当前位置:文档之家› 4.2-同角三角函数基本关系式及诱导公式练习题

4.2-同角三角函数基本关系式及诱导公式练习题

4.2-同角三角函数基本关系式及诱导公式练习题
4.2-同角三角函数基本关系式及诱导公式练习题

§4.2 同角三角函数基本关系式及诱导公式

一、选择题

1. cos ?

????

20π3=( ) A.12 B.32 C .-12 D .-32

解析 cos ? ????-20π3=cos ? ????6π+2π3=cos 2π3=cos ?

?

???π-π3=-cos π3=-12,故选C. 答案 C

2. 若tan α=3,则

2sin 2cos a

α

的值等于( ) A .2 B .3 C .4 D .6

解析 因为2sin 2cos a α=2

2sin cos cos a

αα

=2tan 6α=,所以选D. 答案 D

3.若cos(2π-α)=

53且α∈? ??

??

-π2,0,则sin(π-α)=( ). A .-53 B .-23 C .-13 D .±2

3

解析 cos(2π-α)=cos α=

53,又α∈? ????

-π2,0, ∴sin α=-1-cos 2

α=-1-? ??

??532=-23.

∴sin(π-α)=sin α=-2

3.

答案 B

4.若角α的终边落在直线x +y =0上,则sin α1-sin 2

α+1-cos 2α

cos α的值等于( ).

A .-2

B .2

C .-2或2

D .0 解析 原式=

sin α|cos α|+|sin α|

cos α

,由题意知角α的终边在第二、四象限,sin

α与cos α的符号相反,所以原式=0.

答案 D

5.已知sin 2α=-

2425,α∈? ??

??

-π4,0,则sin α+cos α=( ) A .-15 B.1

5

C .-75 D.75

解析:(sin α+cos α)2=1+2sin αcos α=1+sin 2α=125

, 又α∈? ????

-π4,0,sin α+cos α>0,

所以sin α+cos α=1

5.

答案:B

6.已知f (cos x )=cos 3x ,则f (sin 30°)的值为( ). A .0 B .1 C .-1 D.3

2 解析 ∵f (cos x )=cos 3x ,

∴f (sin 30°)=f (cos 60°)=cos 180°=-1. 答案 C

7.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为

( ).

A .1+ 5

B .1- 5

C .1± 5

D .-1- 5 解析 由题意知:sin θ+cos θ=-m 2,sin θcos θ=m

4,

又(sin θ+cos θ)2=1+2sin θcos θ, ∴m 24=1+m

2

解得:m =1±5,又Δ=4m 2-16m ≥0, ∴m ≤0或m ≥4,∴m =1- 5. 答案 B

二、填空题

8.若sin(π+α)=-1

2

,α∈

?

?

?

?

?

π

2

,π,则cos α=________.

解析∵sin(π+α)=-sin α,∴sin α=1

2

,又α∈

?

?

?

?

?

π

2

,π,

∴cos α=-1-sin2α=-

3 2

.

答案-

3 2

9.已知cosα=-

5

13

,且α是第二象限的角,则tan(2π-α)=________.

解析由α是第二象限的角,得sinα=1-cos2α=12

13

,tanα=

sinα

cosα

=-

12

5

则tan(2π-α)=-tanα=12 5

.

答案12 5

10.已知α为第二象限角,则cos α1+tan2α+sin α1+1

tan2α

=________.

解析:原式=cos α1+sin2α

cos2α

+sin α1+

cos2α

sin2α

=cos α

1

cos2α

+sin α

1

sin2α

=cos α

1

-cos α

+sin α

1

sin α

=0.

答案:0

11.已知sin αcos α=1

8

,且

π

4

<α<

π

2

,则cos α-sin α的值是________.

解析(sin α-cos α)2=1-2sin αcos α=3 4,

又∵π

4

<α<

π

2

,sin α>cos α.∴cos α-sin α=-

3

2

.

答案-

3 2

12.已知sin α=12+cos α,且α∈?

?

???0,π2,则cos 2αsin ? ???

?α-π4的值为________.

解析 依题意得sin α-cos α=1

2,又(sin α+cos α)2+(sin α-cos α)2

=2,即(sin α+cos α)2

+? ????122=2,故(sin α+cos α)2

=74;又α∈?

????0,π2,

因此有sin α+cos α=72,所以cos 2αsin ? ???

?α-π4

cos 2α-sin 2α

2

2sin α-cos α=-2

(sin α+cos α)=-142

. 答案 -142

三、解答题

13.已知sin α=255,求tan(α+π)+sin ?

??

??

5π2+αcos ? ??

??

5π2-α的值.

解析 ∵sin α=25

5>0,∴α为第一或第二象限角.

当α是第一象限角时,cos α=1-sin 2α=55

, tan(α+π)+sin ?

??

??

