当前位置:文档之家› 某别墅地源热泵空调系统毕业设计

某别墅地源热泵空调系统毕业设计

某别墅地源热泵空调系统毕业设计
某别墅地源热泵空调系统毕业设计

暖通空调设计毕业设计说明书

摘要 本设计为哈尔滨望江集团办公楼空调系统工程设计。哈尔滨望江集团办公楼属中小型办公建筑,本建筑总建筑面积4138m2,空调面积2833m2。地下一层,地上八层,建筑高度33.9m。全楼冷负荷为191千瓦,全楼采用水冷机组进行集中供给空调方式。 此设计中的建筑主要房间为办公室,大多面积较小,且各房间互不连通,应使所选空调系统能够实现对各个房间的独立控制,综合考虑各方面因素,确定选用风机盘管加新风系统。在房间内布置吊顶的风机盘管,采用暗装的形式。将该集中系统设为风机盘管加独立新风系统,新风机组从室外引入新风处理到室内空气焓值,不承担室内负荷。风机盘管承担室内全部冷负荷及部分的新风湿负荷。风机盘管加独立新风系统由百叶风口下送和侧送。水系统采用闭式双管同程式,冷水泵三台,两用一备;冷却水泵选三台,两用一备。 在冷负荷计算的基础上完成主机和风机盘管的选型,并通过风量、水量的计算确定风管路和水管路的规格,并校核最不利环路的阻力和压头用以确定新风机和水泵。 依据相关的空调设计手册所提供的参数,进一步完成新风机组、水泵、热水机组等的选型,从而将其反应在图纸上,最终完成整个空调系统设计。 关键词:风机盘管加独立新风系统;负荷;管路设计;制冷机组:冷水机组

Abstract The design for the Harbin Wangjiang Design Group office building air conditioning system. Harbin Wangjiang Group is a small and medium-sized office building office buildings, the total floor area of building is 4138m2, air-conditioned area is 2833m2. There are eight floor of the building, building height is 33.9m. Cooling load for the entire floor, 191 kilowatts, the whole floor using Central Cooling Chillers to focus on the way . This design of the main room of the building for office, most of them is very small, and the rooms are not connected, the selected air-conditioning system should be able to achieve independent control of each room, considering the various factors to determine the selection of fan-coil plus fresh air system. Arrangement in the room ceiling fan coil units, using the dark form of equipment. Set the focus on fan-coil system, plus an independent air system, fresh air from the outdoor unit to deal with the introduction of a new wind to the indoor air enthalpy value, do not bear the load of indoor. All bear the indoor fan-coil cooling load and part of its new rheumatoid load. Fan-coil plus an independent air system sent by the Venetian and the under side air delivery. Closed water system with a dual-track program, three cold-water pump, dual-use a prepared; cooling pumps three elections, one prepared by dual-use. In the cooling load calculation based on the completion of the selection of host and fan coil units, and air volume, the calculation of water, the wind pipe and water pipes to determine the specifications of the road and check the resistance to the most disadvantaged and the loop to determine the pressure head new fans and pumps. Based on the relevant manuals provided by air-conditioning design parameters, and further completion of the new air units, water pumps, hot water units, such as the selection, which will be reflected in their drawings, the final design of the entire air-conditioning system Key words: PAU+FCU systems; load; pipeline design; refrigeration machine; Chillers

河南某小区水源热泵中央空调工程投标文件_secret

灵宝市XXX小区 水源热泵中央空调工 技 术 方 案 与 预 算 编制单位: 单位地址: 联系电话: 编制日期:二0一0年三月

目录 一、工程概况 (2) 1.1 工程说明 (2) 1.2 设计依据 (2) 1.3 工程安装说明 (3) 二、空调系统及组成说明 (5) 2.1空调系统说明 (5) 2.2 空调相关图纸(见附页) (5) 2.3 建筑空调面积汇总、冷负荷及末端的确定 (5) 2.4空调系统组成说明 (6) 2.5主要设备表 (9) 2.6工程预算 (10) 2.6.1概算汇总表 (10) 2.6.2机房设备及安装预算 (11) 2.6.3室外管网及深井预算 (17) 2.6.4末端设备及安装预算 (22) 2.6.5分户计量工程预算 (27) 2.7 工程运行分析 (31)

