当前位置:文档之家› 锚栓设计计算书

锚栓设计计算书

锚栓设计计算书

柱脚锚栓设计计算书

柱脚锚栓设计计算书 计算依据: 1、《钢结构设计规范》GB50017-2003 一、基本参数 锚栓号M1 弯矩M(kN·m) 50 轴力N(kN) 100 底板长L(mm) 700 底板宽B(mm) 300 锚栓至底板边缘距离d(mm) 650 11.9 混凝土强度等级C25 混凝土轴心抗压强度设计值fc (N/mm2) 单侧锚栓个数n 4 锚栓直径de(mm) 21 锚栓材质Q235 锚栓抗拉强度设计值fta (N/mm2) 140 计算简图: σm ax=N/(B*L)+M/(B*L2/6)=100×103/(300×700)+50×106/(300×7002/6)=2.517N/mm2≤fcc=0

.95*fc=0.95×11.9=11.305N/mm2 满足要求! σmin=N/(B*L)-M/(B*L2/6)=100×103/(300×700)-50×106/(300×7002/6)=-1.565N/mm2 压应力分布长度:e=σmax/(σmax+|σmin|)*L=2.517/(2.517+|-1.565|)×700=431.627mm 压应力合力至锚栓距离:x=d-e/3=650-431.627/3=506.124mm 压应力合力至轴心压力距离:a=L/2-e/3=700/2-431.627/3=206.124mm 锚栓所受最大拉力: Nt=(M-N×a)/x=(50-100×206.124/1000)/(506.124/1000)=58.064KN≤n×π×de2/4×fta=4×3.142×212/4×140=193.962KN 满足要求!

钢结构柱脚设计(优.选)

第八章基础设计 第一节基础设计的特点 由于结构型式、荷载取值、支座条件等方面的不同,传至基础顶面内力是不同的,轻钢结构与传统的砼结构相比,最大差别就是在柱脚处存在较小的竖向力和较大的水平力,对于固接柱脚,还存在较大的弯矩,在风荷载起控制作用的情况下,还存在较大的上拔力。柱底水平力会使基础产生倾覆和滑移,基础受上拔力作用,在覆土较浅的情况下,会使基础向上拔起,有关这方面的问题,后面再作详述。由于轻钢结构的这些受力特点,导致其基础设计与其它结构存在很大的不同,主要表现在以下几个方面: ⒈基础形式 基础型式选择应根据建筑物所在地工程地质情况和建筑物上部结构型式综合考虑,对于砼结构基础,常见的基础型式有独立基础、条形基础、片筏基础、箱形基础、桩基等等,而对于轻钢结构而言,由于柱网尺寸较大,上部结构传至柱脚的内力较小,一般以独立基础为主,若地质条件较差,可考虑采用条形基础,遇到暗浜等不良地质情况,可考虑采用桩基础,一般情况下不采用片筏基础和箱形基础。

轴向力N和水平力V之外,还存在一定的弯矩M,从而使刚接柱脚的基础大于铰接柱脚。 ⒊基础破坏形式 要正确进行基础设计,首先要知道基础破坏形式,对其工作原理有所了解。 对于砼结构,通常柱网尺寸较小,故柱底水平力相对较小,基础一般不会产生滑移现象,又由于上部结构自重很大,足以抵抗风荷载作用下产生的上拔力,故基础也不会产生上拔的可能,对于这种结构,基础主要发生冲切、剪切破坏;而轻钢结构则不同,基础除

发生冲切、剪切破坏之外,由于存在较大的水平力,对于固接柱脚,还存在较大的弯矩作用,从而导致基础产生倾覆和滑移破坏,另外,在风荷载较大的情况下,特别对于一些敞开或半敞开的结构,由于轻钢结构自重很轻,有可能不足于抵抗风荷载产生的上拔力,导致基础上拔破坏。为防止这些破坏的发生,最经济有效的方法是增加基础埋深,即增加基础上覆土的厚度,但增加了土方开挖和回填工程量。另外对于轻钢结构基础,还须预埋锚栓(也称地脚螺栓),用于上部结构和基础的连接,若锚栓离砼基础边缘太近,会产生基础劈裂破坏,所以我国钢结构设计规范规定了锚栓离砼基础边缘的距离不得小于150mm;若锚栓长度过短,会使锚栓从基础中拔出,导致破坏,所以规范也规定了锚栓埋入长度。 ⒋基础设计内容 基础设计一般包括基础底面积确定、基础高度确定和配筋计算,还应符合有关构造措施。基础底面积可根据地基承载力确定,同时还应考虑软弱下卧层存在;基础高度由冲切验算确定;在基础底面积和高度确定的情况下计算基础配筋,这里须注意伸缩缝双柱基础处理,双柱为基础提供了两个支点,在地基反力作用下,有可能出现负弯矩,即基础上部受拉的情况,

