当前位置:文档之家› 天然药物化学的一些简要总结和知识回顾

天然药物化学的一些简要总结和知识回顾

天然药物化学的一些简要总结和知识回顾
天然药物化学的一些简要总结和知识回顾

天然药物化学的一些简要总结和知识回顾:

永停滴定法:根据依据外压小电压下,溶液中有可逆电对就有电流、无可逆电对就无可逆电流的现象,来进行终点判定的。

紫外—可见分光光度法:价电子吸收一定能量的电磁辐射后,在不同分子轨道上的跃迁造成的。分子中的价电子包括:形成单键的σ电子,形成双键的π电子和非成键的n电子(也称p电子)。分子轨道可以认为是当两个原子靠近而结合成分子时,两原子的原子轨道以线性组合而生成的两个分子轨道。能量高的为反键,能量低的为成键。

生色团:结构中含有π→π*或者n→π*,即在紫外可见光范围内产生吸收的原子团

助色团:是指含有杂原子的饱和基团,当他们与生色团或饱和烃相连时使该生色团或饱和链烃的吸收峰向长波方向移动,并使吸收强度增加。

红移:由于化合物的结构改变或发生共轭作用、引入助色团、以及溶剂的改变,使吸收峰向长波方向移动的现象。

蓝移:是化合物的结构改变时或受溶剂的影响使吸收峰向短波方向移动的现象。

吸收带:

R:n→π*跃迁引起的吸收带,是杂原子的不饱和基团。

K:π→π*跃迁产生的吸收峰

B:芳香族化合物的特征吸收带

E:芳香族化合物的特征吸收带,是由三个乙烯的环状共轭系统的π→π*跃迁产生的。

紫外可见区(200—700)

红外:由于分子的振动能级跃迁产生的,而分子的振动能级的跃迁会伴随着转动能级的跃迁。振动形式:伸缩振动、弯曲振动(面内和面外、变形之分),4000---1500cm-1的区域为特征频率区,1500---600cm-1的区域为指纹区。

3000---2850为烷烃的主要特征峰

3100---3000为烯烃的特征吸收峰

3333---3267为炔烃的特征吸收峰

芳烃:3100—3000

醇、酚和醚类:3640—3610

羰基化合物:1870----1540

胺:3500---3300

荧光:有些物质受到光照射时,除吸收某种波长的光之外还会发射出比原来所吸收光的波长更长的光,这种现象称为光致发光现象。最常见的为荧光和磷光。

原子吸收分光光度法:基于蒸气中的基态原子对特征电磁辐射的吸收来测定试样中该原素的含量的方法。

核磁共振波普法:具有磁距的原子核存在着不同能级,当用一定频率的射频照射分子时,可引起原子核自旋能级的跃迁,即产生核磁共振(NMR)

质谱分析法(MS):是利用多种离子化技术,将物质分子转化为离子,按质核比的差异分离测定,从而进行物质成分和结构的分析的方法。

常见的基本单位的有:C2单位C5单位C6单位氨基酸单位复合单位。

从药材中提取天然活性成分的方法有溶剂法、水蒸气蒸馏法及升华法,多用溶剂提取法。溶剂提取法原理是相似相容原理进行的,常见溶剂的极性强弱顺序可表示如下:石油醚(低沸点→高沸点)、CS2 、CCl4 、三氯乙烯、苯、二氯甲烷、氯仿、乙醚、乙酸乙酯、丙酮、乙醇、甲醇、乙晴、水、吡啶、乙酸。

溶剂法分类:浸渍法、渗入法、煎煮法、回流提取法、连续回流提取法、超临界萃取技术。超声波提取技术。

水蒸气蒸馏法:适用于具有挥发性,能随水蒸气蒸馏而不被破坏、且难容或不溶于水的成分的提取。并在100℃左右有一定的蒸气压。各组分的蒸气压不互相干扰。故总组分的蒸气压比任何一个组分的蒸气压都较大。

升华法:固体物质在受热时直接转化为蒸气。

二、中草药有效成分的分离和精制

1.根据物质溶解度差别进行分离

利用温度的不同引起溶解度的改变以分离物质。在溶液中加入另一种溶剂以改变混合溶剂的极性使一部分物质沉淀析出,从而实现分离。改变酸碱度以改变分子的存在状态,从而改变酸碱度而实现分离。酸性或碱性化合物还可以通过加入某种沉淀剂使之生成水不溶性的盐类。

2.根据物质在两相溶液中的分配比不同进行分离

常见的有液-液萃取、逆流分溶法(CCD)、液滴逆流色谱法(DCCC)、高速逆流色谱法(HSCCC)、气液分配色谱法(GC或GLC)及液-液分配色谱(LC或LLC)。

LLC:采用将两相中的一项涂覆在硅胶等多孔载体上,作为固定相,填充在色谱管中,然后加入与固定相不相混溶的另一项溶剂冲洗色谱柱。分为正向色谱(固定相极性大)和反向色谱(固定相极性小)。

DCCC:通过装置使流动相呈液滴形式垂直上升或下降,通过固定相的液注,实现物质的逆流色谱分离。

3.根据物质的吸附性差别进行分离

物理吸附:利用分子间的相互作用力,如采用硅胶、氧化铝、活性炭等。特点是无选择性、过程可逆、快速进行。

化学吸附:如黄酮等酸性物质被碱性氧化铝吸附,特点:具有选择性、吸附比较牢固、有时甚至不可洗脱,较少用

半化学吸附:如聚酰胺对黄酮类、醌类等化合物之间的氢键吸附,力量较弱,介于物理吸附和化学吸附之间,有一定的应用。

4.根据物质分子大小差别进行分离

凝胶过滤法:葡聚糖凝胶(SephadexG),羟丙基葡聚糖凝胶(Sephadex LH-20)

膜分离技术:以选择性分离膜为分离介质,当膜两侧存在某种推动力时,原料侧组分透过分离膜,达到分离提纯的目的。

5.根据物质理解程度不同进行分离:离子交换法或电泳技术进行分离。

离子交换法:是以离子交换树脂作为固定相,用水和含水溶剂装柱。与离子交换树脂交换的被吸附,改变条件,以适宜的溶剂从柱子上洗脱下来。

三、结构研究

初步推断化合物的类型→确定化合物的分子式(MS),计算不饱和量→确定分子中的官能团或结构片段(UV IR MS NMR)、基本骨架→推断并确定分子的平面结构→推断并确定分子的立体结构

EI-MS(电子轰击法):加热气化后,使之进入离子化室,而后才能分离。

不用加热气化而直接电离的新方法:CI(化学电离) FI(场致电离) FD(场解析电离) FAB (快速原子轰击电离) ESI(电喷雾电离)。

糖和苷

糖类亦称碳水化合物

苷类亦称苷或配糖体,是由糖和糖的衍生物,如氨基酸、糖醛酸等与另一非糖物质通过糖的半缩醛或半缩酮羟基与苷元脱水形成的一类化合物。

苷的共性是:糖和苷键

单糖是多羟基醛或多羟基酮类化合物,是组成糖类及其衍生物的基本单元。

Fischer投影式中主碳链上下排列,氧化程度较高的一端在上,水平方向的价键和与之相结合的基团指向纸面的前方,主碳链上下两端的价键和所结合的基团指向纸面的后方。因此只能在纸面上转动n180°,而不能使之翻转。

Haworth投影式:表示糖在水溶液中真实的存在。Fischer投影式基团的对应位置关系是:左上右下

D L型:在Fischer投影式中距离羰基碳最远的那个手性碳原子上的羟基在右侧者成为D型糖,在左侧者称为L型糖。

αβ型:在Fischer投影式中,新形成的羟基与距离羰基最远的手性碳原子上的羟基为同侧的为α型,异侧的为β型(吡南糖型,呋喃酮糖正好相反)。Haworth投影式中,对于五碳吡喃糖,其端基碳上的羟基与C4羟基在同侧者为α型,异侧者为β型(无法判断呋喃糖)。端基差向异构体。

常见糖的缩写:Ara Glc Fru Rha(鼠李糖) Gal(半乳糖)Man(甘露糖)

氨基糖:醇羟基被氨基取代后形成的糖

去氧糖:单糖中1或2个羟基被氢取代后形成的糖。

糖醛酸:单糖中的伯羟基被氧化成羧基的化合物。

糖醇:单糖中的羧基被还原成羟基的化合物

环醇:环状的多羟基化合物称为环醇。

低聚糖类:由2—9个单糖通过苷键的结合而成的聚糖,低聚糖的化学命名方法是以末端糖作为母体,末端以外的糖作为糖基,并标明糖和糖的链接位置,糖的成环形式以及苷键的构型等。P表示吡喃型f表示呋喃型数字表示糖与糖之间的链接位置

