当前位置:文档之家› 优化制粉系统运行,有效降低制粉电耗

优化制粉系统运行,有效降低制粉电耗

优化制粉系统运行,有效降低制粉电耗
优化制粉系统运行,有效降低制粉电耗

优化制粉系统运行,有效降低制粉电耗

刘毅

(东风公司热电厂 442002)

中文摘要:东风公司热电厂锅炉制粉系统厂用电率偏高,2011年达到 3.001%,12年有所降低但依然达到2.828%,明显高于行业平均水平,使得锅炉运行经济性降低。针对制粉系统耗电率偏高的情况,车间有针对性从运行、检修及系统优化等方面进行分析,找出不足,进行有针对性的调整,并积极进行制粉系统优化实验,以提高制粉系统运行效率,降低制粉系统耗电率,提高锅炉运行经济性。经过努力,制粉系统运行效率明显改善,制粉系统耗电率明显降低,截止9月底制粉耗电率仅为2.508%,同比2012年降低0.32%,大大降低了制粉耗电量,提高炉锅炉运行经济性。

关键词:制粉系统耗电率优化

1、概述

东风汽车公司热电厂现有运行锅炉五台,#1炉至#3炉为武汉锅炉厂生产,于1985年全部投产,球磨机型号:DTM290/470,#4炉与#5炉为哈尔滨锅炉厂生产,分别于1993年和1996年投产,球磨机型号:DTM290/410,五台炉十台球磨机均为中间储仓式制粉系统。火力发电厂都普遍存在着锅炉制粉耗电偏高的问题,综合考虑中间储仓式制粉系统电耗过高的原因基本相同:制粉系统的运行参数(磨煤机出入口风温、进出口差压、钢球装载量、系统通风量等)偏离最佳值运行,导致系统通风量过大、磨煤机出力不足、运行时间延长,同时制粉系统的运行方式不能即时根据负荷变化进行调整,最终都使得制粉单耗增加。本文对东风公司热电厂锅炉制粉电耗偏高的原因进行了全面分析,并通过设备改造、试验和优化,重新确定了各控制参数,为运行提供最佳运行规定,改变原来不合理的习惯运行方式,同时制定出相应管理考核对策,从而达到降低制粉单耗的目的。

2、制粉电耗偏高原因分析

钢球磨煤机制粉系统运行的经济性,取决于设备的型式、磨内的钢球装载量、系统通风量、磨煤机内的存煤量以及系统漏风、分离器的效率等因素。同型系统的制粉耗电率耗一般平均在2.6%以内,而我厂制粉耗电率2011年达到3.001%,12年有所降低但依然达到2.828%,明显高于行业平均水平,且随着运行时间的增加,制粉耗电率呈逐年上升趋势通过分析,认为影响锅炉制粉耗电率的因素有以下几个方面:

2.1磨煤机压差

磨煤机进出口差压反映了磨煤机内存煤量的多少。在钢球磨煤机中减少给煤量时将减少磨煤机出力,但是制粉电耗并不按比例减少,从而增加了电耗。增加给煤量可以增加磨煤机中的存煤量,这时磨煤机出力也相应增加,当达到一定极限时,如果继续增加磨煤机中的存

煤量,就会出现减少磨煤机出力的现象。其中必然有一个最佳存煤量,最佳存煤量的差压就是当制粉系统电耗最小时的差压。确定磨煤机进出口差压还需遵循下列原则:①保证磨煤机出口温度不变(下降);②排粉机出口风压不变(下降);③磨煤机出入口不向外跑粉。

经试验各炉磨煤机进出口差压均不相同,#1炉至#3炉应维持在1.4~1.8KPa之间,#4炉至#5炉应维持在2.9~3.1KPa之间,磨煤机出力可达30t/h,磨煤单耗较小。而实际运行压差均偏低于试验压差200至300Pa,磨煤机出力严重不足,制粉系统的运行台数及运行时间大大增加,必然导致制粉电耗升高。磨煤机出力不足是制粉单耗高的一个重要原因。

2.2磨煤机出口温度

由于磨煤机出口控制温度一般是按有关规程的“磨煤机出口气粉混合物温度”为依据制定的,而这—规定的实质是为了制粉系统安全(防爆),按技术管理规程要求粉仓温度低于该温度即可。另一方面,磨煤机出口控制温度还应依据在任何情况下,制粉系统中都应避免水汽结露。由于制粉系统末端含湿量最大,而温度又最低,所以结露的可能性最大。因此只要保证系统末端不结露,整个系统就不会结露。同时还要综合考虑到在实际控制过程中,煤的干湿等各种参数均不断变化,以及系统保温、漏风等多种因素影响,为保证制粉系统的安全,同时避免粉仓煤粉结块,保证磨煤机的干燥出力,经试验计算,控制磨煤机出口温度在70℃~85℃范围内。

实际运行中常常出现磨煤机出口温度在70℃以下运行,磨煤机的干燥出力不足,必然导致磨煤单耗增加。同时,还会使粉仓温度偏低,粉仓煤粉结块,导致给粉机下粉不畅,影响锅炉的燃烧。

磨煤机入口温度直接影响干燥出力。实际上为防止磨煤机爆燃应控制磨煤机出口温度,与磨煤机入口温度并没有直接关系,因此提高入口温度、控制出口温度是提高磨煤机运行安全性、经济性的关键。

2.3磨煤机钢球装载量

磨煤机钢球装载量G直接影响磨煤出力和电能消耗:G偏大,并不意味磨煤机出力增大、电耗降低。从磨煤机内部工作情况来分析,磨煤机出力并不随钢球量G正比增加,而是与G0.6成正比,而磨煤机所耗的电功率则与G0.9成正比,基本上呈直线关系。所以钢球装载量超过最佳值后其磨煤机出力的增加要小于磨煤机功率消耗的增加,磨煤机电耗反而升高。因此,运行中当磨煤出力能满足需要时,维持钢球装载量在最佳值附近可以提高磨煤机的经济性。

经试验得出我厂制粉系统的磨煤机最佳钢球装载量为35t,磨煤机运行电流应在48~50A 时运行经济性较好。而在实际运行时,经常出现球磨机电流低于45A的情况,表面钢球装载量已明显不足,严重影响了制粉系统运行效率,造成制粉耗电量的增加。