边坡设计计算说明

西南交通大学研究生课程设计 某公路高大边坡设计 年级: 2014级 学号:2014200015 姓名:黄锐 专业:岩土工程 指导老师:马建林 二零一五年六月三十日

摘要:边坡工程是公路工程,铁路工程及水利工程的重要组成部分,其具有工程量大,施工周期长等特点,常常作为项目的控制性工程,随着我国道路、铁路等基础设施的建设,对边坡支护技术提出了越来越高的要求。 本设计为一个公路工程高大边坡设计,对支护结构的设置位置及工后的变形提出了较高的要求,设计对边坡C及D两个节段的K1+810及K1+860控制横断面进行设计。目前,边坡的支挡结构主要有重力式挡土墙、锚杆框架梁、排桩等形式,考虑到上述限制因素及边坡本身高度条件,经过方案比选,对边坡采用锚杆桩板墙结构进行加固,其中,K1+810断面采用锚杆桩板墙及桩顶放坡的支护形式,对桩板墙的稳定性进行验算后,还对桩顶土坡的稳定性进行验算。K1+860横断面设计采用双排桩支护结构,将前后排桩分开计算,桩顶位移累加,此计算方法是偏于安全的。设计采用理正岩土5.6进行计算。 Abstract:the slope engineering is always an important part in highway engineering, railway engineering, and water conservancy project, its quantity is big, long construction period, etc, often as controlling engineering of the project, along with our country the construction of infrastructure such as road, railway, puts forward higher and higher requirements on the slope supporting technology. This tall slope design for a highway engineering design, the location of the supporting structure and the deformation after put forward higher requirements, the design of slope C and D are two segments of K1 + 810 and K1 + 860 control cross-sectional design. At present, the slope of the retaining structure mainly include gravity retaining wall pile, anchor frame beam, such as form, considering the above constraints and slope itself highly conditions, through scheme comparison, to reinforce the slope with anchor ZhuangBanQiang structure, among them, the anchored ZhuangBanQiang K1 + 810 section and pile top slope support form, the stability of ZhuangBanQiang after checking, also the stability of pile top slope calculation.K1 + 860 cross-sectional design of retaining structure with double-row piles were adopted, the front row piles is calculated separately, the displacement of pile top accumulation, this calculation method is more safe. Design USES reason is geotechnical 5.6 to calculate.

深基坑边坡稳定性计算书

土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m): 1.56 ; 基坑内侧水位到坑顶的距离(m): 14.000 ; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m)条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数:

土层参数: 二、计算原理 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第 i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足 >=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

化学锚栓计算

化学锚栓计算: 采用四个5.6级斯泰NG-M12×110粘接型(化学)锚栓后锚固,h ef =110mm ,A S =58mm 2 , f u =500N/mm 2 ,f y =300N/mm 2 。 荷载大小: N=5.544 KN V=2.074 KN M=2.074×0.08=0.166 KN ·m 一、锚栓内力分析 1、受力最大锚栓的拉力设计值 因为36122 1 5.544100.166105042250 My N n y ???-=-??∑=556 N >0 故,群锚中受力最大锚栓的拉力设计值: =2216 N 2、承受剪力最大锚栓的剪力设计值 化学锚栓有效锚固深度:ef h '=ef h -30=60 mm 锚栓与混凝土基材边缘的距离c=150 mm <10ef h '=10×60=600 mm ,因此四个锚栓中只有部分锚栓承受剪切荷载。 承受剪力最大锚栓的剪力设计值: 2 h Sd V V = =2074/2=1037 N 二、锚固承载力计算 1、锚栓钢材受拉破坏承载力 锚栓钢材受拉破坏承载力标准值:

,5850029000Rk s s stk N A f ==?=N 锚栓钢材破坏受拉承载力分项系数: 锚栓钢材破坏时受拉承载力设计值: ,,,29000145002.0 Rk s Rd s RS N N N γ= ==N >h Sd N =2216 N 锚栓钢材受拉承载力满足规范要求! 2、混凝土锥体受拉破坏承载力 锚固区基材为开裂混凝土。 单根锚栓理想混凝土锥体破坏时的受拉承载力标准值: =8248.64 N 混凝土锥体破坏情况下,确保每根锚栓受拉承载力标准值的临界间距: 混凝土锥体破坏情况下,确保每根锚栓受拉承载力标准值的临界边距: 基材混凝土劈裂破坏的临界边距: 则,c 1=150 mm >,90cr N c =mm ,取c 1=90 mm 边距c 对受拉承载力降低影响系数: ,,90 0.70.3 0.70.390 s N cr N c c ψ=+=+?=1.0 表层混凝土因密集配筋的剥离作用对受拉承载力降低影响系数:

平面滑动法边坡稳定性设计计算书

平面滑动法边坡稳定性设计计算书 依据《建筑边坡工程技术规范》(GB 50330-2002) 一. 参数信息 松散性的砂类土路基边坡,渗水性强,粘性差,边坡稳定主要靠其内摩擦力。失稳土体的滑动面近似直线形态,整个路堤成直线形态下滑。(如图) 边坡土体类型为 :填土; 边坡工程安全等级:三级边坡(1.25); 边坡土体重度为 :19.00kN/m3; 边坡土体内聚力为:20.00kPa; 边坡土体内摩擦角:37.00°; 边坡高度为:20.00m; 边坡斜面倾角为:50.00°; 边坡顶部均布荷载:12.00kN/m2。 二. 平面滑动法计算边坡稳定性 由示意图按静力平衡可得此时边坡稳定性安全系数公式为: 式中:ω——滑动面的倾角; f ——等于 tgφ,摩擦系数; φ——边坡土体内摩擦角;

L ——滑动面的长度; N ——滑动面的法向分力; T ——滑动面的切向分力; c ——滑动面上的粘结力(或土的内聚力); Q ——滑动体的重力(包括坡顶均布荷载)。 ,滑动面位置不同,K 值亦随之而变,边坡稳定与否的判断依据,应是稳定系数的最小值 K min 相应的最危险滑动面的倾角为ω (如图所示)。 由于滑动体的重力(包括均布荷载)可以由下式求得: 式中:γ——边坡土体的容重(kN/m3); B ——滑动土体块顶部宽度(m); H ——边坡计算高度(m); q ——边坡顶部均布荷载(kN/m2); α——边坡斜面倾角(°)。 所以,边坡稳定性安全系数计算公式为: 欲求 K 值,根据 dK/dω=0,可求得最危险滑动面的倾角ω的值为: min 式中:

将参数代入可得: a = 2×20.00 / (19.00×20.00 +2×12.00) = 0.10; ctgω = 0.84 + (0.10/(0.75+0.10))1/2×1.31 = 1.28. 则边坡稳定性最不利滑动面倾角为:ω = 37.91°. 由此时的滑动面倾角可得到边坡稳定的稳定系数公式, K = (2×0.10+0.75)×0.84 +2×(0.10×(0.75+0.10))1/2×1.31 = 1.557. min ≥ 1.25,满足边坡稳定性要求! 此边坡稳定系数 K min

后置化学锚栓拉力值计算

樟木头行政中心办公楼 11~12轴玻璃幕墙 后置化学锚栓拉力值计算书 设计: 校对: 审核: 批准: 圣帝国际建筑工程有限公司二〇〇七年十二月二十一日

于2007年9月份收到施工单位“正面弧形幕墙设计修改”,该内容详图《DY-04 (修)》。此次修改将原设计的幕墙分格1.733m宽改为0.890m宽,根据此修改该处的后置预埋化学锚栓设计值计算如下: ------------------------------------------------------------------- 1 基本参数 1.1幕墙所在地区: 东莞地区; 1.2地面粗糙度分类等级: 幕墙属于外围护构件,按《建筑结构荷载规范》(GB50009-2001) A类:指近海海面和海岛、海岸、湖岸及沙漠地区; B类:指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 依照上面分类标准,本工程按B类地区考虑。 1.3抗震烈度: 按照国家规范《建筑抗震设计规范》(GB50011-2001)、《中国地震动参数区划图》(GB18306-2001)规定,东莞地区地震基本烈度为6度,地震动峰值加速度为0.05g,水平地震影响系数最大值为:α max =0.04。 2 幕墙承受荷载计算 2.1风荷载标准值的计算方法: 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算: w k =β gz μ z μ s1 w ……7.1.1-2[GB50009-2001 2006年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z:计算点标高:32.4m; β gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算: β gz =K(1+2μ f ) 对于B类地区,32.4m高度处瞬时风压的阵风系数: β gz =0.89×(1+2×(0.5(Z/10)-0.16))=1.6274 μ z :风压高度变化系数; 根据不同场地类型,按以下公式计算: B类场地:μ z =(Z/10)0.32 当Z>350m时,取Z=350m,当Z<10m时,取Z=10m;对于B类地区,32.4m高度处风压高度变化系数:

高边坡脚手架计算书说课讲解

高边坡脚手架计算书

高边坡脚手架计算书 一、参考规范 《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130-2011 《建筑结构荷载规范》GB 50009-2001 《建筑边坡工程技术规范》GB 50330-2002 《碳素结构钢》GB/T 700-2006 《直缝电焊钢管》GB/T 12793-1992 《钢管脚手架扣件》GB 15831-2006 二、设计参数: 1、按照设计坡比1:0.5进行脚手架设计。 2、脚手板采用竹串片脚手板,其自重标准值为0.35KN/m2(见JGJ130规范表4.2.1-1)。 3、钢管尺寸均为φ48×3.5mm,其质量符合现行国家标准《碳素结构钢》(GB/T 700中)Q235-A级钢的规定(Q235钢抗拉、抗压、抗弯强度设计值f=205N/mm2,弹性模量E=2.06× 105N/mm2)。 计算参数 ⑴、脚手架参数:双排脚手架搭设高度为24.3 m,立杆采用单立杆;采用的钢管类型为Φ48×3.5为增加安全系数,计算时重量按Φ48×3.5取值,力学参数按Φ48×3.0计算。因局部位置为三排立杆,在计算立杆强度及稳定性时按最大荷载发生位置取中间立杆计算。②、搭设几何尺寸:立杆的横距为0.9m,立杆的纵距按建筑物

尺寸有1.5m和1.6米,取大值1.6米计算。大小横杆的步距为1.8 m;每步距中部外侧设一根大横杆作为防护栏杆;内排架距离墙0.45m;小横杆上不搭大横杆;小横杆每边伸出立杆尺寸按0.15米计算。③、横杆与立杆连接方式为单扣件;取扣件抗滑承载力系数为1.00;④、与结构的连接点,因为是改造工程,为尽量保护原有建筑主体,采用两步三跨,连接点采用钢管形成抱箍连接在原有框架柱上,竖向间距3.6 m,水平间距4.8 m,采用扣件连接,对没有柱子的部位采用楼板和铜管打孔连接。 2.活荷载参数 施工均布活荷载标准值:2.000 kN/m2;脚手架用途装修脚手架; 同时施工层数按2层计算; 3.风荷载参数 本工程地处牡丹江分局,按《建筑结构荷载规范》取值,基本风压0.27 kN/m2;风压高度变化系数μz,按C类地区(有密集建筑群市区),计算连墙件强度时取0.92,计算立杆稳定性时取0.74;风荷载体型系数μs 按密目安全网封闭,背靠开洞墙面,计算取值为1.236;(按Us=1.3φ,其中φ=1.2An/Aw,其中An为密目安全网挡风面积,Aw为迎风面积,密目网按2000目计算) 4.静荷载参数 每米立杆承受的结构自重标准值,按《技术规范》插值法计算:0.1278(kN/m),因技术规范中计算简图中无步距中间栏杆,实际

钢结构用柱脚锚栓选用表

表1Q235 钢锚栓选用表 锚栓直径 d (mm) 锚栓截面 有效面积 A0 (cm) 连接尺寸锚固长度及细部尺寸每个螺栓 的受拉承 载力设计 值 t a N (KN) Ⅰ型Ⅱ型Ⅲ型 单螺母双螺母锚固长度l (mm)锚板尺寸 a (mm) b (mm) a (mm) b (mm) 当基础混凝土的强度等级为 C (mm) t (mm) C15 C20 C15 C20 C15 C20 20 22 24 27 30 33 36 39 42 45 2.448 3.034 3.525 4.594 5.606 6.936 8.167 9.758 11.21 13.06 45 45 50 50 55 55 60 65 70 75 75 75 80 80 85 90 95 100 105 110 60 65 70 75 80 85 90 95 100 105 90 95 100 105 110 120 125 130 135 140 500 550 600 675 750 825 900 1000 400 440 480 540 600 660 720 780 1050 1125 840 900 630 675 505 540 140 140 20 20 34.3 42.5 49.4 64.3 78.5 97.1 114.3 136.6 156.9 182.8

表2Q235 钢锚栓选用表 锚栓直径 d (mm) 锚栓截面 有效面积 A0 (cm) 连接尺寸锚固长度及细部尺寸每个螺栓 的受拉承 载力设计 值 t a N (KN) Ⅰ型Ⅱ型Ⅲ型 单螺母双螺母锚固长度l (mm)锚板尺寸 a (mm) b (mm) a (mm) b (mm) 当基础混凝土的强度等级为 C (mm) t (mm) C15 C20 C15 C20 C15 C20 48 52 56 60 64 68 72 76 80 14.73 17.58 20.30 23.62 26.76 30.55 34.60 38.89 43.44 80 85 90 95 100 105 110 115 120 120 125 130 135 145 150 155 160 165 110 120 130 140 150 160 170 180 190 150 160 170 180 195 205 215 225 235 1200 1300 1400 1500 1600 1700 1800 1900 2000 960 1040 1120 1200 1280 1360 1440 1520 1600 720 780 840 900 960 1020 1080 1140 1200 575 625 670 720 770 815 865 910 960 200 200 200 240 240 280 280 320 350 20 20 20 25 25 30 30 30 40 206.2 246.1 284.2 330.7 374.6 427.7 484.4 544.5 608.2