多聚糖类:由10个以上的单糖通过苷键连接而成的糖称为多聚糖。可用四级结构来描述。植物多糖:淀粉:颗粒状淀粉并不溶于水,只有经加热,颗粒破裂后淀粉才能与水混合成胶态悬浮液,淀粉由直链的糖淀粉和支链的胶淀粉组成。糖淀粉为α1→4连接的,胶淀粉为α1→4和β1→4连接。聚合度越高,与淀粉的显色反应越深。

纤维素:一类聚合度在3000—5000的β1→4结合的直链葡聚糖,分子结构呈直线状,具有一定的强度和刚性,不易被稀酸或碱水解,是植物细胞壁的主要成分之一

果聚糖

半纤维素:是一类不溶于水,但可以被稀碱溶出的酸性多糖。

树胶:树胶是植物受伤后或被毒菌类侵袭后的分泌物,干后成半透明块状。

粘液质和粘胶质:一类粘多糖。粘胶质可溶于热水,冷后成冻状,具有良好的生物活性。动物多糖:糖原甲壳素肝素透明质酸硫酸软骨素

苷类:原生苷次生苷。氧苷氮苷硫苷碳苷

糖的化学性质:

氧化反应:单糖具有醛醇等基团

糠醛形成反应:单糖在浓硫酸作用下,脱去三分子水,生成具有呋喃环结构的糠醛衍生物。羟基反应:醛或酮在脱水剂作用下易与具有适当空间的1,3-二醇羟基或邻二醇羟基生成环状的缩醛或缩酮。

与硼酸的洛合反应:许多具有邻二羟基的化合物可与硼酸、钼酸、铜氨、碱土金属等试剂反

应生成配合物,使它们的理化性质发生改变,具体用于分离、结构鉴定、以及构型的确立。

苷键的断裂:苷键位缩醛(酮)结构,对酸不稳定,对碱较稳定,易被酸催化水解。

水解的难易程度:C> S > O > N。主要比较质子化难易。

乙酰解反应:所用的试剂是醋苷和酸。β-苷键葡萄糖双糖乙酰解的难易:1→2>1→3>1

→4>> 1→6

乙酰解具有反应条件温和,操作简便,可开裂部分苷键,所得产物为单糖、低聚糖及苷元的

酰化物。

碱催化水解和β-消除反应:由于苷键β位吸电子基团能使苷元α位氢活化,有利于OH-的

进攻,故苷键的β位有吸电子基团取代的苷在碱液中可与苷键发生消除反应而开裂苷键,此

反应称为β消除反应。

酶催化反应:反应的特点是反应条件温和,具有专一性和高效性。用于特殊结构的鉴定。

过碘酸裂解反应:亦称为Smith降解法,适用于苷元不稳定的苷和碳苷的裂解。不适用于那

些苷元上有邻二醇羟基以及易被氧化基团存在的苷

糖的核磁共振性质:通常糖的端基质子信号在4.3—6.0,甲基五碳糖的甲基质子信号在1.0

左右,其余信号在3.2—4.2。质子的偶合常数与两面角有关。

糖的13C-NMR性质:

糖的甲基碳18 CH2OH在62左右 CHOU在68-85 端基碳在95-105。α-L 和β-D 型的苷键的端基碳原子在通常100以上,当为酯苷等个别苷时可降至98

α-D 和β-L通常小于100.据此可以大致推断低聚糖中糖的个数和苷键的类型

通常呋喃糖的C3和C5位的化学位移明显偏大,多数大于80.据此可以推测氧环的大小。

在吡喃糖中:C1:α:97-101 β:103-106 C(2、3、4、5):70-78 C6:62 CH3:18

苷化位移:成苷后,端基碳、苷元α-C的化学位移向低场方向移动5—6

β—C向高场方向移动3--4

糖及苷的提取分离:

苷类化合物随着分子中糖基的增多,极性增大。多糖随着聚合度的增加,性质和单糖相差越

来越大,一般为非晶型,无甜味,难溶于热水或溶于热水成胶状溶液。

分离:季铵盐沉淀提取分级沉淀分级溶解离子交换色谱凝胶柱色谱电泳

苯丙素类:天然成分中苯环与三直链碳连在一起形成的C6-C3单元,统称为苯丙素类

常分为;苯丙酸类香豆素和木质素三类成分

苯丙酸类:桂皮酸咖啡酸阿魏酸。大多具有水溶性。

香豆素类:是邻羟基桂皮酸内酯成分的总称。多具有苯骈α-吡喃酮母核结构骨架,7-羟基

香豆素被认为是香豆素类化合物的母体。

分类:简单香豆素类呋喃香豆素类吡喃香豆素类其他香豆素类异香豆素类

理化性质:游离的香豆素多有完好的结晶,常常是淡黄色或无色,具有香味。小分子的香豆

素有挥发性。形成苷后一般呈粉末状,多数无香味,也不具有挥发性和升华性。香豆素类衍

生物在紫外光照射下呈现蓝色或紫色荧光,在碱性溶液中,荧光增强。游离香豆素部分溶于

热水,但不溶于冷水。具有内酯的性质(碱性条件下开环和异羟肟酸铁反应)。

C7 导入羟基,荧光增强 C8 导入羟基,荧光消失 C8导入其他基团,荧光减弱

醌类化合物:

天然药物化学 重点总结

天然药物化学 总论 1、主要生物合成途径 醋酸——丙二酸(AA-MA):脂肪酸、酚类、蒽酮类 脂肪酸:碳链奇数:丙酰辅酶A、支链:异丁酰辅酶A、α-甲基丁酰辅酶A、甲基丙二酸单酰辅酶A、碳链偶数:乙酰辅酶A 甲戊二羟酸途径(MVA) 桂皮酸途径和莽草酸途径 氨基酸途径 复合途径 2、分配系数:两种相互不能任意混溶的溶剂 K=C U/C L(C U溶质在上相溶剂的浓度、C L溶质在下相溶剂的浓度) 3、分离难易度:A、B两种溶质在同一溶剂系统中分配系数的比值 β=K A/K B(β>100一次萃取分离;10<β<100萃取10-12次;β<2一百以上;β=1不能分离) 4、分配比与PHPH=pKa+lg[A-]/[HA](pKa=[A-][H3O+]/[HA]) 当PH<3酸性物质为非解离状态[HA],碱性物质为解离状态[BH+] 当PH>12酸性物质为解离状态[A-],碱性物质非解离状态[B] 5、离子交换树脂 阳离子交换树脂:交换出阳离子,交换碱性物质 阴离子交换树脂:交换出阴离子,交换酸性物质 糖和苷 1、几种糖的写法: D-木糖(Xyl)、D-葡萄糖(Glc)、D-甘露糖(Man)、D-半乳糖(Gal)、D-果糖(Flu)、L-鼠李糖(Rha) 2、还原糖:具有游离醛基或酮基的糖 非还原糖:不具有游离醛基或酮基的糖 3、样品鉴别:样品+浓H2SO4+α-萘酚—→棕色环 4、羟基反应: 醚化反应(甲醚化):Haworth法—可以全甲基话、Purdic法—不能用于还原糖、Kuhn 法—可以部分甲基化、箱守法—可以全甲基化、反应在非水溶液中5、酸水解难易程度:N>O>S>C 芳香属苷较脂肪属苷易水解:酚苷>萜苷、甾苷 有氨基酸取代的糖较-OH糖难水解,-OH糖较去氧糖难水解 (2,6二去氧糖>2-去氧糖>3-去氧糖>羟基糖>2-氨基糖)易→难 呋喃糖苷较吡喃糖苷易水解 酮糖较醛糖易水解 吡喃糖苷中:C5取代基越大越难水解(五碳糖>甲基五碳糖>六碳糖>七碳糖) C5上有-COOH取代时最难水解 在构象中相同的糖中:a键(竖键)-OH多则易水解 苷元为小基团—苷键横键比竖键易水解;即e>a 苷元为大基团—苷键竖键比横键易水解;即a>e 6、smith降解(过碘酸反应):Na2SO4、NaBH4,易得到苷元(人参皂苷—原人参二醇) 7、乙酰解反应:β-苷键的葡萄糖双糖的反应速率(乙酰解反应的易难程度) (1——6)》(1——4)》(1——3)》(1——2)这一页空白没用的,请掠过