5π2+αcos ? ??

??

5π2-α=tan α+cos αsin α

=sin αcos α+cos αsin α=1sin αcos α=52

. 当α是第二象限角时,cos α=-1-sin 2

α=-5

5

原式=1sin αcos α=-5

2.

14.已知

1+tan π+α1+tan 2π-α

=3+22,

求cos 2

(π-α)+sin ? ????3π2+α·cos ? ????π2+α+2sin 2(α-π)的值. 解析:由已知得1+tan α

1-tan α

=3+22,

∴tan α=

2+224+22=1+22+2=2

2

.

∴cos 2

(π-α)+sin ? ????3π2+αcos ? ????

π2+α+2sin 2(α-π) =cos 2α+(-cos α)(-sin α)+2sin 2α =cos 2

α+sin αcos α+2sin 2

α =cos 2α+sin αcos α+2sin 2α

sin 2α+cos 2α

=1+tan α+2tan 2

α1+tan 2α

=1+22+1

1+12=4+23.

15.化简:

k π-α

k -

π-α]

k +π+α

k π+α

(k ∈Z).

解析 当k =2n (n ∈Z)时, 原式=n π-α

n -

π-

α]

n +π+α

n π+α

=-α

-π-α

π+α

α

-sin α-cos α-sin α·cos α

=-1;

当k =2n +1(n ∈Z)时, 原式=n +π-αn +1-

π-α]

n +1+π+αn +π+α]

π-α

α

sin α

π+α

sin α·cos αsin α-cos α

=-1.

综上,原式=-1.

16.已知关于x 的方程2x 2-(3+1)x +m =0的两根sin θ和cos θ,θ∈(0,2π),求:

(1)sin 2θsin θ-cos θ+cos θ

1-tan θ的值;

(2)m 的值;

(3)方程的两根及此时θ的值.

解析 (1)原式=sin 2θsin θ-cos θ+cos θ

1-

sin θ

cos θ

=sin 2θsin θ-cos θ+cos 2θ

cos θ-sin θ =sin 2

θ-cos 2

θsin θ-cos θ

=sin θ+cos θ. 由条件知sin θ+cos θ=

3+1

2

, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+1

2.

(2)由sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ =(sin θ+cos θ)2

,得1+m =?

??

??3+122,即m =3

2.

(3)由

?????

sin θ+cos θ=

3+1

2

,sin θ

·cos θ=

3

4

?

????

sin θ=32,

cos θ=12或

?????

sin θ=1

2,cos θ

=32

.

又θ∈(0,2π),故θ=π6或θ=π3

.

(完整版)三角函数诱导公式一览表(打印)

三角函数有关诱导公式一览表 公式 ) ( tan ) 2 tan( cos ) 2 cos( sin ) 2 sin( .1Z k k k k ∈ ? ? ? ? ? = + = + = + α α π α α π α α π ? ? ? ? ? = + - = + - = + α α π α α π α α π tan ) tan( cos ) cos( sin ) sin( .2 ? ? ? ? ? - = - = - - = - α α α α α α tan ) tan( cos ) cos( sin ) sin( .3 ? ? ? ? ? - = - - = - = - α α π α α π α α π tan ) tan( cos ) cos( sin ) sin( .4 ? ? ? ? ? = - = - α α π α α π sin ) 2 cos( cos ) 2 ( sin .5 ? ? ? ? ? - = + = + α α π α α π sin ) 2 cos( cos ) 2 ( sin .6 ? ? ? ? ? - = - - = - α α π α α π sin ) 2 3 cos( cos ) 2 3 ( sin .7 口诀函数名不变,符号看象限函数名改变,符号看先象限 图形 简记结合图形,7组公式可用口诀概括为:“奇变偶不变,符号看象限” 说明①公式的推导思路:前面4组通过找角的终边位置关系—坐标关系—三角函数关系而得出(后面3组通过角的变换,进而借助前面的有关公式转化得到)②各组诱导公式都可用含角度的形式

③在应用诱导公式解题时,基本思路是:“负化正,大化小,化成锐角再求值”。 一定要记清特殊角的三角函数值,根据问题做到准确应用,正确求解。

同角三角函数与诱导公式

同角三角函数基本关系 1,平方关系:sin 2α+cos 2α=1; 2,商数关系:tan α=α αcos sin 3,同角三角函数的关系式的基本用途: 根据一个角的某一个三角函数值,求出该角的其他三角函数值;化简同角三角函数式;证明同角的三角恒等式. 题型一,同角间的计算 利用基本关系计算,开方时注意正负 1,若sin α=45 ,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±43 2,化简1-sin 2160°的结果是( ) A .cos160° B .-cos160° C .±cos160° D .±|cos160°| 3,若cos α=-817 ,则sin α=________,tan α=________ 4,若α是第四象限的角,tan α=-512 ,则sin α等于( ) A.15 B .-15 C.315 D .-513 5,若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α 的值为( ) A .3 B .-3 C .1 D .-1 6,计算1-2sin40°·cos40°sin40°-1-sin 240° =________。 7,已知8 1cos sin =?αα,则ααsin cos -的值等于( ) A .±34 B .±23 C .23 D .-2 3