边坡锚杆设计计算书

------------------------------------------------------------------------ 计算项目:2#工况整体稳定 ------------------------------------------------------------------------ [计算简图] [控制参数]: 采用规范: 通用方法 计算目标: 安全系数计算 滑裂面形状: 圆弧滑动法 不考虑地震 [坡面信息] 坡面线段数4 坡面线号水平投影(m) 竖直投影(m) 超载数 1 1.200 8.300 0 2 1.500 0.000 0 3 7.300 9.200 0 4 20.000 0.000 1 超载1 距离8.000(m) 宽12.000(m) 荷载(20.00--20.00kPa) 270.00(度) [土层信息] 上部土层数2 层号定位高重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系层底线倾全孔压 度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数 1 7.543 18.000 --- 47.400 23.300 --- --- --- --- --- --- -7.000 --- 2 17.500 18.000 --- 10.000 17.500 --- --- --- --- --- --- 0.000 --- 下部土层数2 层号定位深重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系层顶线倾全孔压 度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数 1 1.069 18.000 --- 47.400 23.300 --- --- --- --- --- --- -11.000 --- 2 8.636 18.200 --- 35.200 24.600 --- --- --- --- --- --- 0.000 --- 不考虑水的作用 [计算条件] 圆弧稳定分析方法: 瑞典条分法 土条重切向分力与滑动方向反向时: 当下滑力对待 稳定计算目标: 自动搜索最危险滑裂面 条分法的土条宽度: 1.000(m) 搜索时的圆心步长: 1.000(m) 搜索时的半径步长: 0.500(m) ------------------------------------------------------------------------ 计算结果: ------------------------------------------------------------------------ 最不利滑动面: 滑动圆心= (1.320,20.340)(m) 滑动半径= 12.038(m) 滑动安全系数= 0.807 起始x 终止x li Ci 謎条实重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力 (m) (m) (度) (m) (kPa) (度) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) -------------------------------------------------------------------------------------------------------------------- 2.771 3.675 9.104 0.92 10.00 17.50 8.08 0.00 0.00 0.00 0.00 0.00 1.28 11.67 3.675 4.579 13.494 0.93 10.00 17.50 23.66 0.00 0.00 0.00 0.00 0.00 5.52 1 6.55 4.579 5.482 17.967 0.95 10.00 17.50 38.04 0.00 0.00 0.00 0.00 0.00 11.73 20.91 5.482 6.386 22.557 0.98 10.00 1 7.50 51.12 0.00 0.00 0.00 0.00 0.00 19.61 24.67 6.386 7.289 27.307 1.02 10.00 17.50 62.80 0.00 0.00 0.00 0.00 0.00 2 8.81 27.77 7.289 8.193 32.272 1.07 10.00 17.50 72.89 0.00 0.00 0.00 0.00 0.00 38.92 30.12 8.193 9.096 37.528 1.14 10.00 17.50 81.12 0.00 0.00 0.00 0.00 0.00 49.42 31.68 9.096 10.000 43.192 1.24 10.00 17.50 87.10 0.00 0.00 0.00 0.00 0.00 59.62 32.42 10.000 10.754 48.873 1.15 10.00 17.50 68.84 0.00 0.00 0.00 0.00 0.00 51.85 25.75

箱型钢梁端化学锚栓节点

预埋件计算书 ==================================================================== 计算软件:MTS钢结构设计系列软件MTSTool v2.0.1.8 计算时间:2013年02月04日11:33:34 ==================================================================== 一. 预埋件基本资料 采用化学锚栓:单螺母扩孔型锚栓库_6.8级-M20 排列为(非环形布置):6行;行间距230mm;4列;列间距220mm; 锚板选用:SB30_Q235 锚板尺寸:L*B= 800mm×1300mm,T=30 基材混凝土:C30 基材厚度:500mm 锚筋布置平面图如下:

二. 预埋件验算: 1 化学锚栓群抗拉承载力计算 轴向拉力为:N=0kN 锚栓总个数:n=6×4=24个 按轴向拉力单独作用下计算: 轴向力为N=0kN,故最大锚栓拉力为:N h=0kN 所选化学锚栓抗拉承载力为(锚栓库默认值):Nc=90.574kN 这里要考虑抗震组合工况:γRE=0.85 故有允许抗拉承载力值为:Nc=90.574/γRE=106.557kN 故有: 0 < 106.557kN,满足 2 化学锚栓群抗剪承载力计算 Y方向剪力:Vy=900kN X方向受剪锚栓个数:n x=24个 Y方向受剪锚栓个数:n y=24个 剪切荷载通过受剪化学锚栓群形心时,受剪化学锚栓的受力应按下式确定:V ix V=V x/n x=0/24=0×10-3=0kN