2.4排粉机容量偏大,运行效率低

排粉机容量过大,而实际要求系统最佳通风量较小,导致入口挡板开度过小、阻力大、风速高、设备磨损严重,排粉机运行效率低,排粉机电耗相对增加,造成了制粉电耗的升高。

2.5系统漏风影响

由于机组运行时间比较长,且长时间掺烧地煤,制粉系统磨损较为严重,且制粉系统室外布置设备较多,粗细粉分离器极易腐蚀,虽然其外部保温较好,但是泄漏点较为隐蔽,实

际以存在较大漏风。另外锁气器处也存在冒粉情况,存在漏风,另外给煤机大空门、木块分离器等部位也容易漏风。大量冷风漏入系统,降低了制粉系统的干燥出力。

2.6运行操作问题

由于目前制粉系统没有投自动,全靠手动调整操作,参数的好坏与运行人员调整控制密切相关。在运行人员的习惯运行方式下,磨煤机出口温度达不到要求值运行,磨煤机差压偏低,导致磨煤机出力减小。而当磨煤机出力满足不了锅炉燃烧需要时,制粉系统需要长时间运行,多台制粉系统长时间、低出力运行,最终导致制粉系统耗电大大升高。同时制粉系统低出力运行,及时粉位较高时停磨,也会很快因粉位低重新启动,在启停制粉系统过程中造成制粉电耗的浪费。另外,运行人员捅煤或者检查给煤机时,经常存在给煤机大空门没关好情况,导致大量冷风漏入系统。另外锁气器检查不到位,其动作应正常,否则将会造成风走短路。系统运行方式不合理,操作调整不及时都将使制粉系统的单耗上升。

3. 降低制粉耗电率的方策

针对之前提出的问题,我们有的放矢的进行了整改,各个方面综合考虑,提高制粉系统运行效率,达到降低制粉电耗的目的。

3.1优化运行方式,提高运行效率

根据前文指出的问题,我们综合考虑,首先对各炉球磨机进行了压差极限试验,摸索出各炉球磨机运行经济压差,同时召开制粉系统专题分析会,共同讨论解决方策,并根据大家的意见制定了制粉系统优化运行指导书,将球磨机压差、球磨机出口温度及球磨机电流控制范围具体的告知每位副司炉,要求他们按照指导书规定进行操作,大大减少了球磨机低出力运行时间,提高制粉系统运行效率。指导书同时对磨煤机启、停及断煤堵煤处理进行了明确的处理规范,以最优的质量保证原煤供应,以最快的速度处理断煤、堵煤,以最大限度减少磨煤机空转时间,以保证磨煤机在最大出力下运行。

3.2制定运行管理对策

在按照制粉系统运行指导书进行操作调整的基础上,为了提高运行操作人员的积极性,最大限度地保证制粉系统处于最佳运行工况运行,制定相应的制粉系统运行管理对策,开展制粉系统劳动竞赛,对于执行较好者给予奖励。竞赛要求在保证设备安全运行和机组带负荷的要求下,严格按照最佳运行指导书进行参数调整,最终达到降低制粉单耗的目的。通过运用锅炉DCS系统对制粉系统运行中的几个关键控制参数进行记录分析,然后依据参数的好坏对比,给予评分。由于采用计算机进行数据记录,准确、公平,运行操作人员的积极性大大提高,指导书的执行得到保证。

3.3排粉机改造

3.3.1排粉机叶轮直径由2150mm切割到2000mm后,同时对风机外壳进行了改进。#5炉排粉机改造后性能试验结果表明,在制粉系统正常运行时,排粉机入口挡板由改造前50%开至目前的85%,排粉机运行电流由25A下降至21A。从制粉系统的运行状况来看,改造后的排粉机完全可以满足制粉系统的运行要求,且排粉机电耗明显比改造前降低约10%,运行经济性得到提高。目前其它排粉机已逐步改造完毕。

3.3.2排粉机变频改造。考虑到引风机高负荷时基本满出力运行,变频器节能效果无法最大体

现。于是试验将一台引风机变频器改造至排粉机上,使排粉机由工频运行改为变频运行。考虑到变频运行时存在变频器跳闸的风险,因此每台炉只对上层排粉机进行了变频改造,以保证整台炉的安全稳定运行。排粉机变频运行后,运行电流进一步降低,由23A下降至17A,同时排粉机转速也有所降低,只要能保证燃烧一次风及制粉系统运行即可。排粉机变频运行后,能够满足正常燃烧需要及制粉系统出力,有效降低了排粉机耗电,从而降低了制粉电耗。目前五台炉五台上层排粉机均已改造完毕,排粉机电耗下降显著,制粉电耗也得以降低。3.4球磨机钢球换型

除了在运行方式和检修方式的改善,为了进一步降低制粉电耗,我们还不断了解降低制粉电耗的新方法。其中安徽润辉耐磨材料有限公司生产的磨煤机用高铬合金耐磨钢球引起了我们的关注,通过厂家了解了其工作原理后,我们的兴趣更加浓厚,积极采取措施联系进行相关试验。经过努力,终于对#1炉甲磨和#3炉乙磨钢球进行了更换。采用高铬合金耐磨钢球后,钢球装载量由35T/台磨降低至18T/台磨,钢球直径也由60mm降至30mm,球磨机电流由50A降至38A。经过满负荷试验,更换钢球后能够保证制粉出力及锅炉正常运行,且制粉出力有一定提升,制粉电耗降低明显,效果显著。

表1

4.结束语

通过对制粉系统设备和运行操作上存在的问题分析,找到了降低锅炉制粉单耗的对策:在建立制粉系统最佳运行指导书的基础上,严格按照最佳运行指导书进行参数的调整、控制,改变运行人员原来不合理的习惯运行方式,加强管理,充分调动运行人员的积极性,同时不断进行设备改造,从而达到大大降低制粉耗电率的目的。

经过分析,截止到2013年9月,截止9月底制粉耗电率仅为2.508%,同比2012年降低0.493%,2013年目标发电9.2亿kwh,总计可节电454万kwh,经济效益十分显著。相信经过进一步的摸索与实验,制粉系统耗电率会继续降低,大大提高锅炉运行经济性。

作者简介:刘毅,男,1985年8月出生,2008年6月毕业于河北工程大学水电学院热能与动力工程专业,学士学位,东风汽车公司热电厂锅炉车间助理工程师。

系统优化最佳方案

WindowsXP终极优化设置(精心整理篇) 声明:以下资料均是从互联网上搜集整理而来,在进行优化设置前,一定要事先做好备份!!! ◆一、系统优化设置 ◆1、系统常规优化 1)关闭系统属性中的特效,这可是简单有效的提速良方。点击开始→控制面板→系统→高级→性能→设置→在视觉效果中,设置为调整为最佳性能→确定即可。 2)“我的电脑”-“属性”-“高级”-“错误报告”-选择“禁用错误汇报”。 3)再点“启动和故障恢复”-“设置”,将“将事件写入系统日志”、“发送管理警报”、“自动重新启动”这三项的勾去掉。再将下面的“写入调试信息”设置为“无”。 4)“我的电脑”-“属性”-“高级”-“性能”-“设置”-“高级”,将虚拟内存值设为物理内存的2.5倍,将初始大小和最大值值设为一样(比如你的内存是256M,你可以设置为640M),并将虚拟内存设置在系统盘外(注意:当移动好后要将原来的文件删除)。 5)将“我的文档”文件夹转到其他分区:右击“我的文档”-“属性“-“移动”,设置 到系统盘以外的分区即可。 6)将IE临时文件夹转到其他分区:打开IE浏览器,选择“工具“-“internet选项”-“常规”-“设置”-“移动文件夹”,设置设置到系统盘以外的分区即可。 ◆2、加速XP的开、关机 1)首先,打开“系统属性”点“高级”选项卡,在“启动和故障恢复”区里打开“设置”,去掉“系统启动”区里的两个√,如果是多系统的用户保留“显示操作系统列表的时间”的√。再点“编辑”确定启动项的附加属性为/fastdetect而不要改为/nodetect,先不要加/noguiboot属性,因为后面还要用到guiboot。 2)接下来这一步很关键,在“系统属性”里打开“硬件”选项卡,打开“设备管理器”,展开“IDE ATA/ATAPI控制器”,双击打开“次要IDE通道”属性,点“高级设置”选 项卡,把设备1和2的传送模式改为“DMA(若可用)”,设备类型如果可以选择“无”就选为“无”,点确定完成设置。同样的方法设置“主要IDE通道”。