一、工程概况 1.1 工程说明 本工程由住宅和商业楼组成,1#、7#楼为综合楼,一到二层为商业楼,三层以上为住宅楼, 3#--5#楼为六层住宅楼,,外加一栋二层商业楼。总建筑空调面积29988平方米(不含6#楼),本建筑属常规民用建筑舒适性空调,采用概算法进行设计。 本小区住户188户;商业门面房22套,商场一栋(二层) 1.2 设计依据 1.2.1 室内外计算参数 名称干球温度(℃)湿球温度(℃)室外平均风(m/s) 夏季37.20 25.90 2.90 冬季-7 - 4.4 名称夏:温度 (℃) 相对湿 度(%) 冬:温度 (℃) 相对湿 度(%) 新风量 (m3/h) 住宅24-26 《65 18-20 》40 30 商场26-27 55-65 15-18 30-40 20 1.2.3 设计依据 《办公建筑节能设计标准》 GB50189-2005。 《河南省公共建筑节能设计标准实施细则》DBJ41/075-2006。 《采暖通风与空气调节设计规范》GB50019-2003(2003年版)。 《高层民用建筑设计防火规范》GB50045-95(2005版)。 《办公建筑设计规范》JGJ67-2006。

上海世博轴江水源地源热泵系统设计

上海世博轴江水源地源热泵系统设计

一、世博园区简介

世博园区规划 F 区 文化博览中心 演艺中心世博中心 世博轴 中国馆 主题馆 VIP 生活中心Shangri-La hotel 非洲馆 欧洲馆 美洲馆 澳洲馆 亚洲馆 企业馆 最佳城市试验区

二、建筑概况 2 1 4 1 1 2 2 1 1 3 2 2 4 3 下 下 7. 3.7. 3.5 5.0 14.0 5.03.515.04. 4.3. 3.516.2 8. 3.5 216 90 1020 50100 0道路红线 228 3.5 16.5 35 4.5 55 25.0 121 38 121 671.0 道路红线 地下室边界 道路红线 道路红线 道路红线 道路红线道路红线地下室边界 800 磁悬浮控制线 上 南 路 上 南 路 路 明浦 路 明 浦 路 环 北 路 环 南 路 野 雪 历 城 路 路 浦 华路 野雪 路 环 南路 环 北 江 黄 浦 云 台 路 路 山 洪 浦明110KV 变电站 演艺中心 公共活动中心 餐饮娱乐广场 世博会期间高架步廊 主题展馆 停车场 广场 磁悬浮车站 中国馆 国家自建馆 国家自建馆 停车场 周家渡通信机房 8.0 围栏区 阳光谷D 阳光谷E 阳光谷A 阳光谷B 玻璃屋顶 滨江庆典广场会后开发高层 56 56 166 261 252 11.1 800 阳光谷C 道路红线 地下通道 接演艺中心地下 接公共活动中心地下 接中国馆 接磁浮车站 通道 地下通道接接轨道交通 通道 华 浦 路 +4.298+4.400 +4.000 +4.000+4.000 +4.500 +4.500 +4.000 下 下 82.1 61.5 85.1 591 75.9 623 83.4 59.5 .5.6 下沉式广场 (2#地块) (1#地块) 120 55地下通道一层通廊主入口(会中) 一层商业主入口(会后)地下一层入口 一层通廊主入口(会中) 一层商业主入口(会后)地下一层入口 一层安检入口(会中) 一层安检入口(会中) 一层商业主入口(会后)下沉式广场入口 下沉式广场入口 一、二层主入口 一层商业主入口(会后) 地下一层入口 地下一层入口 一层通廊主入口(会 中)一层商业主入口(会后) 一层通廊主入口(会中)一层商业主入口(会后)地下一层入口 地下一层入口10.00m 高架平台入口 995 接地铁车站地下通道一层通廊主入口(会 中) 一层商业主入口(会后)餐饮娱乐广场 地下车库出入口地下车库出入口+4.552 +4.600 地铁风口 地铁风口 接地铁广场 接地铁广场 660 9-10 660 X =-6065.3555Y =2039.6836 X =-6045.0653Y =2147.7960 X =-5041.6016Y =1948.5339 X =-5059.9552Y =1850.7413 702.3 22.470 70 150 146 50 150 16.8 800 40 155 10.00m 高架平台入口 南段用地 北段 800 阳光谷A 9.A C H J 1-1 3-31 下+4.200 +4.200 +4.200 +4.200+4.200-1.000+1.800+1.800 -1.000-1.000 下下下下下下 下 下 下 下 下 下 下 下 下 下 -1.000 -1.000-1.000-1.000-1.000-1.000+4.200-1.000-1.000 -1.000 -1.000 168 地下车道接 地块车库地下通道 接联合展馆 地下通道 北段 660 110 225 A C H J 70 70 995 995 X =-5728.1938Y =1976.1541 X =-5682.0769Y =2068.7362 X =-5203.0070Y =1978.8260 X =-5248.7401Y =1886.1718 20.0134 227 用地红线 用地红线 8.9 649.0674.0 22.4 1-1 3-2920.0 2.7 134 244 总平面图