8,已知 2cos sin cos sin =-+θθθθ,求θθcos sin ?的值。 9,已知sin α·cos α= 81,且24παπ<<,则cos α-sin α的值是多少? 10,已知sin θ +cos θ=51,θ∈(0,π),求值: (1)tan θ; (2)sin θ-cos θ;(3)sin 3θ+cos 3θ。 11,求证: ()x x x x x x x x cos sin 1sin cos 2cos 1sin sin 1cos ++-=+-+。

必修4三角函数的诱导公式专项练习题

训练专题化设计 能力系统化培养 必修4三角函数的诱导公式专项练习题 班级: 姓名: 座号: 一、选择题 1. 已知sin(π+α)=4 5 ,且α是第四象限角,则cos(α-2π)的值是 【 】 (A)- 5 3 (B) 53 (C)±5 3 (D) 5 4 2. 若cos100°= k ,则tan ( -80°)的值为 【 】 (A) (D) 3. 在△ABC ,则△ABC 必是 【 】 (A)等边三角形 (B)直角三角形 (C)钝角三角形 (D)锐角三角形 4. 已知角α终边上有一点P (3a ,4a )(a ≠0),则sin(450°-α)的值是 【 】 (A)-45 (B)-35 (C)±3 5 (D)±4 5 5. 设A ,B ,C 是三角形的三个内角,下列关系恒等成立的是 【 】 (A)cos(A +B )=cos C (B)sin(A +B )=sin C (C)tan(A +B )=tan C (D)sin 2A B +=sin 2 C 二、填空题 6. 若1cos()2A π+=-,则sin()2 A π +的值是 . 7. 若cos() (||1)6m m πα-=≤,则2 sin()3 πα-是 . 8. 计算: tan(150)cos(570)cos(1140) tan(210)sin(690) -??-??-?-??-?= . 9. 化简:sin 2( 3π-x )+sin 2(6 π +x )= . 10. = . 三、解答题 11. 化简23 tan()sin ()cos(2) 2cos ()tan(2) π πααπααπαπ-?+?---?-. 12. 设f (θ)=322 2cos sin (2)cos()322cos ()cos(2)θπθθπθπθ+-+--+++-,求f (3π )的值.

《三角函数的诱导公式》(学案)

三角函数的诱导公式(第1课时)(学案) 一.教学目标 1.知识与技能 (1)能够借助三角函数的定义推导三角函数的诱导公式。 (2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。 2.过程与方法 (1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。 (2)通过对诱导公式的探求和运用,提高学生分析问题和解决问题的能力。 3.情感、态度、价值观 (1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。 (2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。 二.教学重点与难点 教学重点:探求π-α的诱导公式。π+α与-α的诱导公式在小结π-α的诱导公式发现过程的基础上,教师引导学生推出。 教学难点:π+α,-α与角α终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。 三.教学方法与教学手段 问题教学法、合作学习法,结合多媒体课件 四.教学过程 角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值.怎么求呢? (一)情境创设及问题提出 如何将任意角三角函数求值问题转化为0°~360°角三角函数 求值问题。 【情境创设】摩天轮旋转一周(比如如图30°角的位置)后又会 回到原位,你能否从数学角度或者用数学学语言来刻画一下什么是 “回到原位”?摩天轮旋转一周后,发生变化和没有变化的量分别 是什么?它们之间有何关系?从中你能得到什么结论? 一般地,由三角函数的定义可以知道,终边相同的角的同一三 角函数值__________,三角函数看重的就是终边位置关系。即有: (二)尝试推导 如何利用对称推导出角π-α与角α的三角函数之间的关系。 【问题2】你能找出和30°角正弦值相等,但终边不同的角吗? 角与角α的终边关于y轴对称,有:

同角三角函数基本关系式与诱导公式

第2节同角三角函数基本关系式与诱导公式 最新考纲 1.理解同角三角函数的基本关系式:sin2α+cos2α=1,sin α cos α =tan α;2.能利用单位圆中的三角函数线推导出π 2± α,π±α的正弦、余弦、正 切的诱导公式. 知识梳理1.同角三角函数的基本关系 (1)平方关系:sin2α+cos2α=1. (2)sin α cos α =tan__α. 2.三角函数的诱导公式 [常用结论与微点提醒] 1.诱导公式的记忆口诀:奇变偶不变,符号看象限. 2.同角三角函数基本关系式的常用变形: (sin α±cos α)2=1±2sin αcos α. 3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. 诊断自测 1.思考辨析(在括号内打“√”或“×”)