电厂热力系统节能分析

电厂热力系统节能分析 【摘要】:电能是最洁净的便于使用的二次能源,但是在生产电能的同时却消耗了大量的一次能源。本文简要分析了当前节能形势,归纳了主要的热力系统计算分析方法,指出了电厂热力分析仍然存在的问题,并对电站节能改造给出了建议和节能策略分析。 【摘要】:热力系统经济指标计算方法节能技术 众所周知,能源问题已经成为世界各国共同关注的问题,在我国这一现象更加凸显。由于我国粗放型经济增长方式,又处在消费结构升级加快的历史阶段,能源消耗过大,因此节能降耗将是一项长远而艰巨的任务。根据美国及我国电力行业调查统计表明,我国平均供电煤耗率要比发达国家高出30~60g/kWh,这是一个很大的差距,说明我国的电厂节能有很大的节能潜力可以挖掘。因此,电站热力系统节能是关系到节能全局以及可持续性发展的大事。因此,在热力系的环境下,揭示各种节能理论内在的联系,深入地研究和发展节能要的理论和现实意义,对电厂的节能降耗工作具有很强的指导性。 一、热力系统经济指标 我国火力发电厂常用的热经济型指标主要有效率和能耗率两种。 (一)全场热效率ηcp: 其中,Nj为净上网功率,B为燃煤量,Ql为燃煤低位发热量。 全厂热效率指标是电厂运行的综合指标,在进行系统分析是,常将这一综合指标进行分解,以区分各厂家的责任和主攻方向,因此可以改写为: 其中,ηb:锅炉效率,锅炉有效吸热量与燃煤低位发热量之比; ηp:管道效率,汽轮机循环吸热量与锅炉有效吸热量之比; ηi:汽轮机循环装置效率,汽轮机内部功与循环吸热量之比; ηm:机械效率,汽轮机输出功率与内部功率之比; ηg:发电机效率,发电机上网功率与前端功率之比; ∑ξi:厂用电率,电厂所有辅机消耗电功率之和与发电机上网功率之比。 (二)热耗率和标准煤耗率 热耗率指标综合评价汽轮机发电机组热经济性,其实质是发电机每发电1kWh,工质从锅炉吸收的热量值。定义式如下: 煤耗率指标也可以分为两种:发电标准煤耗率和供电标准煤耗率。