暖通空调毕业设计

1.工程概况及主要设计参数 (1) 1.1 工程概况 (1) 1.2 基本设计参数 (1) 1.3 设计依据 (3) 2.空调系统的负荷计算 (3) 2.1空调房间的冷负荷计算 (3) 2.2湿负荷计算 (8) 2.3热负荷计算 (9) 3系统方案确定 (18) 3.1系统的分区 (18) 3.2空调系统的分类 (19) 3.3空调系统的比较 (20) 3.4空调系统方式的确定 (24) 3.4 空调房间送风量的确定 (27) 3.5空气处理设备选型 (29) 4.室内气流组织形式的确定及计算 (33) 4.1 送、回风口的型式 (33) 4.2 气流组织形式 (35) 4.3 气流组织的设计计算 (38) 5水系统设计 (44) 5.1水系统简介 (44) 5.2水系统的管路设计计算 (49) 5.4空调水系统水力计算 (51) 5.5系统管材的选择 (54) 6.风管的布置及其水力计算 (55) 6.1风管设计的基本知识 (55) 6.2风管的水力计算 (58) 7.空调制冷机房设计 (63) 7.1空调冷水系统 (63) 7.2热水循环系统.................................................................................. - 66 - 7.3冷冻水系统设计.............................................................................. - 68 - 7.4冷却水系统...................................................................................... - 71 - 7.5循环水系统的补水、定压与膨胀.................................................. - 74 - 7.6 管道的水力计算............................................................................. - 76 -8系统保温及消声、减震........................................................... - 79 - 8.1管道及设备的保温.......................................................................... - 79 -

水源热泵中央空调(免费).

勤诫创业 技术文件Page 1 of 4 bm.moq -lcr^ro-hu.ma:. r 水源热泵中央空调 水系统存在问题及解决方案 1 .水源热泵概念 水源热泵是一种利用地下浅层地热资源(也称地能,包括地下水、土壤或地表水等)或再生水源(包括生活污水、工业废水、热电厂冷却水,油田废水等)的,既可供热又可制冷的高效节能空调系统。水源热泵通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。地能分别在冬季作为热泵供暖的热源和夏季空调的冷源,即在冬季,把地能中的热量“取”出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。通常水源热泵消耗1KW勺能量,用户可以得到4KW以上的热量或冷量。 2. 水源热泵中央空调工作原理 “热泵”是借鉴“水泵”一词得来。在自然环境中,水向低处流动,热向低温位传递。水泵将水从低处送至高处,而热泵可将低温位热能交换至高温位提供利用。热泵在本质上是与制冷机相同的,只是运行工况不同。其工作原理是,由电能驱动压缩机,使水质循环运动反复发生,在蒸发器吸热,冷凝器放热,使热量不断交换传递,并通过阀门切换使机组实现制热式制冷式功能。水源热泵工程是一项系统工程,一般由水源系统,水源热泵机组和末端散热器三部分组成。水源系统包括水源、取水构筑物、输水管网和水处理设备。 3. 水源热泵中央空调水系统存在的问题 a. 由于水源热泵机组采用地下水来做为外循环水,地下水含有一定量的泥砂和悬浮物,使其在进入设备时会对机组和管、阀造成磨损,含砂量高和浑浊度高的地下水,若在使用过程中未处理,则回灌时会造成含水层堵塞,使回水量逐渐降低。 b. 地下水还含有不同的离子、分子、化合物和气体,使地下水具有酸碱度、硬度、腐蚀性等化学性质,会对机组材质造成一定的影响。特别是在冬季制热工况下,水温常常在50C以上,水中的钙、镁离子容易析出结垢,影响换热效果。 4. 水源热泵中央空调水系统存在问题之水处理方案 如果水源的水质不适宜地源热泵机组使用时可以采取相应的技术措施进行水质处理,使其符合机组要求。 在水源系统中经常采用的水处理技术有以下几种:

中央空调系统毕业设计

中央空调系统毕业设计 篇一:某办公楼中央空调系统毕业设计全文 第一章工程概况 1.1 建筑说明 湖北科技学院办公楼位于湖北省咸宁市,地处夏热冬冷区,总建筑面积为10012㎡,其中空调面积为5114.7㎡。建筑总高度为12米,地上三层为办公用房以及会议室,每层层高均为4米。工程设计范围为1—3层空调与采暖设计,空调系统的设计满足室内工作人员对温度,湿度和新风的要求即可,为舒适性空调。 1.2 维护结构性能参数 外墙类型(自内至外):370mm页岩烧结多孔承重砖:K370=1.191W/(m·℃)取2%的销键作用的影响,则:K370=1.191W/(m2·℃)×1.02=1.22 W/(m2·℃); 内墙类型:20 mm水泥砂浆+240mm砖墙+20mm水泥砂浆,K=1.974W/(m2.K); 屋面类型:内粉刷(20mm)+钢筋混凝土(35mm)+水泥砂浆(20mm)+隔气层(5mm)+水泥膨胀珍珠岩350(200mm)+水泥砂浆(20mm)+卷材防水(5mm)+砾砂外表层(5mm),K=0.49W/(m2.K)。 楼板材料:7mm五夹板+370mm热流向下(水平、倾斜)60mm以上+80mm钢筋混凝土+25mm水泥砂浆+25mm大理石,

