当前位置:文档之家› 锚栓的设计

锚栓的设计

锚栓的设计
锚栓的设计

各个地域各个坏境条件地基承载力(俗称地幔力)大小各不一样,上部钢结构结构形式不同且受力不同,柱脚节点连接形式各的不一样,对基础大小的要求就有所不同,不一而论,由以上情况造成基础大

小各异!

基础的计算方法不在赘述,在此仅说明注意柱脚连接节点对基础大小的影响:

1、刚接柱脚传递M弯矩、N轴力、剪力V于基础,预埋栓一般分布在钢柱翼板范围的外端,要求

柱脚底板尺寸较大,所以一般刚性连接柱脚对基础要求“大放脚”要大,墩柱也要做大。

2、铰接柱脚传递N轴力、剪力V于基础(近似为不传递M弯矩),预埋栓一般分布在钢柱翼板范围的内端,要求柱脚底板尺寸较小,所以一般铰接连接柱脚对基础要求“大放脚”不大,墩柱相对刚接要小。

3、基础配筋率及其混凝土强度等级要按地基设计规范和混凝土设计规范执行。

关于钢结构厂房的柱脚锚栓的计算?

1.柱脚锚栓按抗拔构件计算;

柱脚锚栓必须验算风吸力下的抗拔承载力。此时恒载和活载分项系数取1.0;

铰接柱脚柱脚锚栓一般按构造设置;

刚接柱脚柱脚锚栓计算时尚需计入水平风载和吊车水平荷载产生的拔力。

2.有同行以为基础埋深较大的情况下,柱脚锚栓埋入锥形部位为宜,本人以为满足锚固长度即可,诸

位意见呢?

3.我国规范规定不允许柱脚锚栓抗剪。本人以为剪力宜由抗剪构件全部承担,并且抗剪构件与基础混凝土可靠连接,理由是在风载作用下,柱脚底板和二次浇灌层之间可能不存在压力;二次浇灌层与基础共

同作用也很难全数保证。

欢迎批评指正。

vesa能否示范一下刚接柱脚锚栓的抗拔验算呢?

本人认为不管铰接、刚接当查出柱底反力NX0.4>V时按规范须设置抗剪键,但本人同时认为当柱脚埋入地下20cm以上,对柱脚的抗剪有一定的作用,当然对锚栓的抗拔也有作用了?不是吗?你能将它拔起来或者破坏你不得问问砼大哥同意不同意?因为砼大哥照着它嘛!

同意的请顶!

对于第二点,锚固长度够了就行(我的意见)

关于锚栓,可以搜索一下以前的讨论,另外可以参考一下专家的意见:

附《钢柱脚单个锚栓的承载力设计》

【作 者】童根树[1] 吴光美[2]

【机 构】 [1]浙江大学土木系杭州310027 [2]东华工程公司合肥230000

【关键词】钢柱脚锚栓承载力设计抗剪预留孔

【文 摘】对国内外钢柱脚锚栓设计方法进行了回顾和比较,对单个锚栓的破坏模式和承载力进行了总结。比较发现,与我国不允许锚栓参与抗剪的规定相反,欧美国家都考虑锚栓参与抗剪;在锚栓抗拉强度设计值的取值方面,欧美等国将锚栓的强度设计值取与普通螺栓或与制作螺栓的材料相应的强度设计

值,而我国规范的取值则在普通螺栓已经较低的基础上再打8折。基于对国内外不同设计方法的分析归纳,提出了单个锚栓的设计准则的建议,供锚栓设计时参考。

提供一个钢结构厂房报价,不含土建的。

现在做钢结构的都是把土建外包的

单方用钢量大约在20—23KG/平方米

造价大约在280—300元/平方米

杭州报价

三层钢结构厂房(仅1200多平方米),采用轻钢还是重钢结构?每平米大约需多少造价?设计费有

多少?

这种多层钢结构的造价与许多因素有关,不能仅用几层就说明问题,应看其建筑的复杂程度,所在地区,

柱网是否规整,装修档次如何,因此,应把概况讲明!!!

给的数据太少了,应详细说明厂房的用途?有没有承重结构?采用什么样的结构形式?墙面想用砖混结构还是要用轻质墙体(需不需要保温)?层高为多少?屋面是用夹心复合板还是用岩棉板?里面的结构是否复杂?以及该地区的荷载?这些都会影响厂房的整体报价?只有知道了这些我才好给你报价。

在什么情况下才设置抗风柱啊?

钢筋混凝土厂房通常在山墙设置抗风柱,又称为“山墙抗风柱”。是因为山墙面积大,受风载大,设柱

以将风荷载传递到基础和屋盖。

钢结构厂房通常在山墙设置抗风桁架,同时在纵墙设置抗风柱。抗风柱仅仅作为构造要求,而不能

当作框排架中的受力构件来计算。

刚接与铰接的疑惑

在设计构件的连接时,涉及到刚接和铰接,在施工中,怎样才能保证是刚接还是铰接呢。亦或是在实物中,看到连接,怎么判断这个连接是刚接还是铰接?

一个困扰很久的问题打扰各位。

1、目测节点自由度或预测构件的运动趋势,直接判定是铰接还是刚接

2、划出结构简图,假设某些节点是铰接,判断此时是否机构,以此判定节点的真实约束情况。

铰接是指连接的两杆件可以有相对的转角,可以自由的转动。而刚接是指连接的两杆件不能有相对的转角,即它们的角位移是相等的。在实际的工程中,很多都不是严格意义上的铰接和刚接,就比如说钢结构厂房柱脚的铰接,通常的做法是两个螺栓或四个螺栓,虽然我们计算的时候按完全铰接(即认为弯矩

等于零)来处理,但其实它还是承担一部分弯矩的。

具体设计的时候,比如柱脚的节点板(四颗螺栓),要是铰接考虑,那就把螺栓设计的尽量靠近翼缘板,使其抵抗弯距的能力最小,要是刚接那就把螺栓设计的靠近基座地板边缘,加大力臂,使其抗抗弯能力最大,同意

楼上的说法其实没有绝对的刚接和铰接.

没有理想的铰接,也没有理想的刚接,在计算刚架、基础时都应考虑进去。冷弯薄钢规范关于单跨门式刚架柱的平面内计算长度就考虑了这样的情况。楼上这位老兄说的不错,柱脚锚栓可适当调整,以便更趋近铰接或刚接。我个人认为铰接的最好就用两个锚栓。

实际上,绝大部分的连接都是半刚性连接,也就是界于铰接和刚性连接之间得连接,在弯矩作用下,连接各杆件之间有相对转角。转角的大小由弯矩的大小以及连接节点的转动刚度决定。在弹性阶段转角与弯矩呈线性关系,当弯矩达到超过某一值时两者呈非线性关系。转角和弯矩的曲线关系可以由连接节点的类型,各构造细部尺寸、材料特性等因素确定。半刚性连接、刚接和铰接是根据弯矩转角曲线人为划分的。

刚性连接的做法有:栓焊、全焊和上下翼缘T形短钢连接;铰接连接有:梁腹板与柱用角钢或端板连接;半刚性连接有:螺栓端板连接,上下翼缘角钢连接。

除了节点的形式,连接的刚性与节点的构造很有关系。例如门式刚架中常用的螺栓端板连接,螺栓端板连接可作为刚性连接,但连接的刚度和螺栓级别、螺栓个数、螺栓预紧力大小、端板是否外伸、端板

厚度、柱上有无加劲肋等因素有关。

大家说了很多高深的理论,呵呵,但都是本本知识,其实在翼缘外有螺栓的就认为是刚接,没有螺栓的是铰接,跟几个螺栓没有关系,如果在翼缘内有六个螺栓,翼缘外没有螺栓的也是铰接。

对于这个问题做为刚要出道的我现在有这么一个疑惑,由于设计与施工总是会存在些不相符的地方,如厂房屋架梁上的管撑在设计中两者的连接应该是铰接,但是在实际的施工中由于孔位的尺寸偏差导致扩孔现象很常见,为了加强梁支撑,我看有好多人建议把连接出焊起来,请问这样会不会引起结构内力的重分布?

是否意味着连接处就变为刚接?谢谢!

单层工业厂房。

柱下灌注桩,柱截面:1.2*0.6

地层自上而下分为两层。

第一层为粉土。厚度为6m。极限侧阻力qs1k=35kpa;

第二层为粘土,极限侧阻力标准值qs2k=61kpa;极阴端阻力标准值qpk=788kpa.

求:

桩的直径宜取多少合适?

桩长宜取多少合适?

指导老师说:“桩长取8米以下会不经济。直径不应大于500mm,桩数不宜超过6根”.他这样说有道理

不??