磨煤机运行方式对优化锅炉燃烧的应用

磨煤机运行方式对优化锅炉燃烧的应用 发表时间:2019-01-08T10:58:49.153Z 来源:《电力设备》2018年第24期作者:李文杰王志刚李烨[导读] 摘要:由于燃煤电厂面临煤质不稳定、机组参与调峰而造成负荷变化范围大,机组经常在中低负荷下运行、运行人员操作随意性大、多台磨煤机并列运行等相关问题,导致制粉系统的能源消耗高。 (国家电投集团河南电力有限公司平顶山发电分公司河南平顶山 467312) 摘要:由于燃煤电厂面临煤质不稳定、机组参与调峰而造成负荷变化范围大,机组经常在中低负荷下运行、运行人员操作随意性大、多台磨煤机并列运行等相关问题,导致制粉系统的能源消耗高。而当某个运行的磨煤机由于故障或者超负荷工作被迫停机时,将造成炉内燃烧劣化,燃烧动力场失衡,严重影响机组的安全性和经济性,因而对磨煤机运行方式调整有助于优化锅炉的燃烧稳定和经济运行。 关键词:对冲布置;磨煤机运行方式;优化;锅炉燃烧 引言 目前大中型燃煤机组越来越多,而大中型燃煤机组的制粉系统普遍采用中速磨煤机直吹式制粉系统。由于直吹式制粉系统具有系统简单、灵活、操作方便、易实现自动控制、制粉电耗低等特点,因此得到广泛应用。 直吹式制粉系统的特点是制粉系统出力必须随时保持与锅炉燃烧一致。因此锅炉负荷变化时,制粉出力相应变化。变更制粉出力可以均匀的变动各磨煤机的负荷,也可以投、停部分磨煤机。恰当制定制粉系统的运行方式,可以提高制粉系统的经济特性。举例某DG3000/26.15-Ⅱ1型锅炉,超超临界参数、变压直流炉、单炉膛、一次再热、平衡通风、露天岛式布置、固态排渣、全钢构架、全悬吊结构、对冲燃烧方式,Π型锅炉。炉膛尺寸为33973.4×15558.4×64000mm (W×D×H)。锅炉燃烧方式为前后墙对冲旋流燃烧,每台锅炉配6层燃烧器,前后墙各3层,每层各8只,共48只燃烧器。制粉系统为ZGM133N型中速磨煤机冷一次风正压直吹式制粉系统,每台炉配6台磨煤机,BMCR工况下5台运行,一台备用,并配备6台与之相适的电子称重式给煤机。本文通过磨煤机的不同情况对锅炉燃烧的影响,从而指导优化锅炉燃烧调整。 正压直吹式制粉系统每台磨煤机布置有四根出口粉管,每根粉管通过一个煤粉分配器分成两根,分别对应一个燃烧器。煤粉分配器前设计有一个可调缩孔,作用是调节四根粉管的煤粉浓度,从而保证燃烧均匀性。 一、前后墙对冲燃烧对磨煤机运行要求 由于电厂燃用煤质较差,锅炉正常运行基本都是6台磨煤机投运,从布置方式上考虑,主要存在以下三个方面: 1)下层磨煤机煤粉在炉内燃烧升程较大,燃烧比较充分。 2)上层磨煤机煤粉燃烧靠上,火焰中心上移,如果配风不合理将造成燃烧不充分,易造成锅炉内过热器结焦和屛过超温。 3)中间层磨煤机煤粉燃烧情况在另外两层中间,燃烧器浓度分配合理有助于减少水冷壁热偏差。因而对冲燃烧布置锅炉磨煤机在运行时,尽量确保投运下层磨,避免中下层磨全停;同一层标高的前后墙燃烧器应尽量同时运行,应避免同层燃烧器无火现象,不允许长时间出现前后墙燃烧器投运层数差为两层及以上运行方式,比如前墙投1台,后墙投两台;或者前墙没火,后墙投运3台的类似情况。 二、磨煤机运行方式的选择 运行人员在选择磨煤机前应对各磨煤机性能有明确的认识,如单台磨煤机加载压力、进出口温度、分离器运行情况、研磨件性能、燃用煤质、风煤比选择的方面应较为熟悉,在此基础上还应参照以下三个原则: 1)在同样出力的情况下,各磨均匀负荷的结果较各磨高、低悬殊的出力运行更为经济; 2)在设备数量和运行条件允许的情况下,应通过改变磨煤机的运行方式,来避免磨煤机的最低出力; 3)尽可能的使磨煤机在额定负荷附近运行。 三、磨煤机运行中风煤比选择 合理的风煤比是锅炉安全运行的保障。磨煤机的一次风要同时保证煤粉输送和煤粉燃烧,过大过小的风煤比都会影响到锅炉的燃烧,一次风速过低可能会造成煤粉的沉积,造成管道堵塞;一次风速过高,造成系统磨损、煤粉浓度低,不利于燃烧;磨煤机出力过小会造成磨煤机衬板上煤层较薄,碾磨部件直接接触,导致强烈磨损和振动。因而,应根据燃烧需要调整合适的风量。随着磨煤机冷风阀门开度的增加,锅炉效率下降;这是因为一次风总量和二次风总量不变的情况下,磨煤机冷风阀门开度的增加,从而一次风中冷风量的增加,磨煤机的出口温度下降,减少了空气预热其中烟气和一次风的换热量,使排烟温度升高,排烟损失增加,锅炉效率下降。 随着磨煤机进口风量的增加,锅炉效率先增加后减小;这是因为磨煤机进口风量的增加对于缺氧燃烧的一次风而言,有利于煤粉燃尽,未燃尽碳热损失下降,锅炉效率升高;随着磨煤机进口风量的增加,在磨煤机出口风温不变的情况下,未燃尽热损失越来越小,排烟损失越来越大,两者达到平衡时锅炉效率达到最大值,磨煤机进口风量再增加,则锅炉效率下降。 四、其他 磨煤机和是中速磨煤机的主要耗电设备,和一次风机两者耗电量之和占制粉系统总电耗的90%以上。因而在保证锅炉燃烧的同时应结合经济性来选择磨煤机的运行方式。 如在满足机组安全前提下尽可能的提高磨煤机出口风的温度,降低磨煤机进口冷风量,进口风量则根据锅炉的燃烧情况进行调整。另外,在满足负荷的前提下,应该尽可能减少磨煤机的运行台数,多使用能耗较低的磨煤机。磨煤机同时运行的台数越少,制粉单耗就越低,因此合理的调整每台磨煤机的给煤量,调整磨煤机的运行方式是降低制粉单耗,提高锅炉整体经济性的有效途径。结语 针对目前电厂燃烧系统和设备特性,在锅炉燃烧稳定的前提下达到节能降耗的目标,需要运维人员的不断探索创新。本文通过对磨煤机运行方式的研究,合理选择磨煤机的负荷分配,在优化锅炉燃烧方面是有较好的应用。参考文献 [1]张卓林.电厂煤粉锅炉配风优化专家系统[D].济南大学,2013. [2]韦红旗.仲亚飞.大型燃煤电厂制粉系统能耗预测及优化分配[S].东南大学2016:6.

浅谈电力系统优化运行的意义

浅谈电力系统优化运行的意义 电网经济运行就是一项实用性很强的节能技术。这项技术是在保证技术安全、经济合理的条件下,充分利用现有的设备、元件,不投资或有较少的投资,通过相关技术论证,选取最佳运行方式、调整负荷、提高功率因数、调整或更换变压器、电网改造等,在传输相同电量的基础上,以达到减少系统损耗,从而达到提高经济效益的目的。 一、电力系统优化运行的意义: 电网的经济运行主要包括变压器及其电力线路的经济运行,电力设备中变压器是一种应用十分广泛的电气设备,变压器自身要产生有功功率损耗和无功功率损耗。电力系统中变压器产生的电能损耗占电力系统总损耗比例也很大,因此在电力系统中变压器及其供电系统的经济运行,对降低电力系统、线损,有着重要的意义。由于当前绝大部分的变压器及其供电系统都在自然状态下运行,加上传统观念及习惯性错误做法的影响,导致现有变压器不一定运行在经济区间,因此必须要通过各种技术措施来降低。 二、电网经济运行降损的主要技术措施 1、合理进行电网改造,降低电能损耗 由于各种原因电网送变电容量不足,出现“卡脖子”、供电半径过长等。这些问题不但影响了供电的安全和质量,而且也影响着线损。电力网改造是一次机遇,要抓住城农网改造,认真彻底地改善不合理的布局与设备。要充分利用在现有电网的改造基础上,提高电网供电容量和保证供电质量的前提下,运用优化定量技术降低城乡电网的线损,如老旧变压器淘汰中要劣中汰劣,新型变压器选型中要优中选优,既要根据城网和农网负载分布的特点,调整变压器运行位置与供电线路实现优化组合,又要根据电网中变压器与供电线路的分布状况,优化负载经济分配和电网经济运行方式。总之,由于电力行业是技术密集型行业,在城乡电网改造中应贯彻“科教兴电”的方针,依靠科技进步和推广以计算机应用为主要内容的先进技术,提高电网安全经济供电的管理水平。在城乡电网建设和改造过程中要优化调整城乡电网的电力结构和提高电网结构中的技术含量。把电网建成“安全经济型电网”,为电网安全供电奠定良好的基础。在电网运行中最大限度地降低电网的线损,为缩小与发达国家电网线损的差距做出贡献。 由于电网的线损主要是由变压器损耗与电力线路损耗所组成,所以电网改造的节电降耗,也就是对电网中的所有变压器和电力线路进行择优选择和优化组合,组建成“安全经济型电网”。因此,应重点从以下几方面考虑: (1)调整不合的网络结构。 合理设计、改善电网的布局和结构;避免或减少城农网线路的交错、重叠和迂回供电,减少供电半径太大的现象。 (2)采用子母变压器,合理选用变压器容量。避免“大马拉小车”现象。城农网改造应注意合理分配变压器台数与容载比,一般负荷在65%~75%时效益最高,30%以