(1)sin(π+α)=-sin α成立的条件是α为锐角.( ) (2)六组诱导公式中的角α可以是任意角.( ) (3)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π 2的奇数倍和偶数倍,变与不变指函数名称的变化.( ) (4)若sin(k π-α)=13(k ∈Z ),则sin α=1 3.( ) 解析 (1)对于α∈R ,sin(π+α)=-sin α都成立. (4)当k 为奇数时,sin α=1 3, 当k 为偶数时,sin α=-1 3. 答案 (1)× (2)√ (3)√ (4)× 2.(2018·成都诊断)已知α为锐角,且sin α=4 5,则cos (π+α)=( ) A.-35 B.35 C.-45 D.45 解析 因为α为锐角,所以cos α=1-sin 2α=3 5,所以cos(π+α)=-cos α =-3 5,故选A. 答案 A 3.已知sin ? ????5π2+α =1 5,那么cos α=( ) A.-25 B.-15 C.15 D.25 解析 ∵sin ? ????5π2+α=sin ? ???? π2+α=cos α,∴cos α=15.故选C. 答案 C 4.(必修4P22B3改编)已知tan α=2,则 sin α+cos α sin α-cos α 的值为________. 解析 原式=tan α+1tan α-1=2+1 2-1 =3. 答案 3 5.已知sin θ+cos θ=43,θ∈? ? ???0,π4,则sin θ-cos θ的值为________. 解析 ∵sin θ+cos θ=43,∴sin θcos θ=7 18.

(完整版)三角函数诱导公式总结

三角函数诱导公式与同角的三角函数 【知识点1】诱导公式及其应用 公式一: sin()-sin αα-=; cos()cos αα-= ; tan()tan αα-=- 公式二: ααπ-sin sin(=+); ααπ-cos cos(=+); ααπtan tan(=+). 公式三: ααπsin sin(=-); ααπ-cos cos(=-); ααπtan tan(-=-) 公式四: sin(2sin παα-=-); cos(2cos παα-=); tan(2tan παα-=-) 公式五: sin( 2π-α) = cos α; cos(2π -α) = sin α. 公式六: sin(2π+α) = cos α; cos(2π +α) =- sin α. 公式七: sin(32π-α)=- cos α; cos(32π -α) = -sin α. 公式八: sin(32π+α) = -cos α; cos(32 π +α) = sin α. 公式九:απαsin )2sin(=+k ; απαcos )2cos(=+k ; απαtan )2tan(=+k .(其中Z ∈k ). 方法点拨: 把α看作锐角 一、前四组诱导公式可以概括为:函数名不变,符号看象限 公式(五)到公式(八)总结为一句话:函数名改变,符号看象限(原函数所在象限) 二、奇变偶不变,符号看象限 将三角函数的角度全部化成απ +?2 k 或是απ-? 2 k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函 数名,偶数就不变

例1、求值(1)29cos( )6π= __________. (2)0tan(855)-= _______ ___. (3)16 sin()3 π-= __________. 的值。 求:已知、例)sin(2)4cos() 3sin()2cos( , 3)tan( 2απααπαπαπ-+-+--=+ 例3、 )2cos()2sin(21++-ππ【 】 A .sin2-cos2 B .cos2-sin2 C .±(sin2-cos2) D .sin2+cos2 例4、下列各式不正确的是【 】 A . sin (α+180°)=-sin α B .cos (-α+β)=-cos (α-β) C . sin (-α-360°)=-sin α D .cos (-α-β)=cos (α+β) 例5、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于【 】 A .-23 m B .-32 m C .23 m D .3 2 m 例6、已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为【 】 A .5 B .-5 C .6 D .-6 例7、试判断 sin(2)cos() (9tan (5) 2αππαα παπα-+??+- ??? ··cos 为第三象限角)符号 例8、化简3 sin(3)cos()cos(4) 25 tan(3)cos()sin() 22 πααππαπαπααπ-?-?+-?+?- 例9、已知方程sin(α - 3π) = 2cos(α - 4π),求 ) sin()2 3sin(2) 2cos(5)sin(α--α-π α-π+α-π 例10、若1sin()3 πθ-= ,求 []cos() cos(2) 3 3 cos()1cos sin()cos()sin() 22 πθθππθθ θπθπθπ+-+ --?-?--+的值. 提示:先化简,再将1sin 3 θ=代入化简式即可.