因为你未提供柱底荷载的标准值,所以不好帮你确定桩径及桩长。根据你提供的资料:一是上部结构仅为单层厂房(估计柱底荷载不会太大),二是提供的场地土的资料,根据本人的设计经验给你提供如

下建议:

1、柱下桩数不要超过5根。

2、根据上部结构的柱底荷载,利用公式Ra=(Fk+Gk)/5求出单桩承载力特征值Ra。

3、根据Ra=Quk/2及桩基规范中关于Quk的计算公式确定桩长。

4、另外你应明确一个概念:对钻孔灌注桩来说,桩身直径越小越经济。同时为方便施工,建议本工

程的桩身直径定为500。

因此我觉得,你们老师说的还是有道理的。以上论述供参考。

Nk=2400kn

Hk=40Kn

老师说要先选桩长,桩径,按公式

Ra=u(Qsik/2)Li+Ap(Qpk/2)

由地基承载极限这样求单根桩的承载力特征值。

再又n>=(1.0~1.2)(Gk+Nk)/Ra求根数

再进行验算

怎么与楼上说法不同

嗨!各位工程先进:

看了你们之讨论,本人提供个人之经验供你们参考,首先你的指导老师说:“桩长取8米以下会不经济。直径不应大于500mm,个人依据你的结构需求认为应是无误的,为何呢?其理由很简单,(1)你得结构是单层工业厂房,柱传递之荷重应不大 (2)你在思考一下,你的桩是属于点承桩而并非是摩擦桩,因为你的桩端阻力标准值qpk=788kpa远大于侧阻力标准值qs2k=61kpa,主要还是受端阻力在提供承载,当然啦,依据你结构之条件桩长取8米后若在增加桩常顶多也是增加侧阻力,然而若在你结构之条件8米桩长

若够承载,增加装长当然亦属不经济。

然而,对钻孔灌注桩来说,桩身直径越小越经济,这点要认同之先决条件有很大之瑕疵,因为这条件仅适用于结构规模不大之场合,怎么说呢?假设一根大口径的桩若能承载,何不用一根桩呢?所采用多根桩径小的基桩,若桩间距无法满足最小间距之影响,岂不是更应考虑群桩效应,如此一来桩数越多群桩

效应越大(在一定范围内之配置),那显而更不经济。

于此,个人提出以下几项建议:

(1)桩数决定:依据单柱荷重及单桩承载力来决定桩数(固定桩常时)

(2)桩径或桩长决定:依据单柱荷重、单桩承载力及考虑基桩配置决定桩径或桩长,还有应注意一下

施工费用

若单柱荷重不大,桩长8米若够承载时,当然采用8米,重点是基桩配置在考虑群桩效应下,是否摆的下去。此外,你是否想过若要增加桩长,不如增加桩径之问题?

以上为个人之卓见…………….

钻孔灌注桩水下混凝土灌注施工要点 :

目前,钻孔灌注桩在沿海地区工程中广泛使用,工艺日趋完善。钻孔灌注桩的水下砼灌注是成桩的

关键环节,但往往由于施工工艺不当,断桩、堵管、夹泥、蜂窝、少灌等质量问题也时有发生。因此,运用科学、实用的砼灌注工艺以确保工程质量显得极为重要。

如某广场6号楼桩基工程采用钻孔灌注桩(Φ800,桩长70.62米)共121根,围护采用钻孔灌注桩加水泥搅拌作为止水帷幕(Φ700,桩长13.50米)共176根。钻孔灌注桩数量大,桩身长,施工质量的优劣直接关系到桩基和围护工程质量,关系到整个工程的质量,由于我们正确地选用了科学合理的施工工艺,使钻孔灌注桩单桩静载试压全部优良。现对其施工作以下要点分析:

一、水下灌注砼的性能参数

粗骨料宜选用卵石,石子含泥量小于2%,以提高砼的流动性,防止堵管。

(二)砼初凝时间

一般砼初凝时间仅3~5小时,只能满足浅孔小桩径灌注要求,而深桩灌注时间约为5~7小时,因

此应加缓凝剂,使砼初凝时间大于8小时。

(三)砼搅拌方法和搅拌时间

为使砼具有良好的保水性和流动性,应按合理的配合比将水泥、石子、砂子倒入料斗后,先开动搅拌机并加入30%的水,然后与拌合料一起均匀加入60%的水,最后再加入10%的水(如砂、石含水率较大时,可适当控制此部分水量),最后加水到出料时间控制在60~90秒内。

(四)坍度选择

坍落度应控制在180±20毫米之间,砼灌注距桩顶约5米处时,坍落度控制在160~170毫米,以确保桩顶浮浆不过高。气温高,成孔深,导管直径在250毫米之内,取高值,反之取低值。

二、砼灌注操作技术

(一)首批砼灌注

砼灌注量与泥浆至砼面高度、砼面至孔底高度、泥浆的密度、导管内径及桩孔直径有关。

孔径越大,首批灌注的砼量越多,由于砼量大,搅拌时间长,因此可能出现离析现象,首批砼在下落过程中,由于和易性变差,受的阻力变大,常出现导管中堵满砼,甚至漏斗内还有部分砼,此时应加大设备的起重能力,以便迅速向漏斗加砼,然后再稍拉导管,若起重能力不足,则应用卷扬机拉紧漏斗晃动,这样能使砼顺利下滑至孔底,下灌后,继续向漏斗加入砼,进行后续灌注。

(二)后续砼灌注

后续砼灌注中,当出现非连续性灌注时,漏斗中的砼下落后,应当牵动导管,并观察孔口返浆情况,直至孔口不再返浆,再向漏斗中加入砼,牵动导管的作用如下。

1.有利于后续砼的顺利下落,否则砼在导管中存留时间稍长,其流动性能变差,与导管间磨擦阻力随之增强,造成水泥浆缓缓流坠,而骨料都滞留在导管中,使砼与管壁摩擦阻力增强,灌注砼下落困难,导致断桩,同时,由于粗骨料间有大量空隙,后续砼加入后形成的高压气囊,会挤破管节间的密封胶垫而导致漏水,有时还会形成蜂窝状砼,严重影响成桩质量。

2.牵动导管增强砼向周边扩散,加强桩身与周边地层的有效结合,增大桩体摩擦阻力,同时加大砼

与钢筋笼的结合力,从而提高桩基承载力。

(三)后期砼的灌注

在砼灌注后期,由于孔内压力较小,往往上部砼不如下部密实,这时应稍提漏斗增大落差,以提高

其密实度。

三、砼灌注速度

在控制砼初凝时间的同时,必须合理地加快灌注速度,这对提高砼的灌注质量十分重要,因此应做好灌注前的各项准备工作,以及灌注过程中各道工序的密切配合工作。

~作者:吴立云陈燕青

顶标高3CM左右、在上部结构砼施工前把桩顶浮浆凿掉)。如桩顶浮浆过多时,必须将浆淘掉,再

用坍落度小的砼浇筑,以不存在浮浆为宜。

⑷、每一根桩蕊砼做试件一组,并确定每工作台班不少于一组。

据广东省建筑科学研究院的资料统计,全省20个地市,共2948个工程,475893条桩。

造价(元)与承载力(/T)的关系基本是:挖孔桩27.13,冲钻孔桩32.56,沉管灌注桩39.25,预

应力管件35.33,预制方桩44.00;

按混凝土单方(/m3)造价(元)则为:挖孔桩800,冲钻孔桩1000,沉管灌注桩600,预应力管

桩1500,方桩1100。

搅拌桩据本人的经验,大概是40元/m。

其它不太清楚。

《建筑地基规范》和《桩基规范》关于承台间的连接是相同的。

1、单桩承台宜在两个互相垂直的方向上设置联系梁;

2、两桩承台宜在其短向设置联系梁;

3、有抗震要求的柱下独立承台宜在两个主轴方向设置联系梁;

注意:有抗震要求的柱下独立承台的含义应不同于抗震设防区桩基的含义。本人也尚未理解有抗震

要求的柱下独立桩基承台的指的是哪种情况。

求教关于一柱一桩承台拉梁。

一柱一桩(人工挖孔桩);设承台;拉梁顶平承台顶;不考虑膨胀土及冻胀土的影响。

求助一种是纯拉梁(梁上无荷载);另一种是拉梁兼基础梁(梁上有荷载)的计算。

有如下疑问:1、支座按铰接?固接?还是其它? 2、计算长度? 3、纯拉梁按T=1/10P(柱最大轴力),按轴心受拉计算?还是其它计算模式? 4、桩不承受弯矩,柱底弯矩谁承担?计算拉梁时是否虑? 5、拉梁兼基础梁是否按T=1/10P(柱最大轴力)及所受弯矩,按偏心受拉计算? 6、计算拉梁是否考虑不均

匀沉降?