K=0.508 W/(m2·K); 外窗类型:PVC框+Low-E中空玻璃6+12A+6遮阳型,传热系数2.444 W/(m2.K)自身遮阳系数0.55,内遮阳系数0.60,有外遮阳;. 外门系列:节能外门,传热系数3.02 W/(m2.K);内门系列:木框夹板门,传热系数2.504 W/(m2.K);另外卫生间门窗玻璃均采用磨砂玻璃。窗高1800mm,窗台高900mm。维护结构热工性能参数如下表: 2 表1-1 维护结构热工性能参数 第二章空调负荷计算 2.1 设计参数 2.1.1 室外设计计算参数 台站位置:北纬 30°37′东经114°08′海拔高度:23.3m 大气透明度的等级为4 2.1.2 室内设计计算参数 参考《公共建筑节能设计标准》,确定各房间的设计参数如下表: 表2-2 室内设计计算参数 注:室内空气压力稍高于室外大气压。 2.2 冷负荷的计算

热能与动力工程热泵毕业设计

前言 我国每年大约有20亿平方米的建筑总量,接近全球年建筑总量的一半,建筑能耗约占全国社会终端总能耗的27.6%,因此建筑节能势在必行。可再生能源在建筑中的应用是建筑节能工作的重要组成部分。地源热泵系统作为可再生能源应用的主要途径之一,同时也是最利于与太阳能供热系统相结合的系统形式,近年来在国内得到了日益广泛的应用。 在大型商业建筑和公用建筑中,合理空调方案的确定是个至关重要的问题。按负担室内空调负荷所用介质分类,空调系统可分为全空气系统、全水系统、空气-水系统和冷剂系统。每种空调系统都有各自的适用性,对于建筑空间大,易于布置风道且对室内温、湿度洁净度控制要求严格的场合,适合用全空气系统。全水系统适合用于建筑空间小,不易于布置风道的场合。空气-水系统适用于室内温、湿度控制要求一般且层高较低,冷、湿负荷也较小的场合。对于空调房间布置分散,要求灵活控制空调使用时间且无法设置集中式冷、热源的场合适合用冷剂系统。 通过毕业设计消化和巩固大学四年学习的本专业全部理论知识和实际知识,并将它应用到工程实践中去解决工程的实际问题,熟悉有关的技术法规内容,培养施工设计的思维能力和制图技巧及对工程技术的认真态度。

第1章概述 1.1建筑概况 1.1.1设计地点 山东省青岛市。 1.1.2建筑物土建资料 见土建资料图纸。 1.1.3 建筑物使用功能 本次设计为商住两用建筑,一到五号楼。本次设计不考虑住宅部分。总占地面积约为8000㎡,空调面积为约18807㎡。楼底部作沿街店铺,小区配套服务设施,及设备用房。台湛路一层二层做商场,延安三路一层二层作沿街商铺。工程地下室作为地下车库。 1.1.4 建筑物的周围环境 本设计建筑物位于青岛市市北区,延安三路与台湛路交界处。 1.1.5 建筑物所在地区土质资料 根据勘探井的资料得知设计地点土质为粉质粘土,轻微潮湿,土壤导热系数为1.8 W/(m.K)左右,且地下八十米以上是非岩层地带,土壤导热情况良好,适合于作为热泵系统的冷热源。 1.2土壤源热泵 1.2.1 热泵系统的特点 a. 热泵空调系统是利用低位再生能的热泵技术,其特点如下: (1)用能遵循了能量的循环利用原则,避免了常规空调系统用能的单向性。所谓用能的单向性是指“热源消耗高位能(电、燃气、油与煤等)——向建筑物内提供低温的热量——向环境排放废物(废热、废气、废渣等)”的单向性用能

