处理,取£i s oi T T T=+=0.0037s。 2)选择电流调节器结构 根据设计要求10%iσ=,并保证稳态电流无差,可按典型I型系统设计电流调节器。电流环控制对象是双惯性的,因此可用PI型电流调节器,其传递函数为 (1)()i i ACR i K s W s s ττ+=检查对电源电压的抗扰性能: £i l T T=0.030.0037s s=8.11,由表1可知,各项指标都是可以接受的。 电流调节器超前时间常数:i l Tτ==0.03s。 电流环开环增益:要求10%iσ=时,根据表2可知,£i I K T =0.5,因此 1£i0.50.5135.10.0037I K s T s -===于是,ACR的比例系数为 £i135.10.030.5 1.013400.05 I i i K R K Tτ??===?4)校验近似条件

matlab控制系统仿真课程设计

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称机电工程学院专业 班级 学生姓名 学号 课程设计地点 课程设计学时 指导教师 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。

(d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统

无积分作用单回路控制系统 大比例作用单回路控制系统 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响

基于MATLAB的汽车运动控制系统设计仿真

课程设计 题目汽车运动控制系统仿真设计学院计算机科学与信息工程学院班级2010级自动化班 姜木北:2010133*** 小组成员 指导教师吴 2013 年12 月13 日

汽车运动控制系统仿真设计 10级自动化2班姜鹏2010133234 目录 摘要 (3) 一、课设目的 (4) 二、控制对象分析 (4) 2.1、控制设计对象结构示意图 (4) 2.2、机构特征 (4) 三、课设设计要求 (4) 四、控制器设计过程和控制方案 (5) 4.1、系统建模 (5) 4.2、系统的开环阶跃响应 (5) 4.3、PID控制器的设计 (6) 4.3.1比例(P)控制器的设计 (7) 4.3.2比例积分(PI)控制器设计 (9) 4.3.3比例积分微分(PID)控制器设计 (10) 五、Simulink控制系统仿真设计及其PID参数整定 (11) 5.1利用Simulink对于传递函数的系统仿真 (11) 5.1.1 输入为600N时,KP=600、KI=100、KD=100 (12) 5.1.2输入为600N时,KP=700、KI=100、KD=100 (12) 5.2 PID参数整定的设计过程 (13) 5.2.1未加校正装置的系统阶跃响应: (13) 5.2.2 PID校正装置设计 (14) 六、收获和体会 (14) 参考文献 (15)

摘要 本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m 文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

自动控制课程设计~~~

指导教师评定成绩: 审定成绩: 重庆邮电大学 移通学院 自动控制原理课程设计报告 系部: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:2013年12 月 重庆邮电大学移通学院制

目录 一、设计题目 二、设计报告正文 摘要 关键词 设计内容 三、设计总结 四、参考文献

一、设计题目 《自动控制原理》课程设计(简明)任务书——供2011级机械设计制造及其自动化专业(4-6班)本科学生用 引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。 一设计题目:I型二阶系统的典型分析与综合设计 二系统说明: 该I型系统物理模拟结构如图所示。 系统物理模拟结构图 其中:R=1MΩ;C =1uF;R0=41R 三系统参量:系统输入信号:x(t); 系统输出信号:y(t);

四设计指标: 设定:输入为x(t)=a×1(t)(其中:a=5) 要求动态期望指标:M p﹪≤20﹪;t s≤4sec; 五基本要求: a)建立系统数学模型——传递函数; b)利用根轨迹方法分析和综合系统(学号为单数同学做); c)利用频率特性法分析和综合系统(学号为双数同学做); d)完成系统综合前后的有源物理模拟(验证)实验; 六课程设计报告: 1.按照移通学院课程设计报告格式写课程设计报告; 2.报告内容包括:课程设计的主要内容、基本原理; 3.课程设计过程中的参数计算过程、分析过程,包括: (1)课程设计计算说明书一份; (2)原系统组成结构原理图一张(自绘); (3)系统分析,综合用精确Bode图一张; (4)系统综合前后的模拟图各一张(附实验结果图); 4.提供参考资料及文献 5.排版格式完整、报告语句通顺; 6.封面装帧成册。