刚接按悬挑梁计算弯距及剪力.

按照《桩基规程》的规定应该是柱底剪力作为拉力来设计,作为压力来确定截面,1/10轴力只是简单计算方法。当然也要考虑受弯,几个情况取最不利值。

这个问题我也一直觉得糊涂,尤其《桩基规范》本身规定的有些糊涂,而且还在后面的条文说明中

也不清楚。

1.一柱一桩承台的拉梁与承台应采取固接,拉梁计算时需考虑柱脚弯距!否则,上部框架结构的底层

柱计算长度将增大,结构不利。

2、拉梁的计算长度最低要求是满足抗震构造要求,在此基础上,考虑各种工况下的受力状态,进行

截面验算,包括上部砖墙荷重及柱脚弯距的作用;

3、纯拉梁按T=1/10P(柱最大轴力),是指8、9度时;6、7度时为1/20.

是拉梁配筋的经验值。对于单桩承台我认为不应仅按轴心拉、压计算,对于多桩承台应该可以,承

载力抗震调整系数为:拉—0.85,压—0.80.

4.对单桩承台而言,因拉梁承受柱脚弯距而按固接设计,所以当相邻基础有不均匀沉降时,计算拉梁

时应予以考虑。多桩拉梁端部可按铰接设计,则不需考虑。

拉梁承担柱底的弯矩,剪力有多种组合,并且自身还可能有墙体荷载,在设计中如何考虑,电算时

如何建立模型?

我见过别人的设计:计算模型多建立一层,即5层房子按6层考虑,我试了一下

,如果考虑0。00取到2层,地梁计算配筋很小,好像只有隔墙荷载起作用

楼上几位兄弟的讨论够精彩,但是《冶金建筑抗震规范》对于基础拉梁的要求更加明确,并且根据不同情况提出了设置基础拉梁与基础梁的概念,这对理解桩基拉梁的设置很有帮助,更具操作性,现抄录

奉上。

5.1.8.1 3、4类场地,按一、二级抗震等级设计的多层混凝土框架的基础,宜沿厂房二个主轴方向设

置基础梁,使上部结构形成封闭框架。

基础梁可按下列要求设计:

(1)当基础梁底面位于基础顶面标高以上时,应避免使基础梁以下的柱子形成短柱,此时,基础梁

与基础顶面之间按一层框架设计;

(2)当基础梁底面在基础顶面标高以下时,基础作为不动铰支点,不承受弯矩。基础梁的抗弯劲度

应不小于框架柱劲度的二倍;

(3)基础梁的位置不应妨碍地下管线穿越。

5.1.8.2 3、4类场地,多层框架结构基础,宜沿厂房两个主轴方向设置基础系梁。系梁可按承受柱基

由重力荷载代表值确定的轴向压力设计值10%的拉压杆设计。

5.1.8.3 单层和多层厂房设下柱柱间支撑处的柱基础,宜在两柱基础间设置基础系梁。系梁可按承受

下柱柱间支撑乘以增大系数后的轴向力设计值的水平分力的拉、压杆设计。

柱脚锚栓设计计算书

柱脚锚栓设计计算书 计算依据: 1、《钢结构设计规范》GB50017-2003 一、基本参数 锚栓号M1 弯矩M(kN·m) 50 轴力N(kN) 100 底板长L(mm) 700 底板宽B(mm) 300 锚栓至底板边缘距离d(mm) 650 11.9 混凝土强度等级C25 混凝土轴心抗压强度设计值fc (N/mm2) 单侧锚栓个数n 4 锚栓直径de(mm) 21 锚栓材质Q235 锚栓抗拉强度设计值fta (N/mm2) 140 计算简图: σm ax=N/(B*L)+M/(B*L2/6)=100×103/(300×700)+50×106/(300×7002/6)=2.517N/mm2≤fcc=0

.95*fc=0.95×11.9=11.305N/mm2 满足要求! σmin=N/(B*L)-M/(B*L2/6)=100×103/(300×700)-50×106/(300×7002/6)=-1.565N/mm2 压应力分布长度:e=σmax/(σmax+|σmin|)*L=2.517/(2.517+|-1.565|)×700=431.627mm 压应力合力至锚栓距离:x=d-e/3=650-431.627/3=506.124mm 压应力合力至轴心压力距离:a=L/2-e/3=700/2-431.627/3=206.124mm 锚栓所受最大拉力: Nt=(M-N×a)/x=(50-100×206.124/1000)/(506.124/1000)=58.064KN≤n×π×de2/4×fta=4×3.142×212/4×140=193.962KN 满足要求!

化学锚栓工艺流程

化学锚栓施工工艺标准 2010-08-01 21:43:32| 分类:工程施工| 标签:|字号大中小订阅 1.范围 本工艺标准适用于一般工业及民用建筑物、构筑物的新增梁端部的生根。 2.施工准备 2.1主要机具:水钻(用于打水钻孔),电锤(用于打电锤孔),钢丝刷。 2.2辅助机具:手吹风、空压机、棉丝、毛刷、墨斗、墨水、线坠、水平尺、盒尺、红蓝铅笔 等。 2.3主要材料:金草田结构胶、化学锚栓、丙酮。 2.4作业条件: 2.4.1 施工前先清理施工区域内的所有障碍物,清除施工面浮土及灰皮。 2.4.2 根据图纸标注尺寸,放出植筋现场位置点。 2.4.3 夜间施工时,应合理安排工序,防止错植,施工场地应根据需要安装照明设施,在危 险地段应设置明显标志。 2.4.4 熟悉图纸,做好技术交底。 3.施工工艺 3.1 工艺流程: 现场清理——放线、验线——钻孔——清孔——钢筋除锈----注胶——植筋——报验 3.2现场清理 3.2.1根据各个工地的实际情况进行相应的处理,总的原则是清理到原结构层或受力层。 3.3放线、验线 3.3.1 放出钢筋植筋的点位线 3.3.2 复核点位线位置无误后,采用电钻钻孔 3.4 钻孔 3.4.1 根据设计要求,确定植筋钻孔规格。 3.4.2 接好水钻(电锤)电源,进行钻孔施工。 3.4.3 钻孔施工完成,检查成孔直径及深度。 3.5 清孔 3.5.1 用空压机或其它设备吹出植筋孔内灰尘。

3.5.2 用毛刷或棉丝蘸丙酮将植筋孔擦拭干净。 3.5.3 用棉丝封堵植筋孔口待用。 3.5.4请甲方、监理、总包负责人,对成孔进行验收。 3.6钢筋除锈 3.6.1 角磨机配钢丝刷将钢筋锚入部分除去铁锈,氧化层,油污等,并用丙酮擦拭干净。 3.6.2 报请监理或总包验收,合格后,方可进行锚筋作业。 3.7注胶植筋 3.7.1用注胶器将胶注入孔内2/3,将除锈后的钢筋旋转缓慢插入洞内,直至达到洞底部为止。 锚固胶体从洞口溢出,则锚固合格。 3.7.2锚固完钢筋后,在24小时内不得人为扰动,以保证锚筋质量。 3.7.3填写单项工程验收单,并报请监理或总包验收。 3.8报验 3.8.1待植筋完全固化后,按设计要求做钢筋拉拔试验。 3.8.2钢筋拉拔试验合格后,报请监理或总包验收。然后填写隐检资料,分项/分部工程质量 报验认可单,请总包负责人、监理签字。 4、质量标准 4.1保证项目: 4.1.1植筋必须符合设计要求及加固行业施工规范。 4.2允许偏差项目,见表 5、成品保护 5.1清完孔后,将成孔用棉丝封堵,避免灰尘落入。 5.2钢筋除完锈后,妥善保存,防止钢筋再次生锈。 5.3植筋完成后,应做好临时固定,固化期内不得人为扰动,必要时派专人看护。 6、应注意的质量问题 6.1植筋结构胶严格按照比例配制,必须搅拌均匀。 6.2植筋钻孔前必须放线,所钻植筋孔一定要保证与施工面垂直。 6.3植筋规格及孔深严格按照设计要求、行业规范施工。