暖通空调毕业设计开题报告

1.课程设计的意义 通过本次的课程设计,使自己拥有一定的暖通空调设计能力;了解一些相关的规范和条例;熟悉并掌握暖通空调设计流程;同时使自己的思维更加的严谨,态度更加的认真,为以后的社会工作奠定了扎实的基础。 2.文献综述 随着国民经济的快速持续发展,作为支柱产业之一的建筑业也得到迅猛发展。而作为建筑业的重要组成部份的暖通空调业,其新产品、新技术、新材料更是层出不穷。暖通空调业发展所遵循的原则,概括起来就是:节能、环保、可持续发展,保证建筑环境的卫生与安全,适应国家的能源结构调整战略,贯彻热、冷计量政策,创造不同地域特点的暖通空调发展技术。因此,如何结合设计的需要,重视相关技术,并有选择而合理的应用在我们的设计中,满足业主要求,提高设计水平,是我们必须努力做到的。 2.1.暖通空调变工况点优化控制及能量管理探讨 2.1.1.工况点优化控制 暖通空调变工况点优化控制问题的研究近年来在我国被重视。S.W.Wang 提出了一种基于整个系统环境的预测响应及能量运行来改变暖通空调系统控制,设定点的系统方法,并用遗传算法对系统进行优化控制,同时优化多个设定点来改善系统响应和降低系统能耗[1],后来他又采用自适应性控制理论对某海水冷却。空调系统进行了优化控制研究,采用带指数遗忘的最小二乘法参数辨识方法和基因遗传优化算法,对空调系统的空气处理单元进行了优化控制研究[2]。罗启军等人提出了一项动态的优化技术在一个指定期间内,能得到使目标函数( 运行成本或者峰值能耗) 最小的房间温度曲线,该算法还给出了暖通空调设备的最佳开/关时间[3]。K.T.Chan 等人提出用遗传算法对风冷制冷机的冷凝温度设定点进行优化控制以提高制冷机的效率[4]。此外,有许多研究者用人工神经网络来模拟暖通空调系统中各个设备的非线性特性,用于实现对整个空调系统的优化控制。目前,研究者们将更多先进的建模方法和智能优化方法引入到了暖通空调的优化控制中,更加注重变工况点的在线优化控制。何厚建等人对已建的暖通空调各关键设备的静态模型采用用实数编码的遗传算法建立了水系统工作点优化控制策略[5]杨晓平等人采用模糊聚类和RBF方法建立了空气处理单元的动态数学模型,以最终舒适性为目标优化空气处理单元的温湿度和送风压力[6]。孙一坚根据空调负荷变化对一级泵水系统进行变流量控制,取得了显著效果[7]。总之国内的学者更多探讨的是把智能方法引入控制系统的优化中,仿真研究多,实践成果少。

暖通空调毕业设计(论文)任务书

毕业设计(论文)任务书 毕业设计(论文)题目:某市某综合楼空调系统设计 系别能源与动力学院班级建环本121/122 学生姓名学号 指导教师职称 毕业设计(论文)进行地点:校内 任务下达时间: 2015年 12 月 24 日 起止日期:2016年 3 月1日起——至 2016年 6 月日止 教研室主任年月日批准 1、论文的原始资料及依据:

(一)题目来源:某市某综合楼建筑结构图 (二)设计主要技术参数 (1)土建资料 详见建筑图纸。 (2) 气象参数:根据本市的气象资料确定; (3)建筑参数: 外墙体结构:根据地区自行选定,如δ=370 m m红砖,内外抹灰20mm 屋面:根据地区自行选定,如200mm厚混凝土板加12.5mm厚加气混凝土保温层。 外窗:根据地区自行选定,如标准玻璃的单层钢窗,全部挂淡色窗帘,(4)室内空调设计参数:温度t n=26℃; 湿度φn=60%; 风速不大于0.3 m/s。 (5)照明容量: 40W/m2 (6)房间人数:0.5人/m2,群集系数0.92 (三)设计主要技术关键 正确进行空调负荷和新风量的计算,确定出冷气方案,合理地布置管道,并进行水力计算,合理选择及布置设备,做好气流组织。 2、设计(论文)主要内容及要求 通过本次设计使学生系统地掌握空调系统设计的主要方法和步骤,能根据实际情况合理确定空调方案,会计算空调系统的负荷量和新风负荷量,能合理布置管道和设备,了解空调设备的型式及用途,会进行设备的选型,合理进行气流组织,会计算水管、风道的阻力,选取水泵、风机等。使学生能把所学知识灵活运用到实际当中去,让理论与实际相结合,为学生毕业以后的工作打下坚实基础。 主要内容: 空调系统的设计 (1)、由建筑物所在地区确定室内外气象参数; 夏季室内外设计计算参数;室内温度、湿度、风速、新风量等参数。

地源热泵毕业设计

1.绪论 随着国民经济的增长城市建设的发展和人民生活水平的提高及房地产业的升温,我国空调业己得到空前的发展。空调己成为季节性能源消耗的大户,并成为建筑节能的关注问题。大力发展新能源与可再生能源,已成为我国21世纪发展国民经济的刻不容缓的战略目标。 热泵技术是应用低位可再生能源的重要技术措施之一。热泵系统是利用低温热源进行制热,制冷的新型能源利用方式。与使用常规能源供热方式相比,具有许多不可替代的特点。因地制宜的发展地源热泵系统,有利于优化能源结构,促进多种资源的有效利用,提高能源利用率。 目前常规使用的热泵系统多为空气源,它受环境温度影响很大。夏季不利于冷凝器的散热,冬季蒸发器得热难,犹其是冬季融霜难。地源热泵几乎不受环境气候影响,可以产生良好的节能效益,且不用除霜。主要内容包括:地源热泵的形式与基本原理,地源热泵机组,新乡本地工程应用实例,对传统地源热泵的改进设想等。