运动控制系统课程设计报告

《运动控制系统》课程设计报告 时间2014.10 _ 学院自动化 _ 专业班级自1103 _ 姓名曹俊博__ 学号 指导教师潘月斗 ___ 成绩 _______

摘要 本课程设计从直流电动机原理入手,建立V-M双闭环直流调速系统,设计双闭环直流调速系统的ACR和ASR结构,其中主回路采用晶闸管三相桥式全控整流电路供电,触发器采用KJ004触发电路,系统无静差;符合电流超调量σi≤5%;空载启动到额定转速超调量σn≤10%。并详细分析系统各部分原理及其静态和动态性能,且利用Simulink对系统进行各种参数给定下的仿真。 关键词:双闭环;直流调速;无静差;仿真 Abstract This course is designed from DC motor, establish the principles of V-M double closed loop DC speed control system design, the double closed loop dc speed control system and the structure, including ACR ASR the main loop thyristor three-phase bridge type all control the power supply and trigger the rectifier circuit KJ004 trigger circuit, the system without the static poor; Accord with current overshoots sigma I 5% or less; No-load start to the rated speed overshoot sigma n 10% or less. And detailed analysis of the system principle and the static and dynamic performance, and the system of simulink to various parameters set simulation. Key Words:double closed loop;DC speed control system;without the static poor;simulation

控制系统仿真课程设计

控制系统仿真课程设计 (2010级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2013年7月

控制系统仿真课程设计(一) ——锅炉汽包水位三冲量控制系统仿真1.1 设计目的 本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。 1.2 设计原理 锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。 常见的锅炉汽水系统如图1-1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。 图1-1 锅炉汽水系统图

在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分别对应的传递函数如下所示: (1)汽包水位在给水流量作用下的动态特性 汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为 ()111()()(1)K H S G S W S s T s ==+ (1.1) (2)汽包水位在蒸汽流量扰动下的动态特性 在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。虚假水位在大中型中高压锅炉中比较显著,会严重影响锅炉的安全运行。“虚假水位”现象属于反向特性,变化速度很快,变化幅值与蒸汽量扰动大小成正比,也与压力变化速度成正比,系统特性可以表示为 222()()()1f K K H s G s D s T s s ==-+ (1.2) 常用的锅炉水位控制方法有:单冲量控制、双冲量控制及三冲量控制。单冲量方法仅是根据汽包水位来控制进水量,显然无法克服“虚假水位”的影响。而双冲量是将蒸汽流量作为前馈量用于汽包水位的调节,构成前馈-反馈符合控制系统,可以克服“虚假水位”影响。但双冲量控制系统要求调节阀具有好的线性特性,并且不能迅速消除给水压力等扰动的影响。为此,可将给水流量信号引入,构成三冲量调节系统,如图1-2所示。图中LC 表示水位控制器(主回路),FC 表示给水流量控制器(副回路),二者构成一个串级调节系统,在实现锅炉水位控制的同时,可以快速消除给水系统扰动影响;而蒸汽流量作为前馈量用于消除“虚假水位”的影响。

实验七-对汽车控制系统的设计与仿真

实验七 对汽车控制系统的设计与仿真 一、实验目的: 通过实验对一个汽车运动控制系统进行实际设计与仿真,掌握控制系统性能的分析和仿真处理过程,熟悉用Matlab 和Simulink 进行系统仿真的基本方法。 二、实验学时:4 个人计算机,Matlab 软件。 三、实验原理: 本实验是对一个汽车运动控制系统进行实际设计与仿真,其方法是先对汽车运动控制系统进行建摸,然后对其进行PID 控制器的设计,建立了汽车运动控制系统的模型后,可采用Matlab 和Simulink 对控制系统进行仿真设计。 注意:设计系统的控制器之前要观察该系统的开环阶跃响应,采用阶跃响应函数step( )来实现,如果系统不能满足所要求达到的设计性能指标,需要加上合适的控制器。然后再按照仿真结果进行PID 控制器参数的调整,使控制器能够满足系统设计所要求达到的性能指标。 1. 问题的描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ? ??==+v y u bv v m & 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2、系统的模型表示