三角函数诱导公式学案(一)

1.2.三角函数诱导公式学案(一) 预习案(限时20分钟) 学习目标: (1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式; (2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题 学习重点: 用联系的观点发现并证明诱导公式,体会把未知问题化归为已知问题的思想方法 学习难点:如何引导学生从单位圆的对称性与任意角终边的对称性中,发现问题,提出研究方法. 预习指导:请根据任务提纲认真预习课本P23-25 ? 任务一:探究三角函数诱导公式(二) (三)(四) 思考: (1)各象限内三角函数值的符号是什么?(只讨论正弦、余弦、正切) (2)任意角的三角函数的定义是什么? (3)公式一的内容与作用是什么? 探究一:任意角α与(π+α)三角函数值的关系. ①α与 (π+α)角的终边关系如何? ②设α与(π+α)角的终边分别交单位圆于点P 1,P 2,则点P 1与P 2位置关系如何? ③设点P 1(x ,y ),那么点P 2的坐标怎样表示? ④sin α与sin(π+α),cos α与cos(π+α),tan α与tan(π+α)的关系如何? 利用三角函数定义,自己探索,归纳成公式(二) _______)tan(_______)cos(_______)sin(=+=+=+απαπαπ 探究二:任意角α与(-α)三角函数值的关系. ①α与(-α)角的终边位置关系如何? ②设α与(-α)角的终边分别交单位圆于点P 1,P 2点P 1与P 2位置关系如何? ③设点P 1(x ,y ),则点P'的坐标怎样表示? ④sin α与sin(-α),cos α与cos(-α) ,tan α与tan(-α)关系如何? 利用三角函数定义,经过探索,归纳成公式(三) _______)tan(_______)cos(_______)sin(=-=-=-ααα 探究三:α与(π-α)的三角函数值的关系. ①α与(π-α)角的终边位置关系如何? ②设α与(π-α)角的终边分别交单位圆于点P 1,P 2点P 1与P 2位置关系如何? ③设点P 1(x ,y ),则点P'的坐标怎样表示? ④sin α与sin(π-α),cos α与cos(π-α) ,tan α与tan(π-α)关系如何? 经过探索,归纳成公式(四) _______)tan(_______)cos( _______)sin(=-=-=-απαπαπ 预习检测 1.cos 225?=_________ 2.)45sin(ο-=_________ 3.)150tan(ο =________ _______)180tan()cos()180sin(.4=--?+οοααα 5.若,31)tan(=+απ则=αtan __________________

三角函数诱导公式专项练习(含答案)

三角函数诱导公式专项练习 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.() A. B. C. D. 2.的值为() A. B. C. D. 3.已知,则cos(60°–α)的值为 A. B. C. D.– 4.已知,且,则()A. B. C. D. 5.已知sin(π-α)=-,且α∈(-,0),则tan(2π-α)的值为( ) A. B.- C.± D. 6.已知,则=( ) A. B. C. D. 7.已知,,则() A. B. C. D. 8.已知,则() A. B. - C. D. - 9.如果,那么 A. - B. C. 1 D. -1 10.已知,则() A. B. C. D. 11.化简的值是()

A. B. C. D. 12.的值是() A. B. C. D. 13.已知角的终边经过点,则的值等于 A. B. C. D. 14.已知,则() A. B. C. D. 15.已知的值为()A. B. C. D. 16.已知则() A. B. C. D. 17.已知,且是第四象限角,则的值是( ) A. B. C. D. 18.已知sin=,则cos=( ) A. B. C.- D.- 19.已知cos α=k,k∈R,α∈,则sin(π+α)=( ) A.- B. C.± D.-k 20.=( ) A. sin 2-cos 2 B. sin 2+cos 2 C.±(sin 2-cos 2) D. cos 2-sin 2 21.的值为 A. B. C. D. 22.() A. B. C. D.

三角函数诱导公式大全

三角函數誘導公式大全 三角函数诱导公式 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为:

对于k2π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即 sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(42π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k2360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 上述记忆口诀,一全正,二正弦,三正切,四余弦

《三角函数的诱导公式》教学设计

1.3 三角函数的诱导公式 (名师:杨峻峰) 一、教学目标 (一)核心素养 从对称性出发,获得一些三角函数的性质.会选择合适的诱导公式将任意角的三角函数转化为锐角三角函数. (二)学习目标 1. 牢固掌握五组诱导公式. 2. 理解和掌握公式的内涵及结构特征,熟练运用公式进行三角函数的求值、化简及恒等证明. 3. 通过诱导公式的推导,培养学生的观察能力、分析归纳能力. 4.渗透把未知转化为已知以及分类讨论的数学思想. (三)学习重点 熟练、准确地运用公式进行三角函数求值、化简及证明. (四)学习难点 相关角终边的几何对称关系及诱导公式结构特征的认识,诱导公式的推导、记忆及符号判断. 二、教学设计 (一)课前设计 1. 阅读教材第23页至第27页,填空: (1)如图,πα+的终边与角α的终边关于 原点 对称; (2)如图,α-的终边与角α的终边关于 x轴 对称; (3)如图,πα-的终边与角α的终边关于 y 轴 对称; (4)如图, 2 π α-的终边与角α的终边关于 直线y =x 对称;