天然药物化学总结归纳

天然药物化学总结归纳 第一节总论 一、绪论 1.天然药物化学研究内容:结构特点、理化性质、提取分离方法及结构鉴定 ⑴有效部位:具有生理活性的多种成分的组合物。 ⑵有效成分:具有生理活性、能够防病治病的单体物质。 2.天然药物来源:植物、动物、矿物和微生物,并以植物为主。 3.天然药物化学在药学事业中的地位: ⑴提供化学药物的先导化合物; ⑵探讨中药治病的物质基础; ⑶为中药炮制的现代科学研究奠定基础; ⑷为中药、中药制剂的质量控制提供依据; ⑸开辟药源、创制新药。 二、中草药有效成分的提取方法 1.溶剂提取法:据天然产物中各成分的溶解性能,选用对需要的成分溶解度大而对其他成分溶解度小的溶剂, ⑴常用的提取溶剂: 各种极性由小到大的顺序如下: 石油醚﹤苯﹤氯仿﹤乙醚﹤二氯甲烷﹤乙酸乙酯﹤正丁醇﹤丙酮﹤乙醇﹤甲醇﹤水 亲脂性有机溶剂亲水性有机溶剂 ⑵各类溶剂所能溶解的成分: 1)水:氨基酸、蛋白质、糖类、生物碱盐、有机酸盐、无机盐等 2)甲醇、乙醇、丙酮:苷类、生物碱、鞣质等极性化合物 3)氯仿、乙酸乙酯:游离生物碱、有机酸、蒽醌、黄酮、香豆素的苷元等中等极性化合物 石油醚:脱脂,溶解油脂、蜡、叶绿素等小极性成分;正丁醇:苷类化合物。 ⑶溶剂提取的操作方法: 1)浸渍法:遇热不稳定有效成分,出膏率低,(水为溶剂需加入适当的防腐剂) 2)渗漉法: 3)煎煮法:不宜提取挥发性成分或热敏性成分。(水为溶剂) 4)回流提取法:不适合热敏成分;(乙醇、氯仿为溶剂) 5)连续回流提取法:不适合热敏性成分。 6)超临界流体萃取技术:适于热敏性成分的提取。超临界流体:二氧化碳;夹带剂:乙醇; 7)超声波提取技术:适用于各种溶剂的提取,也适用于遇热不稳定成分的提取 2.水蒸气蒸馏法:挥发性、能随水蒸气蒸馏且不被破坏的成分。(挥发油的提取。) 3.升华法:具有升华性的成分(茶叶中的咖啡因、樟木中的樟脑) 三、中草药有效成分的分离与精制 1.溶剂萃取法: ⑴正丁醇-水萃取法使皂苷转移至正丁醇层(人参皂苷溶在正丁醇层,水溶性杂质在水层)。 ⑵乙酸乙酯-水萃取法使黄酮苷元转移至乙酸乙酯层 2.沉淀法: ⑴溶剂沉淀法: 1)水/醇法:多糖、蛋白质等水溶性大分子被沉淀; 2)醇/水法:除去树脂、叶绿素等脂溶性杂质。 ⑵酸碱沉淀法: 1)碱提取酸沉淀法:黄酮、蒽醌、有机酸等酸性成分。 2)酸提取碱沉淀法:生物碱。 ⑶盐析法:三颗针中提取小檗碱就是加入氯化钠促使其生成盐酸小檗碱而析出沉淀的。 第二节苷类 1.定义:苷类(又称配糖体):是指糖或糖的衍生物端基碳原子上的羟基与非糖物质脱水缩合而形成的一类化合物。