风机锚栓基础设计管理

风机锚栓基础设计管理 论文栏目:设计管理论文更新时间:2015/6/19 15:37:26 283 1前言 风机基础与塔筒的连接形式有很多种,最具代表性的有基础环与锚笼环两种形式。据不完全统计,目前国内已经建成风电场95%以上的风机塔筒与基础连接采用的基础环形式,该种连接方式被认为是安全可靠的。随着部分风电场陆续出现基础环松动的问题,风机供应商、设计单位、施工单位等各方专家进行了多次会诊,目前已基本达成如下共识:基础环直径较大、埋深不足、基础环与周边混凝土连接不可靠,其受力特性相比锚栓差。从设计角度来讲,单机容量1.5MW及以上容量的风机塔筒与基础连接宜采用锚栓[1][2][3]。但是,由于当前用于风机塔架与基础连接的锚栓存在材质无相应规程规范、防腐难度大、锚栓断裂不易更换等问题,由此增加的风险成本,风机供应商和设计单位都在回避。在此前提下,业主推出“风机锚栓基础设计及锚栓组件材料采购打捆”的招标采购形式,相当于EP承包,投标主体必须是设计院。根据目前市场环境条件,设计单位应充分掌握锚栓式基础的市场前景,本着尽最大可能的占领市场份额和为业主服务的目标,积极参与投标。只要做好锚栓材料市场调研,充分进行研究,详细设计,发现风险点,做好风险控制和转移,精工细作,做好设计优化工作,就能在新的市场条件下占据主动。设计单位既要作为设计的主体,同时又是采购的主体,除了要保证结构设计的可靠以外,还应对所需采购锚栓及组件材料的市场情况有充分的了解,这样才能保证整个项目的风险可控,以使效益最大化。因此,作者以下将针对该新的市场环境条件,对风电项目中“风机锚栓基础设计及锚栓组件材料采购打捆”的设计管理进行简单论述,为设计单位提供借鉴。 2产品调研 锚笼环高度一般在3.0m以上,除外露30cm左右之外,其余部分埋入风机基础混凝土。锚栓组件最重要的承力构件是高强预应力锚固螺栓及替代品,其不同于一般的高强预应力锚固螺栓,且国内没有专门针对风电机组的锚栓设计规程,造成目前市场材料供应良莠不齐。经资料收集整理,目前市场上较有名的主要有中船重工713研究所、江苏金海公司、青海金阳光生产的高强预应力锚固螺栓,以及天津二轧生产的精轧钢筋。通过掌握资料,首先应由项目负责人通过电话向供货商了解其产品基本性能,产品应用业绩,目前市场价格等,并初步了解其合作意向。其次,以公司名义向有意向参与合作的供应商发正式询价函件,由

技术要求规范书3《抱杆技术要求规范书》

中国铁塔股份有限公司 广西壮族自治区分公司 抱杆 技术规范书 中国铁塔股份有限公司广西壮族自治区分公司 2014年12月

目录 1、设计原则 (2) 2、设计依据 (2) 3、施工及验收依据 (2) 4、材料选用 (2) 4.1塔身材料 (2) 4.2连接材料 (2) 5、构造与工艺技术要求 (3) 5.1连接要求 (3) 5.2制作要求 (3) 5.3安装要求 (5) 5.4工艺要求 (6) 6、变形限制 (6) 7、维护要求 (7) 8、其他要求 (7)

1、设计原则 移动通信工程抱杆结构的设计使用年限为25年,建筑物结构安全等级为二级。设计基本风压按30年一遇采用,但基本风压不得大于0.75kN/m2。抱杆结构抗震设防烈度按所在地抗震设防基本烈度采用。 2、设计依据 (1) 钢结构设计规范 GB50017-2003 (2) 高耸结构设计规范 GB50135-2006 (3) 建筑结构荷载规范 GB50009-2012 (4) 建筑抗震设计规范 GB 50011-2012 (5) 移动通信工程钢塔桅结构设计规范 YD/T5131-2005 (6) 混凝土结构后锚固技术规程 JGJ145-2004 3、施工及验收依据 (1) 钢结构工程施工质量验收规范 GB50205-2001 (2) 钢结构焊接规范 GB50661-2011 (3) 移动通信工程钢塔桅结构验收规范 YD/T5132-2005 (4) 塔桅钢结构工程施工质量验收规程 CECS236:2006 (5) 其他相关的施工及验收规范 4、材料选用 移动通信工程抱杆结构采用的钢材应符合设计要求,应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。所有材料均应符合质检要求,应有书面鉴定。 焊接结构以及重要的非焊接承重结构采用的钢材还应具有冷弯试验的合格保证。 4.1塔身材料 移动通信工程抱杆的钢材宜采用Q235普通碳素结构钢、Q345低合金结构钢、20号优质碳素结构钢,有条件也可采用Q390钢或钢材强度等级更高的结构钢,其质量标准应分别符合我国现行有关国家标准。 施工中如采用进口钢材或代用材料时,必须提供该材料的机械性能及化学成分,并进行抽样检查,经设计同意后方可采用。 杆身及支撑均采用热轧无缝钢管,且不允许拼接。 4.2连接材料 连接材料应符合下列要求: 1.抱杆结构的焊接宜采用手工电弧焊,选用的焊条应符合现行国家标准的规定,焊条型号应与构件钢材的强度想适应。

(幕墙)后置埋件施工工艺

4.2后置埋件处理和化学锚栓安装 本施工工艺适用于幕墙工程中的后置埋件施工。 2、施工准备 1)材料要求 后置埋件的品种、类型、规格、尺寸、性能、板材的壁厚、表面处理应符合设计要求,且应有出厂合格证。 化学锚栓品种、类型、规格、尺寸.性能应符合设计要求,产品且应有质保书、合格证以及检验报告。 2)主要器具 电锤钻一台、水准仪一台、水平尺、卷尺.紧线器、吊锤、钢丝线。 3)作业条件: 土建结构施工完毕,己提供幕墙施工作业面。根据上建提供的基本线位(50 线、轴线)。 3、操作工艺 1)后置埋件施工工艺流程为:熟悉现场/图纸(埋件图)一一测量放线一一 后置埋件安装 2)熟悉图纸:安装作业人员在接到图纸后,先要对图纸进行熟悉了解,主 要了解以下儿个方面内容; 对图纸内容进行全面的了解: 找出幕墙立面设计的主导尺寸(分格),不可调整尺寸和可调节尺寸: 明确转角及异形处的处理方法; 3)测量放线: 找出定位轴线:将图纸中标明的定位轴线与实际施工现场进行对照找出定位轴线的准确位置 找出定位点:根据在现场査找的准确定位轴线,根据图纸中提供的有关内容, ? 确定定位点:定位点数量不得少于两点,确定定位点时要反复测量一定要保证定位准确无误。

?抄平(打水平):用水准仪,对两个定位点确定水平位置,水准仪要按规范使用(使用方法略),先水准仪定位时要考虑安全,定位间距离大致相同, 水准仪要摆正放稳,不能出现移动、错位等现象,要注意正确使用和保管好水准仪。 ? 拉水平线:在找出定位点位置抄平后,在定位点间拉水平线,水平线可选用细钢幺幺线,同时用紧线器收紧,保证钢丝线的水平度。 ?测量误差:在水平线拉好后,对所在工作面进行测量,主要进行水平方向的测量,同时检査各轴线(定位轴线)间的误差。通过测量出的结果分析产生误差的原因,核对有关规范(施工)对误差允许值的要求,在规定误差范W内的, 可消化误差,超过误差范围应与土建方或屮方协商解决。 ? 调整误差:对在规范允许范圉内的误差进行调整时,要求每一定位轴线间的误差,在本定位轴线间消化,误差在每个分格间分摊小于2inm.如超过此范 请书面通知设计室进行设计调整。 4)后置埋件安装: 电锤打孔、化学药剂安装: 找出定位轴线、定位点后,对安装点定位打孔,同时安装化学药剂,化学药剂安装工艺严格按照化学药剂的安装说明及注意事项,尤其是锚孔在安装药剂之前一定要用空压机或者手动气筒吹净孔内粉屑,保持孔道干燥。 螺杆、铁板安装: 药剂安装完毕,进行螺杆的安装,安装时严格控制螺杆的安装深度,待螺杆达到指定深度后,对后置铁板进行安装,在后置铁板的安装过程中,在螺杆未完全固化前?及时调整螺杆的方向,打孔时尽量劈开混凝土钢筋,实在避免不了,该孔不放锚栓,采取在铁板旁边加固描施。 铁板调整、固定: 后置铁板安装时,应根据图纸的尺寸要求,对铁板的三维方向尺寸进行复核,在复核无误后,螺杆套上螺母固定。 4、质量标准 1)后置埋件的品种、类型、规格、尺寸、性能、板材的壁疗、表面处理应 符合设计要求,且应有出厂合格证。

钢结构柱脚设计(优.选)