自动控制原理课程设计实验

上海电力学院 自动控制原理实践报告 课名:自动控制原理应用实践 题目:水翼船渡轮的纵倾角控制 船舶航向的自动操舵控制 班级: 姓名: 学号:

水翼船渡轮的纵倾角控制 一.系统背景简介 水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。 水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。 航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。 当尾舵的角坐标偏转错误!未找到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未找到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。 二.实际控制过程 某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。

上图:水翼船渡轮的纵倾角控制系统 已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。 三.控制设计要求 试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。 本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。 四.分析系统时域 1.原系统稳定性分析 num=[50]; den=[1 80 2500 50]; g1=tf(num,den); [z,p,k]=zpkdata(g1,'v'); p1=pole(g1); pzmap(g1) 分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。 2.Simulink搭建未加控制器的原系统(不考虑扰动)。

控制系统仿真课程设计

控制系统数字仿真课程设计 1.课程设计应达到的目的 1、通过Matlab仿真熟悉课程设计的基本流程; 2、掌握控制系统的数学建模及传递函数的构造; 3、掌握控制系统性能的根轨迹分析; 4、学会分析系统的性能指标; 2.课程设计题目及要求 设计要求 1、进行系统总体设计,画出原理框图。(按给出的形式,自行构造数学模型,构造成1 个零点,三个极点的三阶系统,主导极点是一对共轭复根) G(s)=10(s+2)/(s+1)(s2+2s+6) 2、构造系统传递函数,利用MATLAB绘画系统的开环和闭环零极点图;(分别得 到闭环和开环的零极点图)参考课本P149页例题4-30 clear; num = [10,20]; den =[1 3 8 6]; pzmap(num,den) 3、利用MATLAB绘画根轨迹图,分析系统随着根轨迹增益变化的性能。并估算超 调量=16.3%时的K值(计算得到)。参考课本P149页例题4-31 clear num=[10,20]; den=[1 3 8 6]; sys=tf(num,den); rlocus(sys) hold on jjx(sys); s=jjx(sys); [k,Wcg]=imwk(sys)

set(findobj('marker','x'),'markersize',8,'linewidth',1.5,'Color','k'); set(findobj('marker','o'),'markersize',8,'linewidth',1.5,'Color','k'); function s=jjx(sys) sys=tf(sys); num=sys.num{1}; den=sys.den{1}; p=roots(den); z=roots(num); n=length(p); m=length(z); if n>m s=(sum(p)-sum(z))/(n-m) sd=[]; if nargout<1 for i=1:n-m sd=[sd,s] end sysa=zpk([],sd,1); hold on; [r,k]=rlocus(sysa); for i=1:n-m plot(real(r(i,:)),imag(r(i,:)),'k:'); end end else disp; s=[]; end function [k,wcg]=imwk(sys) sys=tf(sys) num=sys.num{1} den=sys.den{1}; asys=allmargin(sys); wcg=asys.GMFrequency; k=asys. GainMargin;

汽车运动控制系统仿真

一、摘要 2 二、课程设计任务 3 1.问题描述 3 2.设计要求 3 三、课程设计内容 4 1、系统的模型表示 4 2、利用Matlab进行仿真设计 4 3、利用Simulink进行仿真设计 9 总结与体会 10 参考文献 10

本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

一、课程设计任务 1. 问题描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ???==+v y u bv v m 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2.设计要求 1.写出控制系统的数学模型。 2.求系统的开环阶跃响应。 3.PID 控制器的设计 (1)比例(P )控制器的设计 (2)比例积分(PI )控制器的设计 (3)比例积分微分(PID )控制器的设计 利用Simulink 进行仿真设计。 二、课程设计内容 1.系统的模型表示

自动控制原理课程设计报告

自控课程设计课程设计(论文) 设计(论文)题目单位反馈系统中传递函数的研究 学院名称Z Z Z Z学院 专业名称Z Z Z Z Z 学生姓名Z Z Z 学生学号Z Z Z Z Z Z Z Z Z Z 任课教师Z Z Z Z Z 设计(论文)成绩

单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(0 0++= s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s 3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc 和穿频率Wx 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s 平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m 和有限极点数n 中大者相等,连续并且对称于实轴;本题中分支数为3条。