V iy V=V y/n y=900000/24=37500×10-3=37.5kN 化学锚栓群在扭矩T作用下,各受剪化学锚栓的受力应按下列公式确定: V ix T=T*y i/(Σx i2+Σy i2) V iy T=T*x i/(Σx i2+Σy i2) 化学锚栓群在剪力和扭矩的共同作用下,各受剪化学锚栓的受力应按下式确定: V iδ=[(V ix V+V ix T)2+(V iy V+V iy T)2]0.5 结合上面已经求出的剪力作用下的单个化学锚栓剪力值及上面在扭矩作用下的单个锚栓剪力值公式 分别对化学锚栓群中(边角)锚栓进行合成后的剪力进行计算(边角锚栓存在最大合成剪力): 取4个边角化学锚栓中合剪力最大者为: V iδ=[(0+0)2+(37500+0)2]0.5=37.5kN 所选化学锚栓抗剪承载力为(锚栓库默认值):Vc=53.855kN 这里要考虑抗震组合工况:γRE=0.85 故有允许抗剪承载力值为:Vc=53854.675/0.85=63.358kN 故有: V iδ=37.5kN < 63.358kN,满足 3 化学锚栓群在拉剪共同作用下计算 当化学锚栓连接承受拉力和剪力复合作用时,混凝土承载力应符合下列公式: (βN)2+(βV)2≤1 式中: βN=N h/Nc=0/106.557=0 βV=V iδ/Vc=37.5/63.358=0.5919 故有: (βN)2+(βV)2=02+0.59192=0.3503 ≤1 ,满足 三. 预埋件构造验算: 锚固长度限值计算: 锚固长度为160,最小限值为160,满足! 锚板厚度限值计算: 按《混凝土结构设计规范2002版》10.9.6规定,锚板厚度宜大于锚筋直径的0.6倍,故取 锚板厚度限值:T=0.6×d=0.6×20=12mm 锚筋间距b取为列间距,b=220 mm 锚筋的间距:b=220mm,按规范且有受拉和受弯预埋件的锚板厚度尚宜大于 b/8=27.5mm, 故取 锚板厚度限值:T=220/8=27.5mm 锚板厚度为30,最小限值为27.5,满足! 行间距为230,最小限值为120,满足! 列边距为220,最小限值为60,满足! 行边距为75,最小限值为40,满足! 列边距为70,最小限值为40,满足!

钢结构柱脚设计要点

第八章基础设计 房屋建筑设计总体上分为上部结构设计和下部结构设计两大部分,轻型钢结构建筑也不例外,前面几章已介绍了其上部结构,本章对其下部结构——基础作一些讨论。 众所周知,在房屋建筑中,基础造价约占整个建筑物的30%左右,对于轻钢结构而言,最大优点就是重量轻,从而直接影响基础设计,与其它结构型式的基础相比,轻钢结构基础尺寸小,可以减少整个建筑物造价,另外对于地质条件较差地区,可优先考虑采用轻钢结构,这样容易满足地基承载力方面的要求。那么轻钢结构基础与砼结构基础有什么不同?轻钢结构基础是如何设计的?在轻钢结构基础设计时应注意哪些方面?本章针对这些问题进行探讨,而不涉及基础本身设计的有关内容。 第一节基础设计的特点 由于结构型式、荷载取值、支座条件等方面的不同,传至基础顶面内力是不同的,轻钢结构与传统的砼结构相比,最大差别就是在柱脚处存在较小的竖向力和较大的水平力,对于

砼结构柱脚均为刚接,即同时存在轴向力N、水平剪力V和弯矩M,故基础尺寸较大,轻钢结构常见的柱脚型式有刚接和铰接两种(图8-1),其受力是不同的,对于铰接柱脚,只存在轴向力N和水平力V,对于刚接柱脚,除存在轴向力N和水平力V之外,还存在一定的弯矩M,从而使刚接柱脚的基础大于铰接柱脚。 ⒊基础破坏形式 要正确进行基础设计,首先要知道基础破坏形式,对其工作原理有所了解。 对于砼结构,通常柱网尺寸较小,故柱底水平力相对较小,基础一般不会产生滑移现象,又由于上部结构自重很大,足以抵抗风荷载作用下产生的上拔力,故基础也不会产生上拔的可能,对于这种结构,基础主要发生冲切、剪切破坏;而轻钢结构则不同,基础除发生冲切、剪切破坏之外,由于存在较大的水平力,对于固接柱脚,还存在较大的弯矩作用,从而导致基础产生倾覆和滑移破坏,另外,在风荷载较大的情况下,特别对于一些敞开或半敞开的结构,由于轻钢结构自重很轻,有可能不足于抵抗风荷载产生的上拔力,导致基础上拔破坏。为防止这些破坏的发生,最经济有效的方法是增加基础埋深,即增加基础上覆土的厚度,但增加了土方开挖和回填工程量。另外对于轻钢结构基础,还须预埋锚栓(也称地脚螺栓),用于上部结构和基础的连接,若锚栓离砼基础边缘太近,会产生基础劈裂破坏,所以我国钢结构设计规范规定了锚栓离砼基础边缘的距离不得小于150mm;若锚栓长度过短,会使锚栓从基础中拔出,导致破坏,所以规范也规定了锚栓埋入长度。 ⒋基础设计内容 基础设计一般包括基础底面积确定、基础高度确定和配筋计算,还应符合有关构造措施。基础底面积可根据地基承载力确定,同时还应考虑软弱下卧层存在;基础高度由冲切验算确定;在基础底面积和高度确定的情况下计算基础配筋,这里须注意伸缩缝双柱基础处理,双柱为基础提供了两个支点,在地基反力作用下,有可能出现负弯矩,即基础上部受拉的情况,此时除基础底部配置钢筋外,基础上部也应配筋,避免因上部受拉而出现开裂现象。轻钢结构基础除上述内容以外,还须进行柱底板设计和锚栓设计,至于这两部分设计归于上部结构还是下部结构,也存在一些争议,柱底板尺寸是根据柱与基础连接部位砼的局部承压来确定的,与基础砼参数有关,但其制作又与上部结构连在一起,按照常规柱底板设计归入上部结构;锚栓在上部结构和基础之间起桥梁作用,但基础施工时应将锚栓埋入,故属于基础部分。本章避开这个问题,就锚栓和底板设计分别进行讨论。 ⒌与上部结构连接 基础与上部结构是二次施工完成的,其间存在连接问题。对于砼结构的基础,通过预留插筋的方式连接上部结构(图8-2a),而对于轻钢结构基础,则通过预埋锚栓的方式进行连接(图8-2b)。