中速磨煤机制粉系统运行优化试验

中速磨煤机制粉系统运行优化试验 发表时间:2017-01-19T11:07:17.057Z 来源:《基层建设》2016年32期作者:孙德强 [导读] 摘要:本文主要是针对平盘磨直吹式的制粉系统的煤粉细度大、煤粉的均匀性差、单耗高等问题,采用300MW机组制粉系统进行优化试验。 大唐七台河发电有限公司黑龙江省 154600 摘要:本文主要是针对平盘磨直吹式的制粉系统的煤粉细度大、煤粉的均匀性差、单耗高等问题,采用300MW机组制粉系统进行优化试验。充分地对平盘磨直吹式制粉系统进行分析,对磨煤机各参数开展一系列的优化试验,以求可以改善平盘磨直吹式的制粉系统运行的参数值。通过实验结果能够发现:制粉系统中单耗得到地下降,煤粉的粗细可以完全满足要求,飞灰、大渣的含碳量明显地降低,提高锅炉的运行经济性以及效率。 关键词:中速磨煤机;制粉系统;运行优化试验 1平盘磨直吹式制粉系统介绍 1.1制粉系统工作原理 平盘磨直吹式制粉系统按照平盘磨内气流正压或者负压的状态能够分成平盘磨直吹正压制粉系统以及平盘磨直吹负压制粉系统这两种。本文选择平盘磨直吹制粉系统,特指的是平盘磨直吹负压制粉方法,该系统的组成主要包括原煤仓、平盘磨、给煤机、排粉机、粗粉分离器、锅炉、燃烧器、空气预热器以及送风机,具体的系统图1能够得到充分体现。 图1 平盘磨直吹式制粉系统 平盘磨直吹制粉系统运行的过程: (1)原煤仓中原煤可以通过给煤机送于平盘磨当中。平盘磨当中,原煤需要做好平盘磨中央落煤管下落于磨环之上,利用转动的磨环离心力把原煤送到磨环的边缘磨盘的滚道中,然后经过若干的磨辊碾磨原煤,将原煤的碾磨为煤粉颗粒。 (2)利用送风机送入经过了空气预热器之后热空气干燥处理了煤粉,经过干燥后煤粉送风机中送入空气作用,输送到了平盘磨上粗粉的分离器之中。粗粉分离器当中,合格煤粉会被分离出,然后利用排粉机将其输送锅炉当中,同时在送风机中送入经过了空气的预热器之后热空气、燃烧器作用下做好燃烧;对于质量差的煤粉将被分离出,其中质量差的煤粉中粗粉颗粒将被分离出重新进入到平盘磨碾磨,对于难碾磨煤粉颗粒将被分离出进入到平盘磨下方排渣箱当中做好清理。 因为平盘磨直吹制粉系统中排粉机的安装是在平盘磨出口侧处,所以,平盘磨会在排粉机抽吸作用形成负压情况下运行。优点是平盘磨内煤粉不会轻易向空气当中泄露,环境的污染小并且不会产生污染;缺点是排粉机叶片容易受煤粉等流体磨损以及腐蚀,有着较高的维修频率。 1.2制粉系统各运行参数制约关系 (1)磨煤机通风量和煤粉细度、磨煤机单耗关系。如果磨煤机的通风升高时,碾磨后煤粉会向平盘磨上粗粉分离器的动能增加,导致有更多不合格的煤粉通过粗粉分离器,其中煤粉的细度会相应地变大;因为有更多不合格的煤粉通过了粗粉分离器,进而造成平盘磨重复碾磨率降低,磨煤机的单耗随之降低,不过如果磨煤机的通风量大,会导致磨煤机的碾磨原煤时压力增加,磨煤机的单耗随之而变大。 (2)分离器调节挡板开度同煤粉细度以及磨煤机单耗之间存在的关系。当增大分离器调节挡板开度时,完成碾磨工作之后的煤粉向平盘磨上方的粗粉分离器运动的阻力发生变小的趋势,使得有更多的质量不达标的煤粉通过粗粉分离器,相应的增大了煤粉细度;由于存在更多不合格的煤粉直接通过粗粉分离器,使得平盘磨重复碾磨率下降,随之造成磨煤机单耗变小。 (3)磨辊加载压力同煤粉细度以及磨煤机单耗之间存在的关系。通过增大磨辊加载压力时,原煤碾磨的能力也相应变大,进而就能够使原煤碾磨的更加细小,使得煤粉细度更小;但是增加原煤碾磨能力时,平盘磨电能的消耗明显升高,即磨煤机单耗变得更大。 2平盘磨直吹式制粉系统优化试验 为了将平盘磨直吹式制粉系统的优化试验过程展开具体的说明,文章选择某300MW机组为例展开说明。选择的平盘磨型号为 ZGM95。标准状况下,ZGM95的磨煤机出力为38t/h,转动速度为26.4r/min,气体流量为17.93kg/s,单耗量为6-l0kW?h/t,通风阻力在5740Pa以下。 2.1标定磨煤机的通风量 由磨煤机入口的测风原件测定磨煤机通风量,并准确的显示出风值。但在当前生产过程中,由于不合理的布局测风设备,使得前、后直管存在较短部分,风道转弯节和膨胀节影响了风速,所以表盘风量精确程度往往不够,因此一定要进行标定计算。在煤种稳定、复合稳定在290MW时进行标定试验,磨煤机通风量计算公式如下所示: (1) 公式中Q为磨煤机通风量标定值;K为通风量测量装置总系数(初始值设为66.438,最终值由冷态标定试验判定);t为风道管内温度*单位为℃;P为通风量检测装置输出压差;Px为风道管内总风量压力。 2.2煤粉分配状况及摸底测试 为了将煤粉的分配状况有效分析,在开展平盘磨直吹式制粉系统优化试验工作之前,必须测定该制粉系统的煤粉分配状况。在负荷为240MW下,当该制粉系统中磨煤机单耗为8.31kW?h/t、磨煤机出力为39t/h、磨煤机通风量为65000m3/h,分离器调节挡板开度调整到55°、磨辊加载压力调整到15MPa时,各处煤粉即各一次风道煤粉分配状况如表1所示。从煤粉分配状况可以有效判断出各角落的煤粉细度和煤粉均匀性系数还是比较一致的,说明煤粉能够合理分配。 2.3优化磨煤机通风量参数 在负荷为240MW下,由于不能调制过低的磨煤机通风量,因此应取通风量的数值大于55000m3/h。当调整磨煤机给煤量到39.2t/h、分离器调节挡板开度的大小调整至55°、磨辊加载压力调整至15MPa,磨煤机通风量分别取值为65000,60000,55000m3/h时,测试该制粉