第八章基础设计 第一节基础设计的特点 由于结构型式、荷载取值、支座条件等方面的不同,传至基础顶面内力是不同的,轻钢结构与传统的砼结构相比,最大差别就是在柱脚处存在较小的竖向力和较大的水平力,对于固接柱脚,还存在较大的弯矩,在风荷载起控制作用的情况下,还存在较大的上拔力。柱底水平力会使基础产生倾覆和滑移,基础受上拔力作用,在覆土较浅的情况下,会使基础向上拔起,有关这方面的问题,后面再作详述。由于轻钢结构的这些受力特点,导致其基础设计与其它结构存在很大的不同,主要表现在以下几个方面: ⒈基础形式 基础型式选择应根据建筑物所在地工程地质情况和建筑物上部结构型式综合考虑,对于砼结构基础,常见的基础型式有独立基础、条形基础、片筏基础、箱形基础、桩基等等,而对于轻钢结构而言,由于柱网尺寸较大,上部结构传至柱脚的内力较小,一般以独立基础为主,若地质条件较差,可考虑采用条形基础,遇到暗浜等不良地质情况,可考虑采用桩基础,一般情况下不采用片筏基础和箱形基础。

轴向力N和水平力V之外,还存在一定的弯矩M,从而使刚接柱脚的基础大于铰接柱脚。 ⒊基础破坏形式 要正确进行基础设计,首先要知道基础破坏形式,对其工作原理有所了解。 对于砼结构,通常柱网尺寸较小,故柱底水平力相对较小,基础一般不会产生滑移现象,又由于上部结构自重很大,足以抵抗风荷载作用下产生的上拔力,故基础也不会产生上拔的可能,对于这种结构,基础主要发生冲切、剪切破坏;而轻钢结构则不同,基础除

发生冲切、剪切破坏之外,由于存在较大的水平力,对于固接柱脚,还存在较大的弯矩作用,从而导致基础产生倾覆和滑移破坏,另外,在风荷载较大的情况下,特别对于一些敞开或半敞开的结构,由于轻钢结构自重很轻,有可能不足于抵抗风荷载产生的上拔力,导致基础上拔破坏。为防止这些破坏的发生,最经济有效的方法是增加基础埋深,即增加基础上覆土的厚度,但增加了土方开挖和回填工程量。另外对于轻钢结构基础,还须预埋锚栓(也称地脚螺栓),用于上部结构和基础的连接,若锚栓离砼基础边缘太近,会产生基础劈裂破坏,所以我国钢结构设计规范规定了锚栓离砼基础边缘的距离不得小于150mm;若锚栓长度过短,会使锚栓从基础中拔出,导致破坏,所以规范也规定了锚栓埋入长度。 ⒋基础设计内容 基础设计一般包括基础底面积确定、基础高度确定和配筋计算,还应符合有关构造措施。基础底面积可根据地基承载力确定,同时还应考虑软弱下卧层存在;基础高度由冲切验算确定;在基础底面积和高度确定的情况下计算基础配筋,这里须注意伸缩缝双柱基础处理,双柱为基础提供了两个支点,在地基反力作用下,有可能出现负弯矩,即基础上部受拉的情况,

化学锚栓拉拔力

学锚栓, 一、基本参数 工程所在地:青岛市 幕墙计算标高:15.33 m 玻璃设计分格:B×H=1549×2000 mm B:玻璃宽度 H:玻璃高度 设计地震烈度:7度 地面粗糙度类别:A类 二、荷载计算 1、风荷载标准值 W K:作用在幕墙上的风荷载标准值(KN/m2) βgz:瞬时风压的阵风系数,取1.60 μs:风荷载体型系数,取1.2 μz:风荷载高度变化系数,取1.527 青岛市地区风压W0=0.6 KN/m (按50年一遇) W k=βgzμsμz W0 =1.60×1.2×1.527×0.60 =1.76 KN/m2>1.0 KN/m2 取W K=1.76 KN/m2

2、风荷载设计值 W :风荷载设计值 (KN/m 2) r w :风荷载作用效应的分项系数,取1.4 W=r w ×W k =1.4×1.76 =2.46 KN/m 2 3、玻璃幕墙构件重量荷载 G AK :玻璃幕墙构件自重标准值,取0.50 KN/m 2 G A :玻璃幕墙构件自重设计值 G A =1.2×G AK =1.2×0.50=0.60 KN/m 2 4、地震作用 q EK :垂直于幕墙平面的分布水平地震作用标准值 (KN/m 2) q E :垂直于幕墙平面的分布水平地震作用设计值 (KN/m 2) βE :动力放大系数,取5.0 αmax :水平地震影响系数最大值,取0.08 G AK :幕墙构件(包括玻璃和接头)的重量标准值,取0.50 KN/m 2 q EK =AK max E G ?α?β =5.0×0.08×0.50 =0.20KN/m 2 q E =γE ×q EK =1.3×0.20 =0.26 KN/m 2 5、荷载组合 风荷载和地震荷载的水平分布作用标准值 q K =ψW ·q WK +ψE ·q EK =1.0×1.76+0.5×0.20 =1.86 KN/m 2 风荷载和地震荷载的水平分布作用设计值 q=ψW ·γW ·q WK +ψE ·γE ·q EK =1.0×1.4×1.76+0.5×1.3×0.20 =2.59 KN/m 2 第二章、化学锚栓强度计算 一、部位要素 该处最大计算标高按15.33 m 计,受到由水平风荷载和地震荷载作用效应的组合荷载

阳光棚安装步骤及施工工艺流程

阳光棚安装步骤及施工工艺流程 阳光棚是通过抗紫外UV层与主料聚碳酸酯共挤工艺生产而成,从而保证了产品对抗紫外线辐射的稳定性。它防止阳光板因老化分解而褪色以及透光率下降,该产品使用寿命达到十年以上。同时阳光板雨棚还具有透光性、耐候性、抗冲击性、阻燃性等特点。很多反季蔬菜的种植也会用到阳光棚,阳光棚让我们能够在冬天更为享受的晒太阳,饭店要是有了它就很受欢迎。对于阳光棚的相关信息,如果你感兴趣的话不妨随我一起来了解下吧! 因为阳光棚的收益越来越好,尤其是在近几年,阳光棚越来越火,这也直接促进了阳光棚市场的发展越来越好,很多人没有干过这方面生意的朋友也都开始干起了搭建阳光棚的生意,很多朋友对阳光棚安装这方面还是很陌生。今天趁着这个机会,给大家讲解讲解着阳光棚的基本情况,为广大需要的朋友们以及未来需要的朋友们提供一个平台,让你们知道阳光棚安装步骤。 【阳光棚材料】 光棚的材料主要有:钢化玻璃、阳光板、彩钢板、德高瓦、断桥铝等。阳光棚的顶部传统工艺多为钢化玻璃,第二代保温隔热阳光棚及第三代断桥铝阳光棚陆续上市:顶部材料变更后,很好的解决了玻璃顶阳光房夏天过热的问题。阳光棚的骨架材料采用高强度碳钢焊接,彩铝型材外饰,结构坚固,抗震抗风。 阳光棚适用范围 适用范围:办公大楼、百货大楼、宾馆、别墅、学校、体育场馆、娱乐中心及公用设施的采光顶棚;高速公路及城市高架桥路的隔音屏障;农业温室大棚、花卉温室及室内游泳池的天幕;地铁出入口、车站、停车场、商场、凉亭、休息厅、走廊灯的雨棚;银行防盗柜台、珠宝店防盗橱窗;广告灯箱、公交站面板、广告展示牌;办公、家居的室内隔断,人行通道、护栏、阳台、淋浴房等; 阳光棚价格 阳光棚的造价有高有低,一般来说,主要与阳光棚的品牌、厂家,材质以及规格大小等相关因素相关。另外,有些阳光棚购买量越多还会有优惠,也就是,采购量越大,优惠越多,价格越低。另外,不同卖家、时间点的阳光棚报价并不相同,存在着差异。 阳光棚制作要求 1、深化设计:阳光棚制作前乙方须根据园林景观图纸的所示阳光棚造型与颜色进行二次设计,设计方案需经过设计及甲方的认可后方可加工制作。 2、连接方式:阳光棚主梁立柱与已完工结构挡土墙采用200*160*12钢板预埋铁,M16*190化学锚栓链接,龙骨铺设必须横平竖直,保证与阳光板接触面积平滑,使阳光板扣压严实牢固。

化学锚栓

化学锚栓 高强化学锚栓是由乙烯基树脂为主体原料的高强度锚栓,早期称化学药栓。 中文名:化学锚栓 外文名:Chemical anchor 适用领域:建筑 1 简介 化学锚栓是一种新型的紧固材料,由化学药剂与金属杆体组成的。可用于各种幕墙、大理石干挂施工中的后加埋件安装,也可用于设备安装,公路、桥梁护栏安装;建筑物加固改造等场合。由于其玻璃管内装着的化学试剂易燃易爆,所以厂家必须经过国家有关部门的批准才能生产,整个生产过程需要有严密的安全措施,并必须使用和工作人员完全隔离的流水线。如果通过手工作业不但违反了国家的有关规定,而且非常危险。 化学锚栓是继膨胀锚栓之后出现的一种新型锚栓,是通过特制的化学粘接剂,将螺杆胶结固定于砼基材钻孔中,以实现对固定件锚固的复合件。 产品广泛应用于固定幕墙结构、安装机器、钢结构、栏杆、窗户等。 2 产品特点 1.化学药管组成:乙烯基树脂,石英颗粒,固化剂。 2.玻璃管封闭包装便于目测管剂质量,玻璃粉碎后充当细骨料。