运动控制系统实验指导书分解

运动控制系统 实验指导书 赵黎明、王雁编 广东海洋大学信息学院自动化系

直流调速 实验一不可逆单闭环直流调速系统静特性的研究 一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图6-7。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33(A)组件或MCL—53组件。 4.MEL-11挂箱 5.MEL—03三相可调电阻(或自配滑线变阻器)。 6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件)。 7.直流电动机M03。 8.双踪示波器。 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。 4.三相主电源连线时需注意,不可换错相序。 5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1

即可正常工作。 6.系统开环连接时,不允许突加给定信号U g起动电机。 7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。 8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 六.实验内容 1.移相触发电路的调试(主电路未通电) (a)用示波器观察MCL—33(或MCL—53,以下同)的双脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V~2V 的双脉冲。 (b)触发电路输出脉冲应在30°~90°范围内可调。可通过对偏移电压调节单位器及ASR输出电压的调整实现。例如:使ASR输出为0V,调节偏移电压,实现α=90°;再保持偏移电压不变,调节ASR的限幅电位器RP1,使α=30°。 2.求取调速系统在无转速负反馈时的开环工作机械特性。 a.断开ASR的“3”至U ct的连接线,G(给定)直接加至U ct,且Ug调至零,直流电机励磁电源开关闭合。 b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=200V。 注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同。 c.调节给定电压U g,使直流电机空载转速n0=1500转/分,调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载的范围内测取7~8点,读取整流装置输出电压U d 3.带转速负反馈有静差工作的系统静特性 a.断开G(给定)和U ct的连接线,ASR的输出接至U ct,把ASR的“5”、“6”点短接。 b.合上主控制屏的绿色按钮开关,调节U uv,U vw,U wu为200伏。 c.调节给定电压U g至2V,调整转速变换器RP电位器,使被测电动机空载转速n0=1500转/分,调节ASR的调节电容以及反馈电位器RP3,使电机稳定运行。 调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载范围内测取7~8

智能控制系统课程设计

目录 有害气体的检测、报警、抽排.................. . (2) 1 意义与要求 (2) 1.1 意义 (2) 1.2 设计要求 (2) 2 设计总体方案 (2) 2.1 设计思路 (2) 2.2 总体设计方框图 2.3 完整原理图 (4) 2.4 PCB制图 (5) 3设计原理分析 (6) 3.1 气敏传感器工作原理 (7) 3.2 声光报警控制电路 (7) 3.3 排气电路工作原理 (8) 3.4 整体工作原理说明 (9) 4 所用芯片及其他器件说明 (10) 4.1 IC555定时器构成多谐振荡电路图 (11) 5 附表一:有害气体的检测、报警、抽排电路所用元件 (12) 6.设计体会和小结 (13)

有害气体的检测、报警、抽排 1 意义与要求 1.1.1 意义 日常生活中经常发生煤气或者其他有毒气体泄漏的事故,给人们的生命财产安全带来了极大的危害。因此,及时检测出人们生活环境中存在的有害气体并将其排除是保障人们正常生活的关键。本人运用所学的电子技术知识,联系实际,设计出一套有毒气体的检测电路,可以在有毒气体超标时及时抽排出有害气体,使人们的生命健康有一个保障。 1.2 设计要求 当检测到有毒气体意外排时,发出警笛报警声和灯光间歇闪烁的光报警提示。当有毒气体浓度超标时能自行启动抽排系统,排出有毒气体,更换空气以保障人们的生命财产安全。抽排完毕后,系统自动回到实时检测状态。 2 设计总体方案 2.1 设计思路 利用QM—N5气敏传感器检测有毒气体,根据其工作原理构成一种气敏控制自动排气电路。电路由气体检测电路、电子开关电路、报警电路、和气体排放电路构成。当有害气体达到一定浓度时,QM—N5检测到有毒气体,元件两极电阻变的很小,继电器开关闭合,使得555芯片组成的多谐电路产生方波信号,驱动发光二极管间歇发光;同时LC179工作,驱使蜂鸣器间断发出声音;此时排气系统会开始抽排有毒气体。当气体被排出,浓度低于气敏传感器所能感应的范围时,电路回复到自动检测状态。

相关主题
文本预览
相关文档 最新文档