系统优化方法

1.系统启动项太多,影响开机启动速度,方法:开始——运行——msconfig——启动——在启动项里,你只保留ctfmon.exe输入法和杀毒软件即可,其他的将对勾去掉,按应用并确定即可。 2、关闭系统属性中的特效,这可是简单有效的提速良方。右键我的电脑—属性--高级--性能--设置--在视觉效果中,设置为调整为最佳性能--确定即可。 3、右键桌面—属性—桌面—背景—选择无;颜色—选择黑色;桌面背景对开机速度影响最大;应该去掉。 4、屏幕保护程序—选择无。 5、外观—窗口和按钮—选择经典样式—色彩方案—选择Windows经典。 6、最多保留十个左右;对一些不常用的图标应该从桌面删除。 7、对一些不常用你又不想删除的,可以集中放在一个文件夹,方法:右键桌面—排列图标—运行桌面清理向导,你只要按照提示清理就OK了。 8、如果你的系统杀毒软件开机时随机启动的话,杀毒软件就要扫描检查图标链接是否有毒,这需要一定时间,就出现图标显示慢的情况,这是正常的,并不是电脑有问题。这方面网上很多,你可以去搜索搜索。 9、开始--运行--输入regedit 回车。打开注册表编辑器,找到 HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlSession ManagerMemory ManagementPrefetchParameters,在右边找到EnablePrefetcher主键,把它的默认值3改为1,这样滚动条滚动的时间就会减少。 10、在“我的电脑”上点右键-属性-硬件-设备管理器-点击“IDE ATA/ATAPI”选项-双击“次要IDE通道”-高级设置-设备类型,将“自动检测”改为“无”,主要要IDE通道也做相同的设置,这样你电脑滚动条最多跑三圈,启动速度将提高三倍以上。 11、在“开始→运行”中输入gpedit.msc,打开组策略编辑器。找到“计算机配置→管理模板→网络→QoS数据包调度程序”,选择右边的“限制可保留带宽”,选择“属性”打开限制可保留带宽属性对话框,选择“禁用”即可。这样就释放了保留的带宽。 12、建议经常清理系统垃圾(如系统垃圾文件、系统注册表垃圾)并推荐你一个清理系统垃圾的一个小程序(见最后附件)。 13、建议将你电脑中的IE临时文件和虚拟内存设置在非系统盘中。 14、在平时不要同时打开太多的应用程序软件,将杀毒软件或其它优化软件的监控功能关闭,因为杀毒软件或其它优化软件的监控功能特别占据系统资源。 15、重启电脑,启动到桌面后,会弹出一个窗口,在小方格中添加勾选,点“确定”(因为改动了系统配置实用程序)。 另外,还要注意经常清理系统垃圾,按时整理磁盘碎片。这方面网上也挺多,你自己注意多搜索。 最后建议你下载安装Windows优化大师,对你的系统进行全面清理和优化.经过该软件的清理优化,你的系统运行速度和性能肯定会有明显提高。 附件: 在电脑屏幕的左下角按“开始→程序→附件→记事本”,把下面的文字复制进去(黑色部分),点“另存为”,路径选“桌面”,保存类型为“所有文件”,文件名为“清除系统LJ.bat”,就完成了。记住后缀名一定要是.bat,ok!你的垃圾清除器就这样制作成功了! 双击它就能很快地清理垃圾文件,大约一分钟不到。

制粉系统优化

制粉系统优化 一、高效低耗钢球系统 1、优化级配 磨煤机内钢球大小(级配)的变化会导致磨煤机出口各种煤粉颗粒直径份额发生改变,根据这样的原理,我们找出一种钢球级配,使它能够达到所需煤粉粒径所占份额最大的钢球级配方案,实现磨煤机钢球装载量下降、制粉量提高的目的,这就是我们磨煤机优化的主要手段。

根据现有工况,首次配球有4种模型可以选择,运行一定时间后,甩出部分钢球看磨损情况,然后再根据不同情况选取不同的补球模型。 2、磨煤机内钢球分级控制技术。 原有磨煤机钢球在磨内由入口至出口,呈由大到小分部。由于原煤在磨制过程中,越往后的煤粉其破碎难度越大,而钢球分部却是越往后越小,这样就限制了磨煤机的出力,导致磨煤机电流偏高。我们耐磨少球应用节电项目很好的解决了上述问题,通过钢球各种规格所占比例及钢球磨损速率的控制,实现磨煤机内钢球由入口向出口呈大——小——大的状况,即实现原煤在磨机内破碎——碾磨——破碎的合理分布。 3、目标煤粉比例高 原有磨煤机钢球级配磨制的煤粉过粗、过细的煤粉偏多,所需煤粉粒径偏少。到达磨煤机出口时,有部分煤粉无法满足燃烧的需要,即使带出磨煤机仍会通过粗粉分离器再回到磨煤机,使磨煤机出力受限。我们耐磨少球应用节电项目可以达到破碎多少煤粉,就能碾磨合格多少煤粉,最大限度的提高磨煤机效率。一般无烟煤煤粉细度R90控制在6%左右,烟煤在15%~20%左右。 4、球耗降低 采用特殊磨球制造工艺,进一步提升了耐磨性能,单仓磨耗大大下降。由普通钢球的煤粉耗球量的180g/t矿,降低为50g/t矿,极大地节约了企业的磨球采购成本;由于磨球用量的降低,减少了工人每

中储式制粉系统教学内容

中储式制粉系统

球磨机出力低的原因有: (1)给煤机出力不足,煤质坚硬,可磨性差。 (2)磨煤机内钢球装载量不足或过多。钢球质量差,小钢球未及时清理,波浪瓦磨损严重未及时更换。(3)磨煤机内通风量不足,干燥出力低,或原煤水分增高。如排粉机出力不足,系统风门故障,磨煤机入口积煤或漏风等。(4)回粉量过大,煤粉过细。 提高制粉系统出力的措施有:(1)保持给煤量均匀,防止断煤。在保持磨煤机出口温度不变的情况下,尽量提高磨煤机入口风温。(2)定期添加钢球,保持磨煤机内一定的钢球装载量,并定期清理不合格的钢球及铁件杂物。(3)保持磨煤机内适当的通风量,磨煤机入口负压越小越好,以不漏粉为准。(4)消除制粉系统的漏风,加强粗细粉分离器的维护,保持各锁气器动作灵活。(5)保持合格的煤粉细度,适当调整粗粉分离器折向门,煤粉不应过细。 预防煤粉仓温度高的措施:(l)保持磨煤机出口温度不超过规定值。 (2)按规定进行降粉。(3)经常检查和消除制粉系统及粉仓漏风。 (4)建造和检修粉仓时要保证合理角度。四壁光滑,不应有积粉。煤粉仓温度高应作如下处理: (1)停止制粉系统,进行彻底降粉。(2)关闭吸潮管阀门及绞龙下粉插板。(3)温度超过规定值时可用二氧化碳灭火。(4)待温度正常后,启动制粉系统。(5)消除各处漏风。