3.抗酸碱、耐热、防火、温度敏感度低。 4.对基材无膨胀挤压应力,适用于重荷及各种震动荷载。 5.安装间距和边距要求小。 6.安装快捷,迅速固化,不影响施工进度。 7.施工温度范围广。 3特性 耐酸碱、耐低温、耐老化 耐热性能良好,常温下无蠕变 耐水渍,在潮湿环境中长期负荷稳定 抗焊性、阻燃性能良好 抗震性能良好 4产品优势 锚固力强,形同预埋 无膨胀应力,边距间距小 安装快捷,凝固迅速,节省施工时间 玻璃管包装利于目测管剂质量 玻璃管粉碎后充当细骨料,粘接充分 5应用领域 适用于重载在近边距和狭窄构件(柱、阳台等)上固定

化学锚栓的施工工艺及技术方案

化学锚栓的施工工艺及技术方案 (1)化学锚栓施工是指将一种树脂锚固剂将螺栓凝固在建筑物内的一种施工方法,主要用于砼、岩石基体内快速高强度地锚固金属杆件,其承受的拉拨力(或称握裹力)可达到钢材的屈服极限(钢材缩颈、拉断)或砼基体裁破裂。因此广泛用于设备基础(地脚螺栓)锚固,矿井巷道顶等、壁部位锚固支护及铁轨锚固及铁轨绝缘锚固等。 (2)其它性能指标 A、锚固剂固化后本体强度 抗压强度 70-80mpa 抗拉强度 20mpa 抗折强度 40mpa B、锚固力 材质螺栓直径锚固深度锚固力锚固剂用量 A3 M10 >100mm >3T ≤90 A3 M12 >100mm >4T ≤90 A3 M16 >160mm >6T ≤100 直径:锚孔=1:1.8 C、粘结强度 抗拉强度mpa 砼/砼>4.0 砼8字模断裂 砼/岩石>4.0 砼8字模断裂 钢板/钢板>15 带锈面脱开

抗剪强度mpa花岗岩/花岗岩>5 花岗岩拉断 大理石/大理石>2 在理石拉断 D、包装、规格 散装品 甲组份:20kg/铁桶,内衬塑料袋 乙组份:0.5kg/支 玻璃管装 Φ10*100 Φ12*110 Φ16*110 (3)施工方法 A、散装品 将甲乙两组份按40:4(重量比)拌合均匀,随后塞入锚孔内,注意勿将空气封入,然后将欲锚固的金属件(带螺纹的螺栓)插入孔内,剔除洞口多余锚固剂摁平,养护至1小时以上,养护期间不准摇动杆件。粘贴大理石或花岗岩板材时,最好选用薄型锚固剂即石材粘贴剂,按甲乙组份40:1拌匀后,均匀涂抹在衬板上,然后直接粘贴在坚实的墙面上,摁平养护1小时。 B、玻璃管支装品 施工顺序为:基体打孔——清理孔内灰尘——塞入所需规格玻璃管支装锚固剂——用电钻将金属杆件边旋转边

化学锚栓拉拔力

点支式(桁架支承)玻璃幕墙 支座化学锚栓强度计算书 本工程主体结构已完工,主体结构没有预埋件,需要通过化学锚固螺栓把钢板固定到主体结构上来作为固定支点,钢板尺寸为300×200×10 mm,钢板有四个固定点,均为 M12 化学锚栓,模型如下图。 第一章、荷载计算 一、基本参数 工程所在地:青岛市 幕墙计算标高:15.33 m 玻璃设计分格:B×H=1549×2000 mm B :玻璃宽度 H :玻璃高度 设计地震烈度:7度 地面粗糙度类别:A类 二、荷载计算 1、风荷载标准值 W K:作用在幕墙上的风荷载标准值( KN/m2)βgz:瞬时风压的阵风系数,取 1.60 μs:风荷载体型系数,取 1.2 μz:风荷载高度变化系数,取 1.527 青岛市地区风压 W0=0.6 KN/m(按 50 年一遇) W k=βgzμsμz W0 =1.60×1.2×1.527×0.60 =1.76 KN/m2>1.0 KN/m2 取 W K=1.76 KN/m2 2、风荷载设计值 W :风荷载设计值 (KN/m2) r w:风荷载作用效应的分项系数,取 1.4 W=r w × W k =1.4×1.76 =2.46 KN/m2

3、玻璃幕墙构件重量荷载 G AK:玻璃幕墙构件自重标准值,取 0.50 KN/m2 G A :玻璃幕墙构件自重设计值 G A=1.2× G AK=1.2 × 0.50=0.60 KN/m2 4、地震作用 q EK :垂直于幕墙平面的分布水平地震作用标准值 (KN/m2) q E:垂直于幕墙平面的分布水平地震作用设计值 (KN/m2) βE:动力放大系数,取 5.0 αmax:水平地震影响系数最大值,取 0.08 G AK:幕墙构件(包括玻璃和接头)的重量标准值,取 0.50 KN/m2 q EK=E max G AK =5.0×0.08×0.50 =0.20KN/m2 q E =γE×q EK =1.3×0.20 =0.26 KN/m2 5、荷载组合风荷载和地震荷载的水平分布作用标准值 q K=ψW ·q WK+ψE ·q EK =1.0 × 1.76+0.5 × 0.20 =1.86 KN/m2 风荷载和地震荷载的水平分布作用设计值q=ψ W·γ W· q WK+ ψ E ·γ E · q EK =1.0 × 1.4× 1.76+0.5 × 1.3 × 0.20 =2.59 KN/m2 第二章、化学锚栓强度计算 一、部位要素 该处最大计算标高按 15.33 m 计,受到由水平风荷载和地震荷载作用效应的组合荷载设计值为 2.59 KN/m,桁架的分格宽度为1549 mm。 、化学锚栓拉剪计算 采用 SAP2000 软件对桁架进行力学计算,在荷载设计值作用下得出桁架支座处受力情况。由化学锚栓承受由桁架传递的轴力、剪力、和弯矩的共同作用。 化学锚栓所受轴力:N=35.33 KN 化学锚栓所受剪力:V=4.20 KN 化学锚栓所受弯矩:M =0.33 KN·m M12化学锚栓的设计拉力N t b =17.6 KN,设计剪力N V b =17.2 KN。 作用于一个化学锚栓的最大拉力: N t= My t m y i2

锚栓计算

锚栓计算

本设计采用化学植筋作为后锚固连接件。 本计算主要依据《混凝土结构后锚固技术规程》JGJ 145-2004。 后锚固连接设计,应根据被连接结构类型、锚固连接受力性质及锚栓类型的不同,对其破坏型态加以控制。本设计只考虑锚栓钢材抗剪复合破坏类型和混凝土破坏类型。并认为锚栓是群锚锚栓。 1 后锚固载荷信息 本工程锚栓受拉力和剪力 V g sd: 总剪力设计值: V g sd=8.723KN N g sd: 总拉力设计值: N g sd=34.000KN M: 弯矩设计值: M=1.240000KN·m 本设计的锚栓是在拉剪复合力的作用之下工作,所以拉剪复合受力下锚栓或植筋钢材破坏和混凝土破坏时的承载力,应按照下列公式计算:

1)()(2,2,≤+s Rd h Sd s Rd h Sd V V N N N Rs s Rk s Rd N N ,,,γ= V Rs s Rk s Rd V V ,,,γ= 1)()(5 .1,5.1,≤+c Rd g Sd c Rd g Sd V V N N N Rc c Rk c Rd N N ,,,γ= V Rc c Rk c Rd V V ,,,γ= 式中 h Sd N ---- 群锚中受力最大锚栓的拉力设计值; g Sd N ---- 群锚受拉区总拉力设计值; h Sd V ---- 群锚中受力最大锚栓的剪力设计值; g Sd V ---- 群锚总剪力设计值; s Rd N , ---- 锚栓受拉承载力设计值; s Rk N , ---- 锚栓受拉承载力标准值;

s Rd V , ---- 锚栓受剪承载力设计值; s Rk V , ---- 锚栓受剪承载力标准值; c Rd N , ---- 混凝土锥体受拉破坏承载力设计值; c Rk N , ---- 混凝土锥体受拉破坏承载力标准值; c Rd V , ---- 混凝土楔形体受剪破坏承载力设计值; c Rk V , ---- 混凝土楔形体受剪破坏承载力标 准值; γRs,N ----锚栓钢材受拉破坏,锚固承载力分项 系数=1.50; γRs,V ----锚栓钢材受剪破坏,锚固承载力分项 系数=1.50; γRc,N ----混凝土锥体受拉破坏,锚固承载力分 项系数=2.15; γRc,V ----混凝土楔形体受剪破坏,锚固承载力 分项系数=1.80; γRcp ----混凝土剪撬受剪破坏,锚固承载力分 项系数=1.80; γRsp ----混凝土劈裂受拉破坏,锚固承载力分 项系数=2.15;