天然药物化学问答题总结

1.天然药物有效成分提取方法有几种?采用这些方法提取的依据是什么? 1. 答:①溶剂提取法:利用溶剂把天然药物中所需要的成分溶解出来,而对其它成分不溶解或少溶解。②水蒸气蒸馏法:利用某些化学成分具有挥发性,能随水蒸气蒸馏而不被破坏的性质。③升华法:利用某些化合物具有升华的性质。 2.常用溶剂的亲水性或亲脂性的强弱顺序如何排列?哪些与水混溶?哪些与水不混溶? 石油醚>苯>氯仿>乙醚>乙酸乙酯>正丁醇|不|>| 丙酮>乙醇>甲醇>水 3.溶剂分几类?溶剂极性与ε值关系? 3. 答:溶剂分为极性溶剂和非极性溶剂或亲水性溶剂和亲脂性溶剂两大类。常用介电常数(ε)表示物质的极性。一般ε值大,极性强,在水中溶解度大,为亲水性溶剂,如乙醇;ε值小,极性弱,在水中溶解度小或不溶,为亲脂性溶剂,如苯。 4.溶剂提取的方法有哪些?它们都适合哪些溶剂的提取? 4. 答:①浸渍法:水或稀醇为溶剂。②渗漉法:稀乙醇或水为溶剂。③煎煮法:水为溶剂。④回流提取法:用有机溶剂提取。⑤连续回流提取法:用有机溶剂提取。 5.两相溶剂萃取法是根据什么原理进行?在实际工作中如何选择溶剂? 5. 答:利用混合物中各成分在两相互不相溶的溶剂中分配系数不同而达到分离的目的。实际工作中,在水提取液中有效成分是亲脂的多选用亲脂性有机溶剂如苯、氯仿、乙醚等进行液‐液萃取;若有效成分是偏于亲水性的则改用弱亲脂性溶剂如乙酸乙酯、正丁醇等,也可采用氯仿或乙醚加适量乙醇或甲醇的混合剂。 6.萃取操作时要注意哪些问题? 6. 答:①水提取液的浓度最好在相对密度1.1~1.2之间。②溶剂与水提取液应保持一定量比例。第一次用量为水提取液1/2~1/3, 以后用量为水提取液1/4~1/6.③一般萃取3~4次即可。④用氯仿萃取,应避免乳化。可采用旋转混合,改用氯仿;乙醚混合溶剂等。若已形成乳化,应采取破乳措施。 7.萃取操作中若已发生乳化,应如何处理? 7. 答:轻度乳化可用一金属丝在乳层中搅动。将乳化层抽滤。将乳化层加热或冷冻。分出乳化层更换新的溶剂。加入食盐以饱和水溶液或滴入数滴戊醇增加其表面张力,使乳化层破坏。 8.色谱法的基本原理是什么? 8. 答:利用混合物中各成分在不同的两相中吸附、分配及其亲和力的差异而达到相互分离的方法。 9.凝胶色谱原理是什么? 9.答:凝胶色谱相当于分子筛的作用。凝胶颗粒中有许多网眼,色谱过程中,小分子化合物可进入网眼;大分子化合物被阻滞在颗粒外,不能进入网孔,所受阻力小,移动速度快,随洗脱液先流出柱外;小分子进入凝胶颗粒内部,受阻力大,移动速度慢,后流出柱外。 10.如何判断天然药物化学成分的纯度? 10.答:判断天然药物化学成分的纯度可通过样品的外观如晶形以及熔点、溶程、比旋度、色泽等物理常数进行判断。纯的化合物外观和形态较为均一,通常有明确的熔点,熔程一般应小于2℃;更多的是采用薄层色谱或纸色谱方法,一般要求至少选择在三种溶剂系统中展开时样品均呈单一斑点,方可判断其为纯化合物。 11.简述确定化合物分子量、分子式的方法。 11.答:分子量的测定有冰点下降法,或沸点上升法、粘度法和凝胶过滤法等。目前最常用的是质谱法,该法通过确定质谱图中的分子离子峰,可精确得到化合物的分子量;分子式的确定可通过元素分析或质谱法进行。元素分析通过元素分析仪完成,通过测定给出化合物中除氧元素外的各组成元素的含量和比例,并由此推算出化合物中各组成元素的含量,得出化合物的实验分子式,结合分子量确定化合物的确切分子式。质谱法测定分子式可采用同位素峰法和高分辨质谱法。 12.在研究天然药物化学成分结构中,IR光谱有何作用? 12.答:IR光谱在天然药物化学成分结构研究中具有如下作用;测定分子中的基团;已知化合物的确证;未知成分化学结构的推测与确定;提供化合物分子的几何构型与立体构象的研究信息。 13.简述紫外光谱图的表示方法及用文字表示的方法和意义。 13.答:紫外光谱是以波长作横座标,吸收度或摩尔吸收系数做纵座标作图而得的吸收光谱图。紫外可见光谱中吸收峰所对应的波长称为最大吸收波长(λmax),吸收曲线的谷所对应的波长称谓最小吸收波长(λmin),若吸收峰的旁边出现小的曲折,称为肩峰,用“sh”表示,若在最短波长(200nm)处有一相当强度的吸收却显现吸收峰,称为未端吸收。如果化合物具有紫外可见吸收光谱,则可根据紫外可见吸收光谱曲线最大吸收峰的位置及吸收峰的数目和摩尔吸收系数来确定化合物的基本母核,或是确定化合物的部分结构。 1.苷键具有什么性质,常用哪些方法裂解? 1.答:苷键是苷类分子特有的化学键,具有缩醛性质,易被化学或生物方法裂解。苷键裂解常用的方法有酸、碱催化水解法、酶催化水解法、氧化开裂法等。 2.苷类的酸催化水解与哪些因素有关?水解难易有什么规律? 2.答:苷键具有缩醛结构,易被稀酸催化水解。水解发生的难易与苷键原子的碱度,即苷键原子上的电子云密度及其空间环境有密切关系。有利于苷键原子质子化,就有利于水解。酸催化水解难易大概有以下规律:(1)按苷键原子的不同,酸水解的易难顺序为:N-苷﹥O-苷﹥S-苷﹥C-苷。(2)按糖的种类不同1)呋喃糖苷较吡喃糖苷易水解。2)酮糖较醛糖易水解。3)吡喃糖苷中,吡喃环的C-5上取代基越大越难水解,其水解速率大小有如下顺序:五碳糖苷﹥甲基五碳糖苷﹥六碳糖苷﹥七碳糖苷﹥糖醛酸苷。C-5上取代基为-COOH(糖醛酸苷)时,则最难水解。4)氨基糖较羟基糖难水解,羟基糖又较去氧糖难水解。其水解的易难顺序是:2,6-去氧糖苷﹥2-去氧糖苷﹥6-去氧糖苷﹥2-羟基糖苷﹥2-氨基糖苷。 1.简述碱溶酸沉法提取分离香豆素类成分的基本原理,并说明提取分离时应注意的问题。 1.答:香豆素类化合物结构中具有内酯环,在热碱液中内酯环开裂成顺式邻羟基桂皮酸盐,溶于水中,加酸又重新环合成内酯而析出。 在提取分离时须注意所加碱液的浓度不宜太浓,加热时间不宜过长,温度不宜过高,以免破坏内酯环。碱溶酸沉法不适合于遇酸、碱不稳定的香豆素类化合物的提取。 2.写出异羟肟酸铁反应的试剂、反应式、反应结果以及在鉴别结构中的用途。 试剂:盐酸羟胺、碳酸钠、盐酸、三氯化铁 反应式:反应结果:异羟肟酸铁而显红色。 应用:鉴别有内酯结构的化合物。 1.醌类化合物分哪几种类型,写出基本母核,各举一例。 答: 醌类化合物分为四种类型:有苯醌,如2,6-二甲氧基对苯醌;萘醌,如紫草素;菲醌,如丹参醌Ⅰ;蒽醌,如大黄酸。 2.蒽醌类化合物分哪几类,举例说明。 蒽醌类分为1)羟基蒽醌类,又分为大黄素型,如大黄素,茜素型如茜草素。2)蒽酚.蒽酮类:为蒽醌的还原产物,如柯亚素。3)二蒽酮和二蒽醌类:如番泻苷类。 3.为什么β-OH蒽醌比α-OH蒽醌的酸性大。 3.β-OH与羰基处于同一个共轭体系中,受羰基吸电子作用的影响,使羟基上氧的电子云密度降低,质子容易解离,酸性较强。而α-OH处在羰基的邻位,因产生分子内氢键,质子不易解离,故酸性较弱。 4.比较下列蒽醌的酸性强弱,并利用酸性的差异分离他们,写出流程。 A. 1,4,7-三羟基蒽醌 B. 1,5-二OH-3-COOH蒽醌 C. 1,8-二OH蒽醌 D. 1-CH3蒽醌 答:酸性强弱顺序:B>A>C>D 5.显色反应区别:(1)大黄素与大黄素-8-葡萄糖苷(2)番泻苷A与大黄素苷(3)蒽醌与苯醌 (1)将二成分分别用乙醇溶解,分别加Molish试剂,产生紫色环的为大黄素-8-葡萄糖苷,不反应的为大黄素。(2)将二成分分别加5%的氢氧化钠溶液,溶解后溶液显红色的是大黄素苷,溶解后溶液不变红色的为番泻苷A。(3)将二成分分别用乙醇溶解,分别滴于硅胶板上加无色亚甲蓝试剂,在白色背景上与呈现蓝色斑点为苯醌,另一个无反应的是蒽醌。 1.试述黄酮类化合物的基本母核及结构的分类依据,常见黄酮类化合物结构类型可分为哪几类? 1.答:主要指基本母核为2-苯基色原酮的一类化合物,现在则是泛指具有6C-3C-6C为基本骨架的一系列化合物。其分类依据是根据中间三碳链的氧化程度,三碳链是否成环状,及B环的联接位置等特点分为以下几类:黄酮类.黄酮醇类.二氢黄酮类.二氢黄酮醇类.查耳酮类.二氢查耳酮类.异黄酮类.二氢异黄酮类.黄烷醇类.花色素类.双黄酮类。 2.试述黄酮(醇)多显黄色,而二氢黄酮(醇)不显色的原因。 2.答:黄酮(醇)类化合物分子结构中具有交叉共轭体系,所以多显黄色;而二氢黄 酮(醇)不具有交叉共轭体系,所以不显色。 3.试述黄酮(醇)难溶于水的原因。 3.答:黄酮(醇)的A.B环分别与羰基共轭形成交叉共轭体系,具共平面性,分子间 紧密,引力大,故难溶于水。 4.试述二氢黄酮.异黄酮.花色素水溶液性比黄酮大的原因。 4.答:二氢黄酮(醇)由于C环被氢化成近似半椅式结构,破坏了分子的平面性,受 吡喃环羰基立体结构的阻碍,平面性降低,水溶性增大;花色素虽为平面结构,但以离子形式存在,具有盐的通性,所以水溶性较大。 5.如何检识药材中含有黄酮类化合物? 5.答:可采用(1)盐酸-镁粉反应:多数黄酮产生红~紫红色。(2)三氯化铝试剂反应:在滤纸上显黄色斑点,紫外光下有黄绿色荧光。(3)碱性试剂反应,在滤纸片上显黄~橙色斑点。 6. 简述黄芩中提取黄芩苷的原理。 6. 答:黄芩苷为葡萄糖醛酸苷,在植物体内多以镁盐的形式存在,水溶性大,可采用 沸水提取。又因黄芩苷分子中有羧基,酸性强,因此提取液用盐酸调pH1~2可析出黄芩苷。 7.(1)流程中采用的提取方法是:碱提取酸沉淀法 依据:芸香苷显酸性可溶于碱水。 (2)提取液中加入0.4%硼砂水的目的:硼砂可以与邻二羟基络合,保护邻二羟基不被氧化。 (3)以石灰乳调pH8~9的目的:芸香苷含有7-OH,4'-OH,碱性较强可以溶于pH8~9的碱水中。如果pH>12以上,碱性太强,钙离子容易与羟基、羰基形成难溶于水的鳌合物,降低收率。 (4)酸化时加盐酸为什么控制pH在4-5足以是芸香苷析出沉淀,如果pH<2以上容易使芸香苷的醚键形成金羊盐,不易析出沉淀。

天然药物化学鉴别反应总结

糖 邻二羟基--银镜反应、斐林反应、硼酸形成络合物 糠醛衍生物+芳胺或酚类 缩合 显色 Molish 反应:样品+浓硫酸+α萘酚-------棕色环(多糖、低聚糖、单糖、苷类均阳性) 香豆素: 试剂: Gibb ——2,6-二氯(溴)苯醌氯亚胺 Emerson ——氨基安替匹林和铁氰化钾 条件:有游离酚羟基,且其对位无取代者——呈阳性 异羟肟酸铁反应(识别内酯) 醌类 颜色反应 ①Feigl 反应:醌类化合物在碱性加热条件下与醛类及临二硝基苯反应生成紫色化合物(反应前后醌类化合物无变化,只起到电子传作用) ②Borntr?ger 反应: 羟基蒽醌类遇碱显红-紫红色 羟基醌类遇碱颜色加深,呈橙、红、紫红及蓝色 蒽酚、蒽酮、二蒽酮需氧化成羟基蒽醌后才显色 ③无色亚甲蓝反应:苯醌及萘醌,用于PC,TLC 的喷雾剂,显蓝色斑点 ④与活性次甲基试剂的反应: 苯醌及萘醌类:醌环上有未被取代的位置,可在氨碱性条件下与活性次甲基试剂(乙酰醋酸酯、丙二酸酯等)反应生成蓝绿或蓝紫色。 ⑤与金属离子的络合反应:具有α-OH 或临二酚OH 的蒽醌,与Pb2+、Mg2+络合显色 与醋酸镁络合具有一定的颜色-----鉴定 黄酮类 HCl-Mg 反应 含黄酮(醇)、二氢黄酮(醇) (+)橙红色-紫红色 查耳酮、橙酮、黄烷(醇)类 (-)不显色 操作方法:1ml 样品 + Mg 粉 + 几滴浓HCl (花色素及部分橙酮、查耳酮在浓盐酸中会变色,故需做对照) 香豆素Gibb Emerson 试剂与酚羟基对位活性氢缩合蓝色红色