2.地源热泵简介 2.1地源热泵的发展 地源热泵是利用浅层地能进行供热制冷的新型能源利用技术,是热泵的一种热泵是利用卡诺循环和逆卡诺循环原理转移冷量和热量的设备。地源热泵通常是指能转移地下土壤中热量或者冷量到所需要的地方,通常热泵都是用来做为空调制冷或者采暖用的。地源热泵还利用了地下土壤巨大的蓄热蓄冷能力冬季地源把热量从地下土壤中转移到建筑物内夏季再把地下的冷量转移到建筑物内一个年度形成一个冷热循环。 地源热泵的起源 地源一词是从英文“ground source”翻译而来,汉语的内涵则十分广泛,应包括所有地下资源的含义。但在空调业内,目前仅指地壳表层(小于400米)范围内的低温热资源,它的热源主要来自太阳能,极少能量来自地球内部的地热能。 "地源热泵"的概念,最早于1912年由瑞士的专家提出,而该技术的提出始于英、美两国。 1946年美国在俄勒冈州的波兰特市中心区建成第一个地源热泵系统。但是这种能源的利用方式没有引起当时社会各界的广泛注意,无论是在技术、理论上都没有太大的发展。 20世纪50年代,欧洲开始了研究地源热泵的第一次高潮,但由于当时的能源价格低,这种系统并不经济,因而未得到推广。直到20世纪70

什么是水源热泵中央空调 水源热泵机组原理及优缺点

什么是水源热泵中央空调水源热泵机组原理及优缺点 水源热泵中央空调是一项节能环保新技术,与地源热泵从大地中提取冷热量相比,水源热泵机组是利用地表水作为冷热源,然后进行能量转换的供暖空调系统。简单来说,水源热泵和地源热泵都是冷暖空调,不存在传统空调冬季化霜等难点问题,只不过水源热泵是通过地下水达到冷却制冷剂的效果,不占建筑面积。下面,我一起来看看水源热泵中央空调的定义、水源热泵机组原理及优缺点。 什么是水源热泵中央空调 水源热泵中央空调是一种利用地下浅层地热资源(如地下水、河流和湖泊中吸收地太阳能和地热能等)的既可供热又可制冷的高效节能空调系统。水源热泵机组以水为载体,在冬季采集来自湖水、河水、地下水的低品位热能,取得能量供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调供冷的目的。 水源热泵机组原理

夏季制冷时,水源热泵中央空调井水为机组的排热源。制冷剂在蒸发器内吸热蒸发,制取7℃冷水,送入房间使用,由于水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高;制冷剂再经压缩机压缩成高温高压的过热蒸汽,进入冷凝器,由井水带走热量并排至井中。 冬季制热时,水源热泵中央空调井水为机组的吸热源。制冷剂在蒸发器内吸取井水的热量蒸发,井水回灌井内,由于水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。制冷剂再经压缩机压缩成高温高压的过热蒸汽,进入冷凝器,加热循环水,制取45℃到50℃(最高可达65℃)的热水。 水源热泵机组原理的优缺点 水源热泵中央空调具有可再生能源利用技术、高效节能、制冷采暖生活热水三位一体、节省建筑空间、环境效益显著等多种优点,其缺点是对地下水质量要求比较高,需要良好的地下水源条件,用户在装水源热泵之前,需要先向各地水资委申请,申请通过之后才能装,