幕墙后置埋件施工工艺

幕墙后置埋件施工工艺 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

后置埋件处理和化学锚栓安装 1、范围 本施工工艺适用于幕墙工程中的后置埋件施工。 2、施工准备 1)材料要求 后置埋件的品种、类型、规格、尺寸、性能、板材的壁厚、表面处理应符合设计要求,且应有出厂合格证。 化学锚栓品种、类型、规格、尺寸、性能应符合设计要求,产品且应有质保书、合格证以及检验报告。 2)主要器具 电锤钻一台、水准仪一台、水平尺、卷尺、紧线器、吊锤、钢丝线。 3)作业条件: 土建结构施工完毕,已提供幕墙施工作业面。根据土建提供的基本线位(50线、轴线)。 3、操作工艺 1)后置埋件施工工艺流程为:熟悉现场/图纸(埋件图)----测量放线----后置埋件安装 2)熟悉图纸:安装作业人员在接到图纸后,先要对图纸进行熟悉了解,主要了解以下几个方面内容; 对图纸内容进行全面的了解; 找出幕墙立面设计的主导尺寸(分格),不可调整尺寸和可调节尺寸; 明确转角及异形处的处理方法; 3)测量放线: 找出定位轴线:将图纸中标明的定位轴线与实际施工现场进行对照找出定位轴线的准确位置 找出定位点:根据在现场查找的准确定位轴线,根据图纸中提供的有关内容, ●确定定位点:定位点数量不得少于两点,确定定位点时要反复测量一定要保证定位准确无误。

●抄平(打水平):用水准仪,对两个定位点确定水平位置,水准仪要按规范使用(使用方法略),先水准仪定位时要考虑安全,定位间距离大致相同,水准仪要摆正放稳,不能出现移动、错位等现象,要注意正确使用和保管好水准仪。 ●拉水平线:在找出定位点位置抄平后,在定位点间拉水平线,水平线可选用细钢丝线,同时用紧线器收紧,保证钢丝线的水平度。 ●测量误差:在水平线拉好后,对所在工作面进行测量,主要进行水平方向的测量,同时检查各轴线(定位轴线)间的误差。通过测量出的结果分析产生误差的原因,核对有关规范(施工)对误差允许值的要求,在规定误差范围内的,可消化误差,超过误差范围应与土建方或甲方协商解决。 ●调整误差:对在规范允许范围内的误差进行调整时,要求每一定位轴线间的误差,在本定位轴线间消化,误差在每个分格间分摊小于2mm,如超过此范围,请书面通知设计室进行设计调整。 4)后置埋件安装: 电锤打孔、化学药剂安装: 找出定位轴线、定位点后,对安装点定位打孔,同时安装化学药剂,化学药剂安装工艺严格按照化学药剂的安装说明及注意事项,尤其是锚孔在安装药剂之前一定要用空压机或者手动气筒吹净孔内粉屑,保持孔道干燥。 螺杆、铁板安装: 药剂安装完毕,进行螺杆的安装,安装时严格控制螺杆的安装深度,待螺杆达到指定深度后,对后置铁板进行安装,在后置铁板的安装过程中,在螺杆未完全固化前及时调整螺杆的方向,打孔时尽量劈开混凝土钢筋,实在避免不了,该孔不放锚栓,采取在铁板旁边加固措施。 铁板调整、固定: 后置铁板安装时,应根据图纸的尺寸要求,对铁板的三维方向尺寸进行复核,在复核无误后,螺杆套上螺母固定。 4、质量标准 1)后置埋件的品种、类型、规格、尺寸、性能、板材的壁厚、表面处理应符合设计要求,且应有出厂合格证。

化学锚栓施工工艺标准

化学锚栓施工工艺标准 1.范围 本工艺标准适用于一般工业及民用建筑物、构筑物的新增梁端部 的生根。 2.施工准备 2.1 主要机具:水钻(用于打水钻孔),电锤(用于打电锤孔)钢丝 刷。 2.2 辅助机具:手吹风、空压机、棉丝、毛刷、墨斗、墨水、线 坠、水平尺、盒尺、红蓝铅笔等。 2.3 主要材料:金草田结构胶、化学锚栓、丙酮。 2.4 作业条件: 2.4.1 施工前先清理施工区域内的所有障碍物,清除施工面浮 土及灰皮。 2.4.2 根据图纸标注尺寸,放出植筋现场位置点。 2.4.3 夜间施工时,应合理安排工序,防止错植,施工场地应根据需要安装照明设施,在危险地段应设置明显标志。 2.4.4 熟悉图纸,做好技术交底。

3.施工工艺 3.1 工艺流程: 现场清理——放线、验线——钻孔——清孔——钢筋除锈 -------- 注 胶——植筋——报验 3.2 现场清理 3.2.1 根据各个工地的实际情况进行相应的处理,总的原则是 清理到原结构层或受力层。 3.3 放线、验线 3.3.1 放出钢筋植筋的点位线 3.3.2 复核点位线位置无误后,采用电钻钻孔 3.4 钻孔 3.4.1 根据设计要求,确定植筋钻孔规格。 3.4.2 接好水钻(电锤)电源,进行钻孔施工。 3.4.3 钻孔施工完成,检查成孔直径及深度。 3.5 清孔 3.5.1 用空压机或其它设备吹出植筋孔内灰尘。 3.5.2 用毛刷或棉丝蘸丙酮将植筋孔擦拭干净。 3.5.3 用棉丝封堵植筋孔口待用 3.5.4 请甲方、监理、总包负责人,对成孔进行验收。

3.6 钢筋除锈 3.6.1 角磨机配钢丝刷将钢筋锚入部分除去铁锈,氧化层,油 污等,并用丙酮擦拭干净。 3.6.2 报请监理或总包验收,合格后,方可进行锚筋作业。 3.7 注胶植筋 3.7.1 用注胶器将胶注入孔内2/3,将除锈后的钢筋旋转缓慢插入洞内,直至达到洞底部为止。锚固胶体从洞口溢出,则锚固合格3.7.2 锚固完钢筋后,在24 小时内不得人为扰动,以保证锚筋质 量。 3.7.3 填写单项工程验收单,并报请监理或总包验收。 3 .8 报验 3.8.1 待植筋完全固化后,按设计要求做钢筋拉拔试验。 3.8.2 钢筋拉拔试验合格后,报请监理或总包验收。然后填写隐检资料,分项/分部工程质量报验认可单,请总包负责人、监理签字。 4、质量标准 4.1 保证项目: 4.1.1 植筋必须符合设计要求及加固行业施工规范

锚栓技术设计要点

. 锚栓技术设计要点 ;. . 目录 1 锚栓类型及材料 (1) 1.1 化学锚栓 (1) 1.2 机械锚栓 (1) 2 适用范围 (1) 2.1 适用范围 (1) 2.2 涉及规范及标准 (3) 3 设计要点 (3) 3.1锚固连接内力计算 (3) 3.2 受拉承载力计算 (4) 3.3 受剪承载力计算 (8) 3.4 拉剪复合受力承载力计算 (10) 3.5 抗震承载力验算 (11) 4 构造规定 (12) 4.1 混凝土基材 (12) 4.2 锚栓及锚栓布置 (12) 4.3 抗震构造措施 (13) ;. . 锚栓技术设计要点 1 锚栓类型及材料