(5)诱导公式: 公式二:()sin πα+=sin α-,()cos πα+=cos α-,()tan πα+=tan α; 公式三:()sin α-=sin α-,()cos α-=cos α,()tan α-=tan α-; 公式四:()sin πα-=sin α,()cos πα-=cos α-,()tan πα-=tan α-; 公式五:sin 2πα??-= ???cos α,cos 2πα?? -= ???sin α; 公式六:sin 2πα??+= ???cos α,cos 2πα?? += ??? sin α-. 2.预习自测 1.下列选项错误的是( ) A.利用诱导公式二可以把第三象限的三角函数化为第一象限的三角函数.? B.利用诱导公式三可以把负角的三角函数化为正角的三角函数. ? C. sin cos 2παα? ?+=- ?? ?. ? ? ? D .若α为第四象限角,则sin cos 2παα? ?-=- ???.? ? ? 答案:C. (二)课堂设计 1.知识回顾

三角函数诱导公式及推导

三角函数诱导公式及推 导 -CAL-FENGHAI.-(YICAI)-Company One1

三角函数诱导公式:所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。 常用公式:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z) 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=- sinα cos(π+α)=-cosα tan(π+α)= tanα cot(π+α)=cotα 公式三:任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)= cosα tan(-α)=-tanα cot(-α)=-cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)= cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六:π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα sin(π/2-α)=cosα cos(π/2+α)=-sinα cos(π/2-α)=sinα tan(π/2+α)=-cotα tan(π/2-α)=cotα cot(π/2+α)=-tanα cot(π/2-α)=tanα 推算公式:3π/2 ±α与α的三角函数值之间的关系: sin(3π/2+α)=-cosα sin(3π/2-α)=-cosα

《三角函数的诱导公式》

三角函数的诱导公式(第1课时) 南京师范大学附属中学刘洪璐 教材:苏教版《普通高中课程标准实验教科书(必修4)·数学》第1.2.3节 一.教学目标 1.知识与技能 (1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。 (2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。 2.过程与方法 (1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。 (2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。 3.情感、态度、价值观 (1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。 (2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。 二.教学重点与难点 教学重点:探求π-α的诱导公式。π+α与-α的诱导公式在小结π-α的诱导公式发现过程的基础上,教师引导学生推出。 教学难点:π+α,-α与角α终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。 三.教学方法与教学手段 问题教学法、合作学习法,结合多媒体课件 四.教学过程 角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值.怎么求呢?先看一个具体的问题。 (一)问题提出 如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题。 【问题1】求390°角的正弦、余弦值. 一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系。即有:sin(α+k·360°) = sinα, cos(α+k·360°) = cosα,(k∈Z) tan(α+k·360°) = tanα。 这组公式用弧度制可以表示成sin(α+2kπ) = sinα, cos(α+2kπ) = co sα,(k∈Z) (公式一) tan(α+2kπ) = ta nα。

同角三角函数基本关系及诱导公式(经典)

§4.2 同角三角函数基本关系及诱导公式 1. 同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α =tan α. 2. 下列各角的终边与角α的终边的关系 3.

1. 判断下面结论是否正确(请在括号中打“√”或“×”) (1)sin(π+α)=-sin α成立的条件是α为锐角. ( × ) (2)六组诱导公式中的角α可以是任意角. ( × ) (3)若cos(n π-θ)=13(n ∈Z ),则cos θ=1 3 . ( × ) (4)已知sin θ=m -3m +5,cos θ=4-2m m +5,其中θ∈[π 2,π],则m <-5或m ≥3. ( × ) (5)已知θ∈(0,π),sin θ+cos θ=3-12,则tan θ的值为-3或-3 3 . ( × ) (6)已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α 的值是-1 3. ( √ ) 2. 已知sin(π-α)=log 814,且α∈(-π 2,0),则tan(2π-α)的值为 ( ) A .-25 5 B.255 C .±25 5 D. 52 答案 B 解析 sin(π-α)=sin α=log 814=-2 3, 又α∈(-π 2,0), 得cos α=1-sin 2α= 53, tan(2π-α)=tan(-α)=-tan α=-sin αcos α=25 5. 3. 若tan α=2,则2sin α-cos α sin α+2cos α 的值为________. 答案 34

高中数学专题学习:三角函数概念及诱导公式

第7讲 三角函数概念及诱导公式 【知识梳理】 1.任意角:按逆时针旋转所成的角为正角,按顺时针旋转所成的角为负角. 2.象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<,则sin y r α=,cos x r α=,()tan 0y x x α=≠. 9.三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正. 10.三角函数线:sin α=MP ,cos α=OM ,tan α=AT .