铝盐:1% AlCl3或Al (NO2)3 黄色 定性、定量 铅盐:1%醋酸铅或碱式醋酸铅 黄~红色 沉淀 锆盐: 2%ZrOCl2的甲醇溶液 黄色 游离的3,5-羟基 锆-枸橼酸反应: 黄绿色 荧光 镁盐: 二氢黄酮(醇)类 天蓝色 5-酚羟基 色泽更明显 氯化锶: 氨性甲醇溶液 (具有邻二酚羟基 ) 绿色~棕色~黑色 沉淀 三氯化铁:酚类显色剂 三氯化铁-铁氰化钾 碱性试剂显色反应: (碱:氨蒸汽 可逆; 碳酸钠水溶液 不可逆) 二氢黄酮类 开环 橙色~黄色 黄酮醇类 黄色~棕色(通入空气)其他黄酮无次反应 含有邻二羟基或3,4’-二羟基取代的黄酮类 不稳定 易氧化 黄色~深红色~绿棕色 萜类 不饱和萜类与亚硝酰氯反应;生成的氯化亚硝基衍生物多呈蓝色至绿色结晶 挥发油功能团的鉴定: 酚类:三氯化铁乙醇溶液——蓝色、蓝紫或绿色 羰基化合物:硝酸银氨溶液——银镜反应——醛类 挥发油的乙醇溶液+2,4-二硝基苯肼、氨基脲、羟胺等试剂——结晶性衍生物 沉淀——醛或酮类 不饱和化合物和薁类衍生物:挥发油的三氯甲烷+溴的三氯甲烷溶液——红色褪去——含有不饱和化合物,继续滴加,如果产生蓝、紫、绿——含有薁类化合物 挥发油的无水甲醇溶液加浓硫酸——蓝色、紫色——含有薁类衍生物 内酯类化合物:挥发油的吡啶溶液+亚硝酰氰化钠及氢氧化钠溶液——出现红色并逐渐消失——含有不饱和内酯类化合物 三萜化合物(萜类)显色反应 强心苷:1)甾体母核颜色反应与三萜类相同(但全饱和的甾体、C3无羟基的呈阴性) 2)不饱和内酯环产生的反应: 样品 硼酸 草酸 枸橼酸 黄色并有绿色荧光 黄色,无荧光 丙酮

天然药物化学期末总结

1.天然药物化学:是应用现代理论、方法与技术研究天然药物中化学成分的学科。 2.天然药化的研究内容:主要包括:天然药物中各类型化学成分的结构特点、理化性质、提取分离的方法与技术以及各类型化学成分的结构检识、鉴定、测定和修饰等。 3.有效成分:天然药物中含有多种化学成分,具有一定生理活性的成分称为有效成分。 4.无效成分:无生理活性的成分称为无效成分。 5.有效部位:将含有一种主要有效成分或一组结构相近的有效成分提取分离部位称为有效部位。 6.提取:是指选用适宜的溶剂和适当的方法将所需药物提出而杂质尽可能少地被提出的过程,通常所得的提取物是多种成分的混合物。 7.分离:是选用适当的方法再将其中所含各种成分逐一分开,并把所得单体加以精制纯化的过程。 8.研究天然药物有效成分的意义:⑴控制天然药物及其制剂的质量;⑵探索天然药物治病的原理;⑶开辟和扩大药源、促进新药开发;⑷改进药物制剂、提高临床疗效;⑸为中药炮制提供现代科学依据。 9.天然药物中各类化学成分的名称:糖和苷类;生物碱;醌类;黄酮;香豆素类;有机酸类;挥发油和萜类;甾体类化合物;鞣质类;氨基酸、蛋白质和酶;树脂;植物色素。 10.溶剂提取法的原理:“相似相溶”原理。 11.常用溶剂的极性大小规律:石油醚<四氯化碳<苯<二氯甲烷<三氯甲烷<乙醚<乙酸乙酯<正丁醇<丙酮<甲醇(乙醇)<水。 12.亲水性有机溶剂:主要为甲醇、乙醇、丙酮等,其中以乙醇最为常用,此类溶剂对植物细胞穿透力较强,溶解范围广泛,有提取黏度小、沸点低、不易霉变等特点。 13.亲脂性有机溶剂:如:石油醚、苯、乙醚、三氯甲烷、乙酸乙酯等,这类溶剂沸点低,浓缩回收方便,但这类溶剂易燃,有毒,价贵,设备要求较高,穿透药材组织的能力较差,提取时间较长。 14.溶剂提取的方法:⑴浸渍法;⑵渗漉法;⑶煎煮法;⑷回流提取法;⑸连续回流提取法。(详见课本P10) 15.水蒸气蒸馏法的定义:将水蒸气通入含有挥发性成分的药材中,使药材中挥发性成分随水蒸气蒸馏出来的一种提取方法。原理:当水和与水互不相溶的液体成分共存时,根据道尔顿分压定律,整个体系的总蒸汽压等于两组分蒸汽压之和,虽然各组分自身的沸点高于混合液的沸点,但当总蒸汽压等于外界大气压时,混合物开始沸腾并被蒸馏出来。适用范围:适用于具有挥发性,难溶或不溶于水,能随水蒸气蒸馏而不被破坏的天然产物成分的提取。天然产物中挥发油成分的提取多用此法。 16.超临界流体的性质:超临界流体是处于临界温度(Tc)和临界压力(Pc)以上,介于气体和液体之间的流体。这种流体同时具有液体和气体的双重特性,它的密度与液体相似,黏度与气体相似,扩散系数虽不及气体大,但比液体大100倍。 17.可作为超临界流体的物质:CO2、NH3、C2H6、C7H16等,其中CO2应用较多,原因:CO2的临界温度(Tc=31.4℃)接近室温,临界压力(Pc=7.37Pa)也不太高,易操作,且本身呈惰性,价格便宜,是中药超临界流体萃取中最常用的溶剂。 18.分离纯化的方法:⑴系统溶剂分离法 ⑵两项溶剂萃取法:①简单萃取法;②逆流连续萃取法:移动相(或分散相):相对密度小的相液,固定相(或连续相):相对密度大的相液;③逆流分溶法:条件:当混合物各成分的分配系数很接近时,一般不宜分离,可选择此法,极性过大或过小,或分配系数受温度或浓度影响过大及抑郁乳化的溶剂试剂均不宜采用此法;④液滴逆流分配法 ⑶沉淀法:①酸碱沉淀法;②试剂沉淀法(选择判断):雷氏铵盐可与水溶性的季铵碱生成

天然药物化学期末知识点整理.doc

精品资料
第一章 总论
1.常用的天然化学成分的提取、分离、鉴定方法
提取
溶剂提取法 水蒸气蒸馏法 超临界流体提取法 升华法、超声波提取法、微波提取法
分离纯化
㈠ 两相溶剂萃取法: 溶剂法、逆流分配法 萃取操作要尽量防止乳化,破坏乳化的方法:①轻度乳化可用金属丝在乳 化层搅拌使之破坏;②乳化层加热或冷冻使之破坏;③长时间放置使之自 然分层;④将乳化层抽滤;⑤加入表面活性更大的表面活性剂;⑥乳化离 心
㈡ 系统溶剂分离法:适用于有效成分为未知的药材 ㈢ 结晶法:根据溶解度差别分离
操作:加热溶解、趁热过滤、放冷析晶、再抽滤 结晶纯度的判断:①形状和色泽:形状一致,色泽均一
②熔点和熔距:熔点不下降、熔距<2℃ ③TLC:3 种不同系统的展开剂、单一圆整的斑点 ㈣ 沉淀法:根据溶解度差别分离 ① 溶剂提取法:水提醇沉法、醇提水沉法;②酸碱沉淀法 ㈤ 色谱法:P22
2.溶剂提取法与水蒸气蒸馏法的原理、操作及其特点 ⑴溶剂提取法 ·根据被提取成分的性质和溶剂性质
浸渍法、渗漉法:热不稳定,不能加热 煎煮法:提取原生苷类,杀酶保苷
不宜用于遇热易被破坏或具有挥发性的化学成分的提取 提取方法
回流提取法:溶剂用量较大且含受热易被破坏有效成分的天然药物不宜用此法 连续回流提取法:提取效率最高且与虹吸次数有关
1、水(可提出氨基酸、糖类、无机盐等水溶性成分) 2、亲水性有机溶剂:丙酮或乙醇、甲醇(可提出苷类、生物碱盐以及鞣质 等极性化合物 3、亲脂性有机溶剂: 石油醚或汽油(可提取油脂、蜡、叶绿素、挥发油、游离甾体及三萜化合物) 三氯甲烷或乙酸乙酯(可提取游离生物碱、有机酸及黄酮、香豆素的苷元等 中等极性化合物)