关于地源热泵技术的毕业论文开题报告

关于地源热泵技术的毕业论文开题报告 一、选题的依据及意义: 1.依据: 进入90年代后,我国的居住环境和工业生产环境都已广泛地应用 热水供应装置,热水供应装置已成为现代学校居住必备。90年代中期,由于大中城市电力供应紧张,供电部门开始重视需求管理及削峰填谷,热泵供热技术提到了议事日程。近年来,由于能源结构的变化,促进 了地源热泵供热机组的快速发展。 随着生产和科技的不断发展,人类对地源热泵供热技术也进行了一 系列的改进,同时也在积极研究环保、节能的地源热泵供热产品和技术,现在利用成熟的电子技术来进行综合的控制,并和太阳能结合更注意 能源的综合利用、节能、保护环境及趋向自然的舒适环境必然是今后 发展的主题。 2.意义: 地源热泵技术,是利用地下的土壤、地表水、地下水温相对稳定 的特性,,通过消耗电能,在冬天把低位热源中的热量转移到需要供热 或加温的地方,在夏天还可以将室内的余热转移到低位热源中,达到降 温或制冷的目的。地源热泵不需要人工的冷热源,可以取代锅炉或市政 管网等传统的供暖方式和中央空调系统。冬季它代替锅炉从土壤、地 下水或者地表水中取热,向建筑物供暖;夏季它可以代替普通空调向土壤、地下水或者地表水放热给建筑物制冷。同时,它还可供应生活用水,可谓一举三得,是一种有效地利用能源的方式。通常根据热泵的热源(heatsource)和热汇(heatsink)(冷源)的不同,主要分成三类:空气源热泵系统(air-sourceheatpump)ashp 水源热泵系统(water-sourceheatpump)wshp 地源热泵系统(ground-sourceheatpump)gshp 平时还有人把热泵系统按照一次和二次介质的不同,分别叫做: 空气---水热泵系统 水---空气热泵系统

水源热泵有哪些优点

水源热泵有哪些优点 (资料来源:中国联保网)水源热泵与常规空调技术相比,有以下优点: 高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,从而提高机组运行效率。水源热泵消耗1kW.h的电量,用户可以得到4.3~5.0kW.h的热量或5.4~6.2kW.h的冷量。与空气源热泵相比,其运行效率要高出20~60%,运行费用仅为普通中央空调的40~60 %。 可再生能源 水源热泵是利用了地球水体所储藏的太阳能资源作为热源,利用地球水体自然散热后的低温水作为冷源,进行能量转换的供暖空调系统。其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说,水源热泵利用的是清洁的可再生能源的一种技术。 节水省地 以地表水为冷热源,向其放出热量或吸收热量,不消耗水资源,不会对其造成污染;省去了锅炉房及附属煤场、储油房、冷却塔等设施,机房面积大大小于常规空调系统,节省建筑空间,也有利于建筑的美观。

(完整版)本科毕业设计说明书(提交版)

摘要 现代建筑的迅猛发展,使建筑能耗成为了能源消耗的重要组成部分。目前能源紧缺,环境污染日益突出,使绿色节能,低碳环保成为大家普遍的认识。因此,如何成功的设计健康、舒适、低碳节能的中央空调工程是本工程的主要目的。 本工程为长沙某经济大厦,占地面积为13000m2,建筑为裙楼+双塔楼结构,地下两层,一至二层为裙楼,三至二十四层为塔楼。裙楼及西塔楼为政府机关办公用,东塔楼为高档商业写字楼,主要使用空调区域为办事大厅、展厅、餐厅、会议室、办公室、网络通讯机房等,建筑总高度94.2m,总建筑面积为63804.9m2,其中空调区域面积为36120.7m2。空调总冷负荷3811.6kW,总热负荷为2315.9kW,此次设计为大楼的中央空调、通风防排烟及餐厅生活热水的设计。 根据国家及长沙市的相关文件政策,结合该项目的实际,本工程裙楼部分主要采用常规的冷水机组加锅炉作为空调冷热源,东、西塔楼采用节能环保的地埋管地源热泵与多联机结合的复合型水冷式多联机系统,同时局部空调区域,因甲方的要求,采用了风冷式多联机系统。在设计中,300人会议室和120人电视电话会议室我们采用了新颖节能的座椅送风系统;裙楼一层大空间的一次回风集中空调系统中,进行了过渡季节全新风运行的设计;新风量需求较多的大区域,采用了全热新风交换器送新风,有效回收排风的余热;在厨房这块,采用了空气能热水机制取餐厅生活热水,

总的来说,整个系统能较好的把节能环保的要求融入到设计中,使整个工程既能满足舒适要求,又能达到降低建筑能耗的双重目的。 具体内容包括:冷热负荷计算;冷热源方案比较和选择;空调末端处理设备的计算和选型;室内送风方式与气流组织形式的选定;风系统的设计与计算;水系统的设计;多联机空调的设计;地埋管系统的设计;消声隔振设计;自控设计;机房布置;正压送风系统、排烟系统及通风系统的设计等内容。 本设计我们是四个人一组,每个人都有明确的分工。王健负责裙楼部分(除大会议室)的空调及餐厅生活热水的设计;代进负责裙楼大会议室座椅送风空调设计及裙楼冷热源的设计;熊文祥负责塔楼复合型水冷式多联机空调及地埋管的设计;周武负责的是系统自控和防排烟设计。 关键词:地埋管地源热泵、水冷式多联机、座椅送风、厨房热回收 ABSTRACT The rapid development of modern architecture, the building energy consumption important part of energy consumption. Current energy shortage and environmental pollution energy, low-carbon environmental protection become a common understanding. So, energy-saving central