边坡防护脚手架计算书

1编制依据 1)规范、标准 《建筑结构荷载规范》(GBJ9-87) 《钢管脚手架扣件》(GB 15831) 《建筑施工脚手架实用手册》杜荣军主编 《碳素结构钢》(GB/T 700) 《木结构设计规范》(GB50005) 《建筑施工扣件式钢管脚手架施工安全技术规范》 2)其他有关资料 《WL01合同段挖方路基专项施工技术方案》 《WL01合同段两阶段施工图设计》 3)通过现场踏勘、走访等进行施工现场资料收集。 2编制说明 结合WL01合同段挖方路基专项施工技术方案及现场边坡防护施工进行脚手架设计,与 《脚手架方案》、《WL01合同段挖方路基专项施工技术方案》配合使用。本计算书选取WL01 合同段边坡防护施工中最不利的施工区段进行设计验算,全线边坡防护脚手架施工均按此设 计验算结果施工。本计算书顶层操作平台杆件作为纵、横向水平杆的验算杆件,底部立杆作 为立杆稳定性的验算杆件。 3脚手架布置及材料物理参数 3.1脚手架布置 脚手架布置为双排架,柱距为1.5m ,排距为1.5m ,共设计两层工作平台,见附图1 边 坡防护脚手架设计图。 3.2材料物理参数 1)钢管支架为48 3.5φ?=0.0384kN/m ,Q235钢抗拉、抗压、抗弯强度设计值205N/mm 2, 弹性模量E=2.06×108N/mm 2。惯性矩412.187 X I cm =,截面抵抗矩35.08W cm =,截面积24.893A cm =,圆管回旋半径为 1.578i cm =;48 3.5φ?每延米重为3.841kg/m ;

2)脚手板0.4 kN/m 2; 4荷载分析 4.1永久荷载(恒荷载) 施工中的恒荷载包括脚手架结构自重。包括脚手架的组成构件:包括立杆、纵向、横向 水平杆,支撑构件及连接他们的扣件重。 双排架的立柱,纵、横向水平杆及扣件重 脚手架自重计算简图 根据建筑施工脚手架4.7.2表4-14柱距1.5m ,步距1.5m ,折合到面荷载为0.279kN/m 2, 结构自重23.7kN 。 4.2活荷载 施工荷载,包括作业层上的人员、器具和材料的自重、风荷载。 1)人群荷载取2kN/m 2; 2)机械设备单台YXZ70A 钻机主机重8.5kN ,单层计算荷载按照3跨内布置1台YXZ70A 钻机,则机械均布荷载为1.3 kN/m 2。 3)风荷载:垂直于架体的风荷载应按下式进行计算 00.7k z s ωμμω=???(z μ:风压高度变化系数为3.12;s μ:脚手架风荷载体型系数0.095; 0ω:基本风压0.25kN/m 2)。 20.7 3.120.0950.250.052/k kN m ω=???= 5脚手架搭设计算 脚手架为施工荷载由横向水平杆传至立柱,这纵向、横向水平杆内力、变形计算按《建