天然药物化学总结归纳

4.挥发油的分离方法 (1)冷冻法:薄荷油析出薄荷脑 (2)分馏法: 沸点随分子量增大、双键增多而升高;含氧萜沸点随官能团的极性增大而升高。 第七节甾体及苷类 一、强心苷1.强心苷的结构与分类 (1)强心苷元特点:可分为甾体母核、不饱和内酯环两部分。(2)强心苷元的类型:依据不饱和内酯环的特点分为两类。①23个碳原子组成,C17侧链为五元不饱和内酯环,称强心甾烯类,即甲型强心苷元。大多属于此类。如洋地黄毒苷元。②24个碳原子组成,C17侧链为六元不饱和内酯环,称海葱甾二烯类或蟾蜍甾二烯类,即乙型强心苷元。如海葱苷元等。(3)糖的类型强心苷的糖除了常见的葡萄糖外,还有2,6-二去氧糖,如D-洋地黄毒糖、D-加拿大麻糖等,6-去氧糖如L-黄花夹竹桃糖、D-洋地黄糖等。(4)强心苷元和糖的连接方式Ⅰ型:苷元-(2,6-去氧糖)x-(D-葡萄糖)y,如毛花苷CⅡ型:苷元-(6-去氧糖)x-(D-葡萄糖)y,如真地吉他林Ⅲ型:苷元-(D-葡萄糖)y,如绿海葱苷其中x=1~3,y=1~2。 2.强心苷的物理性质 (1)溶解性:原生苷由于所含糖基数目多且具有葡萄糖,可溶于水、醇等溶剂,次生苷亲水性减弱,可溶于乙酸乙酯、含水氯仿等溶剂。 (2)苷键水解①酸催化水解 水解方法试剂适用类型产物 温和酸水解0.02~0.05mol/L盐酸/硫酸Ⅰ型苷元和低聚糖 强烈酸水解3%~5%无机酸Ⅱ型、Ⅲ型脱水苷元、单糖 ②酶催化水解:如西地兰经酶解可以得到地高辛。 3.强心苷的检识 (1)强心苷因有甾体母核可发生:①醋酐浓硫酸反应;②三氯醋酸反应;③三氯化锑反应。(2)不饱和五元内酯环呈色反应[亚硝酰铁氰化钠(Legal)反应]:若反应呈深红色并逐渐褪去,表示可能存在甲型强心苷。(3)2-去氧糖的鉴别反应[三氯化铁-冰醋酸(Keller-Kiliani)反应]:如有2-去氧糖存在,冰醋酸层逐渐为蓝色,界面处呈红棕色或其他颜色(随苷元不同而异)。 4.典型化合物及生物活性强心苷是治疗心衰不可缺少的药物。 二、甾体皂苷 1.甾体皂苷的结构与分类 (1)结构特征:苷元由27个碳原子组成,基本碳架是螺甾烷。苷元结构中有六个环,其中,A、B、C、D四个环为甾体母核,E环和F环以螺缩酮形式相连接,构成螺甾烷结构。 (2)甾体皂苷的类型:依照螺甾烷结构中F环的环合状态,可将其分为:螺甾烷醇类、异螺甾烷醇类、呋甾烷醇类。蓣皂苷与原薯蓣皂苷是地奥心血康制剂中的主要成分。 2.皂苷的理化性质 (1)表面活性:皂苷水溶液经强烈振摇能产生持久性泡沫,且不因加热而消失。

天然药物化学提取分离总结材料

实用文档 文案大全天然药物化学提取分离总结 第一章总论 提取分离的基础,必须看PPT。 第二章糖和苷 特性: 红色字体为PPT上的标注。 蓝色字体为根据总论得出。 得到原生苷方法:采集原料时速加热干燥或冷冻保存然后热水提取或者醇提取(抑制酶解) 得到次生苷、苷元方法:水提取,让酶水解糖苷,而且降低极性,便于分离(皂苷、强心苷) PPT例子: 【一】溶剂抽提法(溶解度) 目的:1、去杂质(多为油脂类)2、分离苷元、单糖苷或少糖苷、“多糖”苷。 流程: 实用文档 文案大全 【二】溶剂沉淀法(溶解度) 目的:分离多糖(分量子不同且溶解性不同的各类多糖)

实用文档 文案大全 【三】水提醇沉法(乙醇分级沉淀)多糖中常有蛋白质杂质

实用文档 文案大全 【四】季铵氢氧化物沉淀法(碱试剂沉淀法)目的:分离酸性、中性多糖

实用文档 文案大全 【五】离子交换法(解离度) 目的:1、去杂质(可解离杂质:酸碱盐)2、分离糖类 【六】凝胶层析法(分子量) 目的:1、去杂质,无机盐及小分子化合物(进入凝胶内部)2、分离糖、苷

实用文档 文案大全 第三章苯丙素类 【一】苯丙酸的提取: 根据苯丙酸类成分的极性和溶解性,采用有机溶剂或水提取 分离:苯丙酸类及其衍生物大多具有一定水溶性,常与其它一些酚酸、鞣质、黄酮苷等混在一起,采用大孔树脂、聚酰胺、硅胶等分离 【二】香豆素类的提取 1、系统溶剂提取法:

实用文档 文案大全一般可用甲醇或乙醇从植物中提取,回收溶剂的浸膏,然后用石油醚、乙醚、乙酸乙酯、丙酮和甲醇依次萃取,分成极性不同的部位。 例: 2、水蒸气法蒸馏法: 某些小分子的香豆素类具挥发性,可用蒸馏法与不挥发性成分分离,常用于纯化过程。 3、碱溶酸沉法: 原理: 1.具酚羟基的香豆素类溶于碱液加酸后可析出。 2.香豆素的内酯环性质,在碱液中皂化成盐而加酸后恢复成内酯析出。

天然药物化学重点知识总结

第一章总论 天然药物化学是运用现代科学理论与方法研究天然药物中化学成分的一门学科。其研究内容包括各类天然药物的化学成分(主要是生理活性成分或药效成分)的结构特点、物理化学性质、提取分离方法以及主要类型化学成分的结构鉴定等。 一.中草药有效成分的提取 从药材中提取天然活性成分的方法有溶剂法、水蒸气蒸馏法及升华法等。 (一) 常用提取方法 方法原理范围 溶剂法相似相溶所有化学成分 蒸馏法与水蒸气产生共沸点挥发油 升华法遇热挥发,遇冷凝固游离蒽醌 (二)溶剂提取法 ●溶剂提取法的原理:溶剂提取法是根据“相似相容”原理进行的,通过选择适当溶剂将中药中的化学成分从药材中提取出来的一种方法。(考试时请这样回答哦!) *常用溶剂极性有弱到强排列:石油醚<环己烷<苯<乙醚<氯仿<醋酸乙酯<正丁醇<丙酮<乙醇<甲醇<水(丙酮,乙醇,甲醇能够和水任意比例混合。) *常用溶剂的性质:亲脂性有机溶剂、亲水性有机溶剂、水 *一般情况下,分子较小,结构中极性基团较多的物质亲水性较强。而分子较大,结构上极性基团少的物质则亲脂性较强。 ●天然药物中各类成分的极性 ·多糖、氨基酸等成分极性较大,易溶于水及含水醇中; ·鞣质是多羟基衍生物,列为亲水性化合物; ·苷类的分子中结合有糖分子,羟基数目多,能表现强亲水性; ·生物碱盐,能够离子化,加大了极性,就变成了亲水性化合物; ·萜类、甾体等脂环类及芳香类化合物因为极性较小,易溶于氯仿、乙醚等亲脂性溶剂中; ·油脂、挥发油、蜡、脂溶性色素都是强亲脂性成分,易溶于石油醚等强亲脂性溶剂中 总之,天然化合物在溶剂中的溶解遵循“相似相溶”规律。即极性化合物易溶于极性溶剂,非极性化合物易溶于非极性溶剂,分子量太大的化合物往往不溶于任何溶剂。 溶剂提取法的关键是选择适宜的溶剂(选择溶剂依据:根据溶剂的极性和被提取成分及其共存杂质的性质,决定选择何种溶剂)(各溶剂法分类见《天然药物化学辅导教材》P5) (三)水蒸气蒸馏法 只适用于具有挥发性、能随水蒸气蒸馏而不被破坏,与水不发生反应,且难溶或不溶于水的成分的提取。天然药物中的挥发油、某些小分子生物碱如麻黄碱、烟碱、槟榔碱以及某些小分子的酚性物质如牡丹酚等的提取可采用水蒸气蒸馏法。 (四)升华法 某些固体物质如水杨酸、苯甲酸、樟脑等受热在低于其熔点的温度下,不经过熔化就可直接转化为蒸气,蒸气遇冷后又凝结成固体称为升华。天然药物中有一些成分具有升华性质,能利用升华法直接中药材中提取出来。但天然药物成分一般可升华的很少。 果蔬脱水新技术实质上升华脱水法。 (五)超临界二氧化碳流体萃取法(了解部分,见《天然药物化学辅导教材》P6) 三、中草药有效成分的分离与精制 (一) 根据物质溶解度不同进行分离 1. 原理: 相似相溶 2. 方法: 结晶法、试剂沉淀法、酸碱沉淀法、铅盐沉淀法、盐析法 (二) 根据物质分配系数的不同进行分离 K = CU / CL(CU:上相,CL:下相),K值与萃取次数成反比,即K值越大,萃取次数越少,反之越多。 ⑴分配系数(K值)与萃取次数的关系 原理: 利用物质在两种互不相溶的溶剂中的分配系数的不同达到分离。 分配系数K值:一种溶质在两相溶剂中的分配比。K值在一定的温度和压力下为一常数。 ⑵分离因子(β值)与分离难易的关系 分离因子β:两种溶质在同一溶剂系统中分配系数的比值。b = KA / KB (KA>KB) b值越大,越易分离; b =1时,无法分离。 ⑶酸碱度(pH值)对分配比的影响 溶剂系统PH的变化影响酸性、碱性、及两性有机化合物的存在状态(游离型或离解型),从而影响在溶剂系统中的分配比。(游离型------极性小的溶剂;离解型-------极性大的溶剂) ◆PH<3,酸性物质多呈游离型(HA)、碱性物质则呈离解型(BH+); ◆ PH>12,酸性物质呈离解型(A-)、碱性物质以游离型(B)存在。 【纸色谱法 PC】(以滤纸纤维为惰性载体的平面色谱) 支持剂:纤维素(滤纸)固定相:纤维素上吸附的水(20-25%) 展开剂:与水不相混溶的有机溶剂或水饱和的有机溶剂 Rf值: A、物质极性大, Rf值小; B、物质极性小, Rf值大。 应用:适合于分离亲水性较强的物质。 【液-液分配柱色谱法】(固定相主要为化学键合)