影响煤粉粗的原因:(1)制粉系统通风量过大。(2)磨煤机内不合格的钢球太多,使磨碎效率降低。(3)粗粉分离器内锥体磨透,致使煤粉短路或粗粉分离器折向门开得过大。(4)回粉管堵塞或停止回粉,而失去粗粉分离作用。(5)原煤优劣混合不均匀,变化太大。(6)煤质过硬或原煤粒度过大等。 磨煤机空转危害:按规程规定,球磨机空转时间不得大于10min,因为空转时间长了,一方面钢球与钢球之间,钢球与波浪瓦之间的金属磨损增加。磨煤机正常运行和空转时所产生的磨损比是1:50。另一方面磨煤机空转时,钢球与钢球之间,钢球与波浪瓦之间的撞击容易产生火花,产生火花又是制粉系统爆炸的原因之一。起、停注意事项:(1)启动时严格控制磨煤机出口气粉混合物的温度不超过规定值。因为磨煤机在启动过程中,属于变工况运行,此时出口温度若控制不当,很容易使温度超过极限,而导致煤粉爆炸。(2)磨煤机在启动时进行必要的暖管。因中间储仓式制粉系统设备较多。管道较长,启动时煤粉空气混合物中的水蒸气很容易在旋风分离器等管壁上结露,使之增加流动阻力,造成煤粉结块,甚至引起分离器堵塞。(3)磨煤机停运时,必须抽尽余粉,防止自燃和爆炸。为下次启动创造良好的条件。 钢球磨内煤量过多时为什么出力反而会降低?磨煤机内的煤量过多时,使磨煤机内的煤位过高,钢球落差减小,冲击能力也相应减小(从磨煤机电流减小可以看出)。另一方面煤位过高,使钢球之间的煤层加厚,钢球的一部分动能消耗在使煤层的变形上,另一部分

(完整版)win7系统优化方法(超级牛逼)

Win7优化 1、通过关闭特效,有效提高windows7的运行速度右键单击我的电脑-->属性-->高级系统设置-->性能-->设置-->视觉效果,留下五项"平滑屏幕字体边缘"、"启用透明玻璃"、"启用桌面组合"、"在窗口和按钮启用视觉样式"、"在桌面上为图标标签使用阴影",其余的把勾全拿了,可以马上感觉到速度快了不少,而视觉上几乎感觉不到变化。另外还可以勾选上“显示缩略图,而不是显示图标” 2、据说可提高文件打开速度10倍的设置控制面板-->硬件和声音-->显示【显示或缩小文本及其他项目】-->设置自定义文本大小(DPI)去掉“使用Windows XP 风格DPI 缩放比例”的勾选,确定。【按照提示,注销计算机】 3、轻松访问控制面板-->轻松访问-->轻松访问中心-->使计算机易于查看-->勾选“关闭所有不必要的动画(如果可能)” 4、更改“Windows资源管理器”的默认打开的文件夹启动参数的命令格式为:%SystemRoot%explorer.exe /e,〈对象〉/root, 〈对象〉/select, 〈对象〉开始-->所有程序-->附件-->Windows资源管理器-->右击-->属性-->“快捷方式”选项卡-->目标修改为“%windir%\explorer.exe /e, D:\Downloads”,确定。然后右击“Windows资源管理器”-->锁定到任务栏 5、修改“我的文档”、“桌面”、“收藏夹”、“我的音乐”、“我的视频”、“我的图片”、“下载”等文件夹的默认位置方法一:CMD-->regedit,修改

“[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVers ion\Explorer\User Shell Folders]”方法二:系统盘-->用户-->“当前用户名”,分别右击上述文件夹-->属性-->位置-->移动 6、更改临时文件夹位置(%USERPROFILE%\AppData\Local\Temp) 右击“计算机”-->属性-->高级系统设置-->“高级”选项卡-->“环境变量”按钮-->X用户环境变量 7、更改“IE临时文件夹”位置IE-->Internet选项-->“常规”选项卡-->“设置”按钮-->“移动文件夹”按钮-->选择 8、系统自动登录cmd-->“control userpasswords2”-->去掉“要使用本机,用户必须输入用户名和密码”复选勾 9、关闭系统休眠 cmd-->“powercfg -h off” 10、去除历史纪录cmd-->“gpedit.msc”-->打开“本地组策略编辑器” (1)计算机配置-管理模板-系统-关机选项-关闭会阻止或取消关机(启动) (2)用户配置-->管理模板-->"开始"菜单和任务栏-->不保留最近打开的历史(启用) (3)用户配置-->管理模板-->"开始"菜单和任务栏-->退出系统时清除最近打开的文档的历史(启用) (4)用户配置→管理模板→Windows组件→Windows资源管理器→在Windows资源管理器搜索框中关闭最近搜索条目的显示(启用) 11、在任务栏同时显示“星期几”控制面板→时钟、语言和区域→区域和语言→更改日期、时间或数字格式,点击弹出窗口中的“更改

某电厂脱硝超低排放后制粉系统的运行优化

某电厂脱硝超低排放后制粉系统的运行优化 摘要:脱硝超低排放后,喷氨量增加,硫酸铵盐的生成量增加,导致空气预热器积灰堵塞可能性增大。通过对制粉系统的运行优化,降低脱硝入口NOx,减少喷氨量,减少了预热器堵塞的几率。同时,由于制粉系统的优化,解决了备用制粉系统粉仓温度高、给粉机出粉不均的问题,降低了制粉电耗,提高了机组的安全性。 关键词:制粉系统;给粉机;低氮燃烧器;脱硝入口NOx;喷氨量;粉温;制粉电耗 1.概述 该机组制粉系统为中间储仓式乏气送粉制粉系统,每台机组配备四套制粉系统,每套制粉系统配备一台350/700钢球磨煤机、一台离心式排粉机、六台给粉机,燃用煤种为烟煤(无灰干燥基挥发分不低于35%)。燃烧器为直流式、四角布置、切圆燃烧,燃烧器分上、下两组,每组下层为油燃烧器喷口,其上依次为二次风口、一次风口,每角共有6个一次风口,8个二次风口。该机组于2012年10月进行低氮燃烧器改造,同步进行甲乙丙排粉机电机变频改造。2014年7月进行脱硝改造,以液氨为还原剂。2015年11月进行脱硝超低排放改造,催化剂由两层增加至三层,脱硝入口NOx设计值为450mg/Nm3,出口设计值为 50mg/Nm3,设计喷氨量为182kg/h。 2.制粉系统运行优化必要性 2.1脱硝超低排放后,三氧化硫转化率升高,喷氨量增加,氨逃逸量增加,硫酸铵盐的生成量相应增加,加剧了预热器的堵塞风险。 2.2制粉系统正常运行方式为甲乙丙或甲乙丁,丙或丁制粉系统交替备用。当甲乙丁制粉系统运行时,由于丙组燃烧器周界风(不可调)和二次风门全关后的漏风原因,脱硝入口NOx正常维持在400mg/Nm3~500mg/Nm3范围内,脱硝喷氨量经常超过额定值,氨气消耗量偏大。而甲乙丙制粉系统运行时,脱硝入口NOx正常维持在300mg/Nm3~400mg/Nm3范围内,喷氨量一般在100kg/h左右。 2.3通常,为保证制粉系统的良好备用,丙丁制粉系统每两天进行一次切换,并随机组负荷的变化进行启、停。由于粉仓本身结构方面存在的缺陷、漏风原因及运行操作方面原因,粉仓内的煤粉与空气中的氧长期接触而氧化时,使粉温度升高,易出现粉温偏高的情况,丙丁粉仓粉温经常超过80℃。为了保证机组安全,经常启动四套制粉系统降粉温,导致排烟温度、脱硝入口NOx、喷氨量大幅升高,严重时造成NOx排放小时均值超标;降粉温时,由于粉仓粉温长期偏高,给粉机频繁出粉不均、卡涩,造成炉膛压力、汽温、汽压大幅变化,严重影响机组的安全运行。 2.4由于丁排粉机没有进行变频改造,排粉机电流比丙排粉机电流高20A左右。 2.5燃烧器布置方式自下而上为甲乙丙丁制粉系统,甲乙组燃烧器在下层,丙丁组燃烧器在上层。当甲乙丁制粉系统运行时,如出现甲排粉机或乙排粉机故障跳闸时,燃烧器隔层运行,容易造成锅炉燃烧不稳。 2.6甲、乙(丙、丁)粉仓为一个大仓,粉位高粉仓能向粉位低的粉仓塌粉,为丁制粉系统长期备用提供了有利的条件。 3.制粉系统运行的优化方案 制粉系统运行优化的目的就是为了解决脱硝入口NOx偏高及喷氨量大的问题,解决备用制粉系统粉仓粉温偏高、给粉机频繁卡涩问题,降低机组制粉系统耗电率。 3.1制粉系统运行方式确定 (1)确定制粉系统正常运行方式为甲、乙、丙制粉系统运行,丁制粉系统长期备用。为保证丁组给粉机处于良好备用状态及丁粉仓粉温在规定范围内,每两天进行一次烧粉工作,每次将粉仓粉位降至0.5m~1m范围内。 (2)为保证丁制粉系统良好备用,要求每月11日、26日8:00至14:00班次进行丁制粉系统切换工作。要求磨煤机运行时间大于6个小时后可根据机组负荷情况切回原运行制粉系统(确认系统良好备用),停丁磨前烧空丁原煤仓(防止煤结块及自然)。