柱脚锚栓安装方案

东北亚(长春)国际机械城会展中心项目钢结构工程钢柱地脚锚栓安装方案 编制人:浙江东南网架股份有限公司 编制日期:2017年4月18日

目录 第一章编制依据 (1) 第二章工程概况 (1) 第三章柱脚锚栓施工部署 (3) 第一节材料准备 (3) 第二节技术准备 (3) 第三节机械及工具准备 (3) 第四节人员准备: (4) 第四章柱脚锚栓安装方案 (4) 第一节预埋锚栓施工工艺 (4) 第二节预埋锚栓的现场安装 (7) 第三节预埋锚栓的测量控制 (8) 第五章柱脚锚栓施工质量保证措施 (9) 第六章柱脚锚栓施工安全保证措施 (9)

第一章编制依据 1、东北亚(长春)国际机械城会展中心项目第二标段钢结构施工图纸。 2、国家现行工程验收规范。 3、集团公司工程质量、安全管理规定。 第二章工程概况 东北亚(长春)国际机械城会展中心项目位于长春市长德甲三路以南,102国道以东。建筑总面积134460.95m2,檐口高度为18。10m,檐口最高点为28.10m。结构类型为钢框架结构;建筑总长度为441m,建筑总宽度为252m。中区有T型地下室。 本工程地脚锚栓种类有M24、M30两种,但数量比较多,而且预埋锚栓的安装精确度,对后期钢结构的安装施工有重要的影响。地脚锚栓插入式埋件主要用于十字型柱的柱底节点、圆管柱柱底节点和箱型柱柱底节点。埋件具体形式如下表:

第三章柱脚锚栓施工部署 第一节材料准备 1、根据施工图纸及施工进度要求,10天提出分区、分段的锚栓计划单,组织锚栓分批进场。 2、根据锚栓固定方案,提出锚栓固定框计划,随锚栓一起进场。 3、对进场的地脚螺栓按照型号合理进行堆放,厂家必须提供相关的材料质量证明及相关的手续,并提供做复检的材料。 第二节技术准备 1、组织项目人员认真学习有关的规范、规程或规定,在施工的过程中做到有据可依。 2、施工前认真查阅结构施工图纸,在图纸会审的基础上争取将施工中可能碰到的难题在施工前解决。提前分析确定施工中的难点及需要着重注意的部分,做到目标明确,重点突出。 3、收集或准备相应技术资料。 4、实行三级交底制,即:技术部对项目部有关人员、分包技术人员进行方案交底;工程部对分包工长、班组长进行交底;分包工长对班组进行技术交底 第三节机械及工具准备

岩石锚喷支护设计计算书

岩石锚喷支护设计计算书 This model paper was revised by the Standardization Office on December 10, 2020

岩石锚喷支护设计计算书 计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑边坡工程技术规范》GB50330-2013 3、《建筑施工计算手册》江正荣编着 一、设计简图 二、基本计算参数 岩质边坡采用锚喷支护时,整体稳定性计算及锚杆计算应符合以下规定:

第1层锚杆的计算: 1、岩石压力水平分力标准值和锚杆所受水平拉力标准值可按下式计算: e hk =E hk /H=20.00/8.00=2.50kN/m 2 H tk =e hk ×s xj ×s yj =2.50×2.00×2.00=10.00kN 2、锚喷支护边坡时,锚杆的轴向拉力承载力标准值和设计值可按下式计算: N ak =H tk /cos α=10.00/cos15=10.35kN N a =r Q ×N ak =1.30×10.35=13.46kN 3、锚杆的杆体计算: A s ≥r 0×N a /(ζ2×f y )=1.00×13.46/(0.92×215000.00)×1000000=68.04mm 2 所需钢筋根数n≥A s /(3.142×d×d/4)=68.04/(3.142×8.00×8.00/4)=1.35 取n=2 【所需钢筋根数为2根】 4、锚杆锚固段长度计算: a.锚杆锚固体与地层的锚固长度l a1应满足下式 l a1≥N ak /(ζ1×π×D×f rb )=10.35/(1.33×3.14×0.48×50.00)=0.10m b.锚杆钢筋与锚固砂浆间的锚固长度l a2应满足下式要求: l a2≥r o ×N a /(ζ3×n×π×d×f b )=1.00×13.46/(0.72×2×3.14×8.00/1000×2.40×1000)=0.16m 计算出的锚固段长度L m =max(l a1,l a2)=0.16m. 【按照《建筑边坡工程技术规范》GB50330-20133m 时,取3.00m.】 五、岩石锚喷支护构造要求 1.岩面护层可采用喷射混凝土层、现浇混凝土板或格构梁等型式。 2.系统锚杆的设置应满足下列要求: a.锚杆倾角宜为10°~20°; b.锚杆布置宜采用菱形排列,也可采用行列式排列; c.锚杆间距宜为1.25~3m ,且不应大于锚杆长度的一半;对Ⅰ、Ⅱ类岩体边坡最大间距不得大于3m ,对Ⅲ类岩体边坡最大间距不得大于2m ;

相关主题
文本预览
相关文档 最新文档