2019-2020学年高中数学 三角函数诱导公式学案2 新人教A版必修4.doc

2019-2020学年高中数学 三角函数诱导公式学案2 新人教A 版必 修 4 二、重点、难点 重点: 借助于单位圆,推导出正弦、余弦相互转化的诱导公式。 难点: 利用诱导公式解决有关三角函数求值、化简和恒等式证明问题。 三、教学过程 引入新课 1函数名称 )(2Z k k ∈+πα α- απ- απ+ αsin αcos αtan 2.(1)=6 sin π _____;=3 cos π _____。 (2)=4 sin π _____;=4 cos π _____。 (3)=0sin _____;=2 cos π _____。 那么能否将锐角推广到任意角呢? 猜测公式五: 。 3.角6π与3 π 的终边有何关系?利用单位圆,画出三角函数线,证明你的结论。 4.(1)=65sin π_____;=3cos π_____。(2)=43sin π_____;=4cos π_____。 (3)=65cos π_____;=3sin π_____。(4)=43cos π_____;=4 sin π_____。 x y O 知识链接:初中学习过,任意锐角的正弦 值等于它的余角的余弦值;任意锐角的余弦值 等于它的角的正弦值。 由2π βα= +得απ β-= 2 , )2cos(sin απα-=,)2 sin(cos απ α-=

猜测公式六: 。 5.你能否用公式二和五证明你猜测的公式六? 例题剖析 例1.求证:(1)ααπcos )2 3sin(-=+ (2)ααπsin )2 3cos(=+ 例2.已知3 1)75cos(=+α ,且?-<

必修4三角函数地诱导公式专项练习题

训练专题化设计能力系统化培养 必修4三角函数的诱导公式专项练习题 班级:姓名:座号:一、选择题 1. 已知sin(π+α)= 4 5 ,且α是第四象限角,则c os(α-2π)的值是【】 (A) -3 5 (B) 3 5 3 (C) ± 5 (D) 4 5 2. 若cos100 °= k,则t an ( - 80°)的值为【】 (A) -1 k k 2 (B) 1 k k 2 (C) 1 k k 2 (D) - 1 k k 2 3. 在△ABC 中,若最大角的正弦值是2 2 ,则△ABC 必是 【】 (A) 等边三角形(B) 直角三角形(C)钝角三角形(D)锐角三角形 4. 已知角α终边上有一点P(3a,4a)(a≠0),则s in(450 -°α)的值是【】 (A) -4 5 (B) - 3 5 3 (C) ± 5 4 (D) ± 5 5.设A,B,C 是三角形的三个内角,下列关系恒等成立的是【】 (A)cos( A +B)=cosC (B)sin( A+ B)=sin C(C)tan( A+B )=tanC (D)sin A B 2 =sin C 2 二、填空题 6. 若 1 cos( A) ,则s in( A) 的值是. 2 2 2 7. 若cos( ) m (| m |≤1) ,则s in( ) 6 3 是. 8. 计算:t an( 150 ) cos( 570 ) cos( 1140 ) tan( 210 ) sin( 690 ) = . 9. 化简:sin 2( 2( 2( -x)+sin 3 6 +x)= . 10. 化简: 1 2sin10 cos10 2 cos10 1 cos 170 = . 三、解答题 11. 化简 2 tan( ) sin ( ) cos(2 ) 2 3 cos ( ) tan( 2 ) . 12.设f(θ)= 3 2 2cos sin (2 ) cos( ) 3 2 2 2cos ( ) cos(2 ) ,求f( 3 )的值.

1.3.2三角函数诱导公式(二)(教、学案)

1. 3.2三角函数诱导公式(二) 【教材分析】 《三角函数的诱导公式》是普通高中课程标准实验教科书必修四第一章第三节,其主要内容是三角函数的诱导公式中的公式二至公式六。这节是诱导公式(二)的推导,在诱导公式(一)的推导中用到了一次对称变换,这节是利用两次对称变换推导到的诱导公式,充分体现对称变换思想在数学中的应用,在练习中加以应用,让学生进一步体会的任意性;综合诱导公式(一)、(二)总结出记忆诱导公式的口诀:“奇变偶不变,符号看象限”,了解从特殊到一般的数学思想的探究过程,培养学生用联系、变化的辩证唯物主义观点去分析问题的能力。诱导公式在三角函数化简、求值中具有非常重要的工具作用,要求学生能熟练的掌握和应用。 【教学目标】 1.借助单位圆,推导出正弦、余弦第五、六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题 2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。 3. 培养学生的化归思想,使学生认识到转化“矛盾”是解决问题的一条行之有效的途径. 【教学重点难点】 教学重点:掌握 απ±2角的正弦、余弦的诱导公式及其探求思路 教学难点:απ ±2角的正弦、余弦诱导公式的推导. 【学情分析】 学生在前面第一类诱导公式学习中感受了数形结合思想、对称变换思想在研究数学问题中的应用,初步形成用对称变换思想思考问题的习惯,对于两次对称变换思想的应用是上一节课的深化;学生对高中数学知识有了一定了解和掌握,也形成了自己的学习方法和习惯,对学习高中数学有了一定兴趣和信心,且具有了一定的分析、判断、理解能力和交流沟通能力。但由于诱导公式多,学生记忆困难,应用时易错,应该渗透归纳总结的学习方法,让学生找规律,体现自主探究、共同参与的新课改理念。 【教学方法】 1.学案导学:见后面的学案。 2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 【课前准备】 1.学生的学习准备:预习“三角函数的诱导公式”,完成预习学案。 2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。 3.教学手段:利用计算机多媒体辅助教学. 【课时安排】1课时 【教学过程】 一、预习检查、总结疑惑