(完整版)天然药物化学名词解释汇总

pH梯度萃取法:是指在分离过程中,逐渐改变溶剂的pH酸碱度来萃取有效成分或去除杂质的方法。 有效成分是指经药理和临床筛选具有生物活性的单体化合物,能用结构式表示,并具一定物理常数。 盐析法:在水提取液中加入无机盐(如氯化钠)达到一定浓度时,使水溶性较小的成分沉淀析出,而与水溶性较大的成分分离的方法。 有效部位:有效成分的群体物质。 渗漉法:将药材粗粉用适当溶剂湿润膨胀后(多用乙醇),装入渗漉筒中从上边添加溶剂,从下口收集流出液的方法。 原生苷:植物体内原存形式的苷。 次生苷:是原生苷经过水解去掉部分糖生成的苷。 酶解:苷类物质在酶催化下水解生成次生苷的一种水解方法。 苷类:又称配糖体,是糖和糖的衍生物与另一非糖物质通过糖的端基碳原子连接而成的化合物。 苷化位移:糖苷化后,端基碳和苷元α-C化学位移值均向低场移动,而邻碳稍向高场移动(偶而也有向低场移动的),对其余碳的影响不大,这种苷化前后的化学变化,称苷化位移。 香豆素:为顺式邻羟基桂皮酸的内酯,具有苯骈α-吡喃酮基本结构的化合物。 木脂素:由二分子的苯丙素氧化缩合而成的一类化合物,广泛存在于植物的木部和树脂中,故名木脂素。 醌类:指具有醌式结构的一系列化合物,包括邻醌、对醌。常见有苯醌、萘醌、蒽醌、菲醌。

大黄素型蒽醌:大黄素型蒽醌指羟基分布于两侧苯环的蒽醌。 黄酮类化合物:指两个苯环(A环和B环)通过中间三碳链相互联结而成的(6C-3C-6C)一系列化合物。 碱提取酸沉淀法:利用某些具有一定酸性的亲脂性成分,在碱液中能够溶解,加酸后又沉淀析出的性质,进行此类成分的提取和分离。 萜类化合物:是一类结构多变,数量很大,生物活性广泛的一大类重要的天然药物化学成份。其骨架一般以五个碳为基本单位,可以看作是异戊二烯的聚合物及其含氧衍生物。但从生源的观点看,甲戊二羟酸(mevalonic acid,MVA)才是萜类化合物真正的基本单元。 挥发油(Volatile oils)又称精油(essential oils),是一类难溶于水、可随水蒸气蒸馏、具有芳香气味的油状液体混合物。 精油:是一类难溶于水、可随水蒸气蒸馏、具有芳香气味的油状液体混合物。 SF/SFE: 超临界流体(SF):处于临界度(Tc),临界压力(Pc)以上的流体。 超临界流体萃取(SFE):利用一种物质在超临界区域形成的流体进行提取的方法称为超临界流体萃取。 脑:挥发油在常温下为透明液体,低温时某些挥发油中含量高的主要成分可析出结晶,这种析出物习称为脑。 皂苷:是一类结构比较复杂的苷类化合物。它的水溶液经振摇后能产生大量持久性、似肥皂样的泡沫。 酯皂苷:糖链和苷元分子中的羧基相结合形成酯苷键,这类带有酯苷键的皂苷称为酯皂苷。

大学天然药物化学考试题答案总结

大学天然药物化学考试 题答案总结 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

二,问答题 1、甙的定义、结构和分类及每一类的结构式 定义:甙类(glycosides):又称配糖体,是糖或糖的衍生物与另一非糖物质(称为甙元或配基)通过糖的端基碳原子连接而成的化合物。 甙的类型与结构特征:甙类按是生物体内原存的或是次生的,可分为原甙和次级甙;按连接单糖基的个数分为单糖甙、二糖甙等;按连接糖的链数分为单糖链甙、双糖链甙等;按甙键原子的不同分为氧甙、硫甙、氮甙和碳甙等,其中最常见的是氧甙。 氧甙(O—甙):根据甙键的不同可分为醇甙、酚甙、氰甙、酯甙等四类。 ①、醇甙:是由甙元醇羟基与糖端基羟基脱水缩合而成。醇甙甙元中不少是萜类和醇类化合物,其中强心甙和皂甙是醇甙中的重要类型。例如:红景天甙和獐牙菜苦甙均是醇甙,其结构如下: ②酚甙:是由甙元酚羟基与糖分子端基羟基脱水缩合而成。例如天麻中的天麻丹皮中的丹皮甙都是酚甙,其结构如下: ③、氰甙:主要是指一类具α-羟腈基的甙元与糖组成的氧甙,其特性是经酶作用生 成的甙元α-羟腈很不稳定。 ④、酯甙:是由甙元羧基和糖的半缩醛羟基脱水连接而成。这种甙的甙键既有缩醛的性质又有酯的性质,易为稀酸和稀碱水解,如山慈姑甙A和B皆为酯甙,有抗霉菌活性。 硫甙(S-甙):是由甙元上巯基与糖分子端基羟基脱水缩合而成。如萝卜中的萝卜甙就是巯甙,煮萝卜时的特殊气味与含硫甙元的分解产物有关。 氮甙(N—甙):是由甙元上氮原子与糖分子的端基碳直接相连而成。氮甙在生物化学领域中有十分重要的性质,其中核糖和脱氧核糖与碱基所组成的配糖体称为苷,即核苷。核苷类是嘧啶或嘌呤的核糖或α-去氧核糖甙,如腺苷、鸟苷、胞苷、巴豆中的巴豆甙。 碳甙(C—甙):是由甙元的碳原子与糖分子的端基碳直接连接而成。常见的碳甙以黄酮碳甙为最多。碳甙常与氧甙共存。葛根中具有扩冠作用的有效成分葛根素、葛根素木糖甙,芦荟中主要致泻的有效成分芦荟甙都是碳甙。 2、黄酮的定义、母核结构、原子标号、类型和生物活性 定义:黄酮类化合物是一类具有C6-C3-C6基本母核(1)的天然产物,即两个苯环(A-与 B-环)通过中央三碳链相互连接而成的一系列化合物。其中C3部分可以是脂链,也可以与C6部分形成六元(2)或五元(3)氧杂环。 母核结构: 类型及原子编号:根据C3部分的成环、氧化和取代方式的差异,黄酮体可分为黄酮类、黄酮醇类、二氢黄酮类、二氢黄酮醇类、异黄酮类、二氢异黄酮类、查耳酮类、二氢查耳酮类、花色素类、黄烷-3-醇类、黄烷-3,4-二醇类、双苯吡酮(酮)类、噢哢(橙酮)类等。此外,还有由两分子黄酮,或两分子二氢黄酮,一分子黄酮及一分子二氢黄酮按C-C或C-O-C键方式连接而成的双黄酮类化合物。14种 生物活性:黄酮及其甙类化合物的主要生物活性有:止咳平喘和祛痰作用、心血管系统活性、抗菌及抗病毒活性、抗肿瘤活性、抗氧化自由基活性、保肝活性和其它生物活性。 3、醌的分类,每种类型的母核及编号、每一类的生物活性 醌是含有共轭环己二烯二酮或环己二烯二亚甲基结构,即含有两个双键的六元环状二酮(含两个羰基)结构的一类有机化合物的总称。 醌类分子母核的结构类型主要有苯醌、萘醌、蒽醌和菲醌四种类型。 苯醌类化合物的结构类型:苯醌类(benzoquinones)化合物从结构上可分为邻苯醌、对苯醌和间苯醌三类,间苯醌非常不稳定,一般无法得到;邻苯醌也不稳定;故天然产物中存在的苯醌色素多为对苯醌的衍生物。 萘醌类化合物的结构类型:萘醌类化合物分为α(1,4)-萘醌,β(1,2)-萘醌及Amphi (2, 6) -萘醌三种类型,其母核结构如下。 蒽醌类化合物的结构类型:蒽醌的正名为9,10-蒽二酮,是由三环构成的。蒽醌衍生物具有如下基本母核结构:

天然药物化学试题及答案重庆三峡学院汇总

重庆三峡学院2013——2014第2学期天然药物化学考试试题(A) 一、名词解释(每题3分,共30分) 1、天然药物化学:是运用现代科学理论与方法研究天然药物中化学成分的一门学科。 2、异戊二烯法则:在萜类化合物中,常可看到不断重复出现的C5单位骨架。 3、单体:具有单一化学结构的物质。 4、有效成分:天然药物中具有临床疗效的活性成分。 5、HR-MS: 高分辨质谱,可以预测分子量。 6、液滴逆流分配法:可使流动相呈液滴形式垂直上升或下降,通过固定相的液柱,实现物质的逆流色谱分离。 7、UV:红外光谱,可以预测分子结构。 8、盐析:向含有待测组分的粗提取液中加入高浓度中性盐达到一定的饱和度,使待测组分沉淀析出的过程。 9、透析:是膜分离的一种,用于分离大小不同的分子,透析膜只允许小分子通过,而阻止大分子通过的一种技术。 10、萃取法:是多羟基醛或多羟基酮类化合物。是组成糖类及其衍生物的基本单元。 二.选择题(每小题1分,共20分) 1 C 2 D 3 D 4 C 5 D 6 C 7 B 8 B 9 B 10 B 11 D 12 B 13 B 14 D 15 C 16 B 17 A 18 A 19 C 20B

1.糖的端基碳原子的化学位移一般为()。 A δppm<50 B δppm60~90 C δppm90~110 D δppm120~160 E δppm>160 2.紫外灯下常呈蓝色荧光的化合物是()。 A黄酮苷 B酚性生物碱 C萜类 D 7-羟基香豆素 3.除去水提取液中的碱性成分和无机离子常用()。 A沉淀法 B透析法 C水蒸气蒸馏法 D离子交换树脂法 4.中药的水提液中有效成分是亲水性物质,应选用的萃取溶剂是()。 A丙酮 B乙醇 C正丁醇 D氯仿 5.黄酮类化合物中酸性最强的是()黄酮。 A 3-OH B 5-OH C 6-OH D 7-OH 6.植物体内形成萜类成分的真正前体是(),它是由乙酸经甲戊二羟酸而生成的。 A.三磷酸腺苷 B.焦磷酸香叶酯 C.焦磷酸异戊烯酯 D.焦磷酸金合欢酯 7.将穿心莲内酯制备成衍生物,是为了提高疗效同时也解决了()。 A.增加在油中的溶解度 B.增加在水中的溶解度 C.增加在乙醇中的溶解度 D.增加在乙醚中的溶解度 8.在萜类化合物结构为饱和内酯环中,随着内酯环碳原子数的减少,环的张力增大,IR光谱中吸收波长()。 A.向高波数移动 B.向低波数移动 C.不发生改变 D.增加吸收强度

天然药物化学重点知识总结

第一章总论 天然药物化学就是运用现代科学理论与方法研究天然药物中化学成分的一门学科。其研究内容包括各类天然药物的化学成分(主要就是生理活性成分或药效成分)的结构特点、物理化学性质、提取分离方法以及主要类型化学成分的结构鉴定等。 一、中草药有效成分的提取 从药材中提取天然活性成分的方法有溶剂法、水蒸气蒸馏法及升华法等。 ●溶剂提取法的原理:溶剂提取法就是根据“相似相容”原理进行的,通过选择适当溶剂将中药中的化学成分从药材中提取出来的一种方法。(考试时请这样回答哦!) *常用溶剂极性有弱到强排列:石油醚<环己烷<苯<乙醚<氯仿<醋酸乙酯<正丁醇<丙酮<乙醇<甲醇<水(丙酮,乙醇,甲醇能够与水任意比例混合。) *常用溶剂的性质:亲脂性有机溶剂、亲水性有机溶剂、水 *一般情况下,分子较小,结构中极性基团较多的物质亲水性较强。而分子较大,结构上极性基团少的物质则亲脂性较强。 ●天然药物中各类成分的极性 ·多糖、氨基酸等成分极性较大,易溶于水及含水醇中; ·鞣质就是多羟基衍生物,列为亲水性化合物; ·苷类的分子中结合有糖分子,羟基数目多,能表现强亲水性; ·生物碱盐,能够离子化,加大了极性,就变成了亲水性化合物; ·萜类、甾体等脂环类及芳香类化合物因为极性较小,易溶于氯仿、乙醚等亲脂性溶剂中; ·油脂、挥发油、蜡、脂溶性色素都就是强亲脂性成分,易溶于石油醚等强亲脂性溶剂中 总之,天然化合物在溶剂中的溶解遵循“相似相溶”规律。即极性化合物易溶于极性溶剂,非极性化合物易溶于非极性溶剂,分子量太大的化合物往往不溶于任何溶剂。 溶剂提取法的关键就是选择适宜的溶剂(选择溶剂依据:根据溶剂的极性与被提取成分及其共存杂质的性质,决定选择何种溶剂)(各溶剂法分类见《天然药物化学辅导教材》P5) (三)水蒸气蒸馏法 只适用于具有挥发性、能随水蒸气蒸馏而不被破坏,与水不发生反应,且难溶或不溶于水的成分的提取。天然药物中的挥发油、某些小分子生物碱如麻黄碱、烟碱、槟榔碱以及某些小分子的酚性物质如牡丹酚等的提取可采用水蒸气蒸馏法。 (四)升华法 某些固体物质如水杨酸、苯甲酸、樟脑等受热在低于其熔点的温度下,不经过熔化就可直接转化为蒸气,蒸气遇冷后又凝结成固体称为升华。天然药物中有一些成分具有升华性质,能利用升华法直接中药材中提取出来。但天然药物成分一般可升华的很少。 果蔬脱水新技术实质上升华脱水法。 (五)超临界二氧化碳流体萃取法(了解部分,见《天然药物化学辅导教材》P6) 三、中草药有效成分的分离与精制 (一) 根据物质溶解度不同进行分离 1、原理: 相似相溶 2、方法: 结晶法、试剂沉淀法、酸碱沉淀法、铅盐沉淀法、盐析法 (二) 根据物质分配系数的不同进行分离 K = CU / CL(CU:上相,CL:下相),K值与萃取次数成反比,即K值越大,萃取次数越少,反之越多。 ⑴分配系数(K值)与萃取次数的关系 原理: 利用物质在两种互不相溶的溶剂中的分配系数的不同达到分离。 分配系数K值:一种溶质在两相溶剂中的分配比。K值在一定的温度与压力下为一常数。 ⑵分离因子(β值)与分离难易的关系 分离因子β:两种溶质在同一溶剂系统中分配系数的比值。b = KA / KB (KA>KB) b值越大,越易分离; b =1时,无法分离。 ⑶酸碱度(pH值)对分配比的影响 溶剂系统PH的变化影响酸性、碱性、及两性有机化合物的存在状态(游离型或离解型),从而影响在溶剂系统中的分配比。(游离型------极性小的溶剂;离解型-------极性大的溶剂) ◆PH<3,酸性物质多呈游离型(HA)、碱性物质则呈离解型(BH+); ◆ PH>12,酸性物质呈离解型(A-)、碱性物质以游离型(B)存在。 【纸色谱法 PC】(以滤纸纤维为惰性载体的平面色谱) 支持剂:纤维素(滤纸) 固定相:纤维素上吸附的水(20-25%) 展开剂:与水不相混溶的有机溶剂或水饱与的有机溶剂 Rf值: A、物质极性大, Rf值小; B、物质极性小, Rf值大。 应用:适合于分离亲水性较强的物质。 【液-液分配柱色谱法】(固定相主要为化学键合)

相关主题
文本预览
相关文档 最新文档