锚栓是将被连接件锚固到基材上的锚固组件产品,分为机械锚栓和化学锚栓。 1.1 化学锚栓 化学锚栓是由金属螺杆和锚固胶组成,通过锚固胶形成锚固作用的锚栓。 化学锚栓按照其使用范围可分为两种:适用于开裂混凝土和不开裂混凝土的化学锚栓及适用于不开裂的混凝土的化学锚栓。 按照受力机理可分为两种:普通化学锚栓和特殊倒锥形化学锚栓。特殊倒锥形化学锚栓,在安装时通过锚固胶与倒锥形螺栓杆之间滑移可形成类似于机械锚栓的膨胀力。 1.2 机械锚栓 机械锚栓,是利用锚栓与锚孔之间的摩擦作用或锁键作用形成锚固的锚栓。 按照其工作机理分为两类:扩底型锚栓、膨胀型锚栓。扩底型锚栓:通过锚孔底部扩孔与锚栓组件之间的锁键形成锚固作用的锚栓,分为自扩底锚栓和模扩地锚栓。膨胀型锚栓:利用膨胀件加压锚孔孔壁形成锚固作用的锚栓,分为扭矩控制式膨胀型锚栓和位移控制式膨胀型锚栓。 按照其使用范围可分为两种:适用于开裂混凝土和不开裂混凝土的机械锚栓及适用于不开裂的混凝土的机械锚栓。 2 适用范围 2.1 适用范围 锚栓应按照锚栓性能、基材形状、锚固连接的受力性质、被连接结构类型、抗震设防等要求选用。 ;. . 锚栓用于结构构件连接时的适用范围

干挂石材施工工艺流程

干挂石材施工工艺流程: 测量放线一放置预埋板(化学锚栓、膨胀螺栓)一主龙骨安装即固定8# 镀锌槽钢(双角码)一固定50镀锌角铁(焊接、不锈钢螺栓) -隐蔽验收一钢挂件安装一石材安装、调校一嵌缝耐候密封胶一拆除脚手架、完工清理-成品保护一竣工验收(竣工图)。 1?测量放线 ?依据每面墙的面积大小,凹凸情况,分别在墙的上、下两侧及中部设置测量控制点。 ?用10#铅丝拉挂水平垂直控制线,并做好相邻墙面阴阳角转折控制。 ?用线锤从上至下将石材墙面、柱面找出垂直线,按图纸量出石材外廓尺寸线,此线为第一层石材安装的基准线。 ?根据给定的基准线设计要求进行分格,在竖横(主次)龙骨上标出板块接缝位置。 3.放置预埋板 4..主龙骨安装 ?主龙骨固定点应符合设计要求。 ?先将主龙骨通过连接件电焊在预埋件上,确认牢固后,用拖线板检查垂 直,拉通线检查平整,校正后进行焊接。 ?为了适应建筑的层间变形,每层主龙骨之间为开预留20mm伸缩缝。 ?所有主龙骨安装完后进行检查,达到要求后再进行除渣,刷一遍铁红酚 醛防锈漆(宝塔山牌),一遍银粉防锈面漆。 ?施工安装顺序由下至上。 5.次龙骨安装 ?次龙骨按设计要求确定。 ?在安装次龙骨之前,根据施工图,定出钢挂件连接位置,并用台钻钻洞,检查(按主龙骨检查的方法)校正后,进行主龙骨与次龙骨焊接连接。 ?所有次龙骨安装完后要进行检查,达到要求后再进行除渣,刷一遍铁红 酚醛防锈漆(宝塔山牌),一遍银粉防锈面漆。 6.隐蔽验收

?上述工序经自检、互检和专检工程质量合格后,及时办理隐蔽工程验收。 7.钢挂件安装 ?按设计要求在石材上、下两剔两个槽。 ?槽位应在距板端1/4宽处,槽宽6mm。 ?用结构硅槽胶填满石板槽中挂钩与石材位置。待结构胶养护好后才可安装。 8.石材安装、调校?石材安装从下至上进行,根据石材水平缝的标高,按通线安装石材,接 缝宽度根据规范要求。 ?将钢挂钩的螺母完全调整就位后拧紧,检查平整度、垂直度、接缝宽度等。.质量标准 ?石材品种、规格、颜色必须符合有关标准规定和设计要求。?石材安装必须牢固、无歪斜、缺楞掉角和裂缝、风化等缺陷。?表面应平整、洁净、色泽协调一致。 ?套割要吻合,边缘整齐,水平接缝平整。?接缝平直、宽窄一致、填嵌密实,颜色一致。阴阳角处板的压向正确,非整板的使用部位适宜。 ?立面垂直偏差不超过。 ?表面平整偏差不超过1mm。 ?接缝宽度偏差用角尺或钢直尺检查不超过。 9.嵌缝耐候密封胶大理石之间的缝隙,用中性硅胶嵌填,首先沿面板边缘贴防污条,选用左右的纸带型不干胶带,边沿要贴齐、贴严,在大理石板间缝处嵌弹性背衬条,嵌好后离饰面5mm,之后在背衬条外用嵌缝枪把中性硅胶打入缝内, 打胶时用力要均,走枪要稳而慢,使嵌缝宽窄一致,无错台错位。 10.完工清理大理石安装完毕,随架的降落进行全面检查、清洗,同时将防污条掀掉。

化学螺栓技术要求

化学螺栓规格及重要节点 一、安装程序 安装程序:钻孔——清孔——置入药剂管——钻入螺栓——凝胶过程——硬化过程——固定物体 1、钻孔:先根据设计要求,按图纸间距、边距定好位置,在基层上钻孔,孔径、孔深必须满足设计要求。 2、清孔:用空气压力吹管等工具将孔内浮灰及尘土清除,保持孔内清洁。 3、置入药剂管:将药剂管插入洁净的孔中,插入时树脂在手温条件下能象蜂蜜一样流动时,方可使用胶管。 4、钻入螺栓:用电钻旋入螺杆直至药剂流出为止。电钻一般使用冲击钻或手钻,钻速为750转/分。这时螺栓旋入,药剂管将破碎,树脂、固化剂和石英颗粒混合,并填充锚栓与孔壁之间的空隙。同时,锚栓也可以插入湿孔,但水必须排出钻孔,凝胶过程及硬化过程的等待时间必须加倍。 5、凝胶过程:保持安装工具不动,化学反应时间见详细资料。 6、硬化过程:取下安装工具静待药剂硬化,化学反应时间见详细资料。 7、固定物体:待药剂完全硬化后,加上垫圈及六角螺母将物体固定便可。 二、螺栓规格 锚栓规格(mm)M10 M12 M16 M20 M24 钻孔直径(mm)12 14 18 25 28 钻孔深度(mm)90 110 125 170 210 螺栓长度(mm)130 160 190 260 300 最大锚固厚度(mm)20 25 35 65 65 三、锚栓的边距及混凝土构件的最小厚度要求 锚栓规格M10 M12 M16 M20 M24 最小边距(mm)45 55 65 85 105 最小锚栓间距(mm)45 55 65 85 105 基材最小厚度(mm)110 130 145 190 230 四、单个锚栓平均破坏荷载及设计荷载 锚栓规格M10 M12 M16 M20 M24 破坏拉力(KN)(C30砼)31.87 45.57 71.58 137.69 186.69 破坏剪力(KN)(C30砼)17.25 29.05 53.43 84.42 114.15 设计拉力(KN)(C30砼)10.32 14.76 23.26 44.56 60.90 设计剪力(KN)(C30砼)5.79 9.95 14.40 28.65 45.77

化学锚栓拉拔力

化学锚栓拉拔力 This model paper was revised by the Standardization Office on December 10, 2020

点支式(桁架支承)玻璃幕墙 支座化学锚栓强度计算书 本工程主体结构已完工,主体结构没有预埋件,需要通过化学锚固螺栓把钢板固定到 主体结构上来作为固定支点,钢板尺寸为300×200×10 mm,钢板有四个固定点,均为 M12化学锚栓,模型如下图。 第一章、荷载计算 一、基本参数 工程所在地:青岛市 幕墙计算标高: m 玻璃设计分格:B×H=1549×2000 mm B:玻璃宽度 H:玻璃高度 设计地震烈度:7度 地面粗糙度类别:A类 二、荷载计算 1、风荷载标准值

W K :作用在幕墙上的风荷载标准值(KN/m2) β gz :瞬时风压的阵风系数,取 μ s :风荷载体型系数,取 μ z :风荷载高度变化系数,取 青岛市地区风压W = KN/m(按50年一遇) W k =β gz μ s μ z W =××× = KN/m2> KN/m2 取W K = KN/m2 2、风荷载设计值 W:风荷载设计值 (KN/m2) r w :风荷载作用效应的分项系数,取 W=r w ×W k =×

= KN/m2 3、玻璃幕墙构件重量荷载 G AK :玻璃幕墙构件自重标准值,取 KN/m2 G A :玻璃幕墙构件自重设计值 G A =×G AK =×= KN/m2 4、地震作用 q EK :垂直于幕墙平面的分布水平地震作用标准值 (KN/m2) q E :垂直于幕墙平面的分布水平地震作用设计值 (KN/m2) β E :动力放大系数,取 α max :水平地震影响系数最大值,取 G AK :幕墙构件(包括玻璃和接头)的重量标准值,取 KN/m2 q EK = AK max E G ? α ? β =××=m2

相关主题
文本预览
相关文档 最新文档