同角三角函数的基本关系与诱导公式

同角三角函数的基本关系与诱导公式 [A 级 基础题——基稳才能楼高] 1.(2019·新疆普通高中学业水平考试)已知x ∈? ????-π2,0,cos x =45,则tan x 的值为( ) A.3 4 B .-34 C.43 D .-43 解析:选B 因为x ∈? ????-π2,0,所以sin x =-1-cos 2 x =-35,所以tan x = sin x cos x =-3 4 .故选B. 2.(2019·淮南十校联考)已知sin ? ????α-π3=13,则cos ? ????α+π6的值是( ) A .-1 3 B.13 C.22 3 D .-223 解析:选A ∵sin ? ????α-π3=13,∴cos ? ????α+π6=cos ??????π2+? ????α-π3=-sin ? ????α-π3=-1 3 ,故选A. 3.(2019·重庆一模)log 2? ????cos 7π4的值为( ) A .-1 B .-12 C.1 2 D.22 解析:选B log 2? ????cos 7π4=log 2? ????cos π4=log 222=-12.故选B. 4.(2019·遵义模拟)若sin ? ????π2+α=-35,且α∈( π2,π ),则sin(π-2α) =( ) A .-24 25 B .-1225 C.1225 D.2425

解析:选A ∵sin ? ????π2+α=cos α=-35,α∈? ????π2,π,∴sin α=45,∴sin(π-2α)=sin 2α=2sin αcos α=2×45×? ????-35=-24 25 .故选A. 5.(2019·沈阳模拟)若1+cos α sin α=2,则cos α-3sin α=( ) A .-3 B .3 C .-95 D.95 解析:选C ∵1+cos αsin α=2,∴cos α=2sin α-1,又sin 2α+cos 2 α=1, ∴sin 2α+(2sin α-1)2=1,5sin 2 α-4sin α=0,解得sin α=45或sin α=0(舍 去), ∴cos α-3sin α=-sin α-1=-9 5 .故选C. 6.(2019·庄河高中期中)已知sin ? ????α-π12=13,则cos ? ????α+17π12等于( ) A.1 3 B.22 3 C .-13 D .-223 解析:选A cos ? ????α+17π12=cos ??????3π2+? ????α-π12=sin ? ????α-π12=13.故选A. [B 级 保分题——准做快做达标] 1.(2019·宝鸡金台区质检)已知sin 2α=23,则tan α+1 tan α=( ) A. 3 B. 2 C .3 D .2 解析:选C tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α=2sin 2α=2 2 3=3.故选 C. 2.(2019·常德一中月考)已知α∈R ,sin α+2cos α=10 2 ,则tan 2α=( ) A.43 B.34

三角函数诱导公式记忆方法(打印版)

三角函数诱导公式及记忆方法 一、同角三角函数的基本关系式 二、 (一)基本关系 1、倒数关系 tanα ·cotα=1 s inα ·cscα=1 cosα ·secα=1 2、商的关系 sinα/cosα=tanαsecα/cscα=tanα cosα/sinα=cotαcscα/secα=cotα 3、平方关系 sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (二)同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 1、倒数关系 对角线上两个函数互为倒数; 2、商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 3、平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 二、诱导公式的本质 所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。 (一)常用的诱导公式 1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα,k∈z cos(2kπ+α)=cosα,k∈z tan(2kπ+α)=tanα,k∈z cot(2kπ+α)=cotα,k∈z sec(2kπ+α)=secα,k∈z csc(2kπ+α)=cscα,k∈z 2、公式二:α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)= tanα cot(π+α)= cotα sec (π+α) =—secα csc (π+α) =—cscα 3、公式三:任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)= cosα tan(-α)=-tanα cot(-α)=-cotα sec (—α) = secα csc (—α) =—cscα 4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sec (π—α) =—secα csc (π—α) = cscα 5、公式五:利用公式一和公式三可以得2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)= cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sec (2π—α) = secαcsc (2π—α) =—cscα

相关主题
文本预览
相关文档 最新文档