暖通空调课程设计

空气调节课程设计 说明书 课题名称:济南市某街道办公楼空调系统? 学生学号:? 131807011 ? ? 专业班级:建筑环境与能源应用工程 学生姓名:蔡世坤 学生成绩: ????????? ? 指导教师:?? 崔鹏 ?? 教师职称: 设计日期: _ 2017年1月________ 第一章设计资料 (3) 1.1设计题目 (3) 1.2设计基本参数 (3) 1.2.1室外参数 (3) 1.2.2 土建参数 (4) 第二章负荷计算 (5) 2.1负荷计算基本公式 (5) 2.1.1外墙、屋顶的瞬变传热的冷负荷 (5)

2.1.2内围护冷负荷 (6) 2.1.3外窗玻璃瞬变传导得热形成的的冷负荷 (6) 2.1.4玻璃窗日射得热形成的冷负荷 (7) 2.1.5设备散热冷负荷 (7) 2.1.6灯光照明散热形成的冷负荷 (7) 2.1.7人体散热形成的冷负荷 (8) 第三章空调方案确定和设备选型 (16) 第四章夏季空调过程设计 (20) 4.1送风状态确定 (18) 4.2汇总于下表 (18) 4.3送风量计算 (19) 4.4新风量计算 (20) 4.5总排风量的计算 (20) 第六章房间的气流组织计算 (22) 6.1气流组织计算 (22) 第七章布置风管、进行风管水力计算,水管水力计算 (24) 7.1风管的布置 (24) 7.2风道的设计及水力计算 (25) 参考文献 (27)

摘要 本设计是济南市某街道办公楼空调工程设计,根据此楼功能要求,本建筑需要夏季提供冷负荷。以长远利益为出发点,力求达到技术可靠,经济合理,节能环保、管理方便,功能调整的灵活性及使用安全可靠。在比较各种方案的可行性及水系统形式后,此工程设计采用风机盘管加独立新风系统;水系统采用一次泵、双管制系统:为满足整栋大楼需求,并且为了在运行过程中的节能,本设计冷热源采用风冷热泵模块机组。根据夏季空调计算负荷依次选择机组、末端设备、新风机组、风口,最后还要对空调系统的设备和管路采取消声、防振和保温等措施。 第一章设计资料 1.1设计题目 济南市某街道空调工程设计 1.2设计基本参数 1.2.1室外参数 纬度:28.13 度 经度:112.55度 海拔高度:68mAS 冬季大气压力:1018.3 pa 夏季大气压力:995.6 pa 冬季通风室外计算干球温度:3.5℃

暖通空调专业-毕业设计外文翻译

Refrigeration System Performance using Liquid-Suction Heat Exchangers S. A. Klein, D. T. Reindl, and K. BroWnell College of Engineering University of Wisconsin - Madison Abstract Heat transfer devices are provided in many refrigeration systems to exchange energy betWeen the cool gaseous refrigerant leaving the evaporator and Warm liquid refrigerant exiting the condenser. These liquid-suction or suction-line heat exchangers can, in some cases, yield improved system performance While in other cases they degrade system performance. Although previous researchers have investigated performance of liquid-suction heat exchangers, this study can be distinguished from the previous studies in three Ways. First, this paper identifies a neW dimensionless group to correlate performance impacts attributable to liquid-suction heat exchangers. Second, the paper extends previous analyses to include neW refrigerants. Third, the analysis includes the impact of pressure drops through the liquid-suction heat exchanger on system performance. It is shoWn that reliance on simplified analysis techniques can lead to inaccurate conclusions regarding the impact of liquid-suction heat exchangers on refrigeration system performance. From detailed analyses, it can be concluded that liquid-suction heat exchangers that have a minimal pressure loss on the loW pressure side are useful for systems using R507A, R134a, R12, R404A, R290, R407C, R600, and R410A. The liquid-suction heat exchanger is detrimental to system performance in systems using R22, R32, and R717. Introduction Liquid-suction heat exchangers are commonly installed in refrigeration systems With the intent of ensuring proper system operation and increasing system performance.Specifically, ASHRAE(1998) states that liquid-suction heat exchangers are effective in: 1) increasing the system performance 2) subcooling liquid refrigerant to prevent flash gas formation at inlets to expansion devices 3) fully evaporating any residual liquid that may remain in the liquid-suction prior to reaching the compressor(s) Figure 1 illustrates a simple direct-expansion vapor compression refrigeration system utilizing a liquid-suction heat exchanger. In this configuration, high temperature liquid leaving the heat rejection device (an evaporative condenser in this case) is subcooled prior to being throttled to the evaporator pressure by an expansion device such as a thermostatic expansion valve. The sink for subcooling

相关主题
文本预览
相关文档 最新文档