制粉系统的运行与维护

第一篇制粉系统的运行与维护 1系统设备概述 1.1450t/h中间再热控制循环锅炉制粉系统采用圆筒钢球磨中间储仓式系 统,热风送粉方式。采用热风干燥原煤,在磨煤机进口装设冷风门,利 用排粉机乏气或热风作一次风送粉,每台排粉机供相应的六只喷燃器。2系统设备规范 2.1磨煤机规范 2.2给煤机规范: 2.3磨煤机设备规范: 2.4排粉机规范:

2.5分离器及煤、粉仓 2.6钢索式输粉机 2.7给粉机: 2.8煤斗空气炮 3制粉系统启动前的检查

3.1启动前的检查 3.1.1原煤仓有足够的燃煤,煤斗空气炮电磁阀电源送上,压缩空气压力正常, 煤斗疏松机电源送上。 3.1.2给煤机皮带良好,不偏斜,松紧适度,皮带上无杂物,断煤报警及照明 良好。 3.1.3给煤机减速箱油位正常,无渗漏油,靠背轮良好。 3.1.4给煤机电动机外观良好,清扫电机正常可用,操作电源送上,指示正确。 3.1.5各蒸汽灭火门关闭,疏水门开启。 3.1.6电动粉标已送电且“0”位正确,钢丝绳完好,粉标拉起,滑轮灵活好 用,粉位指示仪良好。 3.1.7粗粉分离器外观无损,变频调速机构完好,油位正常,电源送上,锁气 器动作灵活。 3.1.8细粉分离器外部完整、无损,筛子完好,无杂物。 3.1.9甲、乙下粉挡板倒向所需位置。 3.1.10锁气器动作灵活,无杂物卡煞,手孔门关闭。 3.1.11所有防爆门完整无损。 3.1.12吸潮门关闭。 3.1.13木块分离器无积粉和杂物,检查门关闭严密,筛条拉动灵活,电动机构 完整,电源送上,操作伸拉动作正常。 3.1.14制粉系统所有风门挡板、连杆销子完好,启闭灵活,有关风门挡板在启 动所需位置,指示正确。 3.1.15各部保温完整、齐全。 3.1.16制粉系统周围无积粉和自燃现象,管道保温齐全。 3.1.17钢索式输粉机完整,各紧固件无松动。 3.2表盘及CRT检查: 3.2.1各辅机电源送上,指示显示正确。 3.2.2各热工讯号校验良好,DCS画面上数据显示正常。 3.2.3有关联锁开关在投入位置。 3.3磨煤机的检查: 3.3.1磨煤机进口无积煤、积粉、无着火自燃现象,检查孔关闭严密。 3.3.2外罩完整,封闭良好。 3.3.3磨煤机大瓦回油温度测点完好,照明良好。 3.3.4各防爆门完整无损。粗粉电机投运正常。 3.3.5磨煤机油箱油位1/2至2/3之间,油质合格。

汽轮机组效率及热力系统节能降耗定量分析计算

汽轮机组主要经济技术指标的计算 为了统一汽轮机组主要经济技术指标的计算方法及过程,本章节计算公式选自中华人民国电力行业标准DL/T904—2004《火力发电厂技术经济指标计算方法》和GB/T8117—87《电站汽轮机热力性能验收规程》。 1 凝汽式汽轮机组主要经济技术指标计算 1.1 汽轮机组热耗率及功率计算 a. 非再热机组 试验热耗率: G 0H G H HR0 fw fw N t kJ/kWh 式中G ─主蒸汽流量,kg/h;G fw ─给水流量,kg/h;H ─ 主蒸汽焓值,kJ/kg ;H fw─ 给水焓值,kJ/kg; N t ─实测发电机端功率,kW。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中C Q─主蒸汽压力、主蒸汽温度、汽机背压对热耗的综合修正系数。修正后的功率: N N t kW p Q 式中K Q ─主蒸汽压力、主蒸汽温度、汽机背压对功率的综合修正系数。 b. 再热机组 试验热耗率:: G 0H G fw H fw G R (H r H 1 ) G J (H r H J) HR N t kJ/kWh 式中G R─高压缸排汽流量,kg/h; G J ─再热减温水流量,kg/h; H r ─再热蒸汽焓值,kJ/kg; K

p c ?υ0 p 0?υc k H k H 1─ 高压缸排汽焓值,kJ/kg ; H J ─ 再热减温水焓值,kJ/kg 。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中 C Q ─ 主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽 机背压对热耗的综合修正系数。 修正后的功率: N N t kW p Q 式中 K Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及 汽机背压对功率的综合修正系数。 1.2 汽轮机汽耗率计算 a. 试验汽耗率: SR G 0 N t kg/kWh b. 修正后的汽耗率: SR G c kg/kWh c p 式中G c ─修正后的主蒸汽流量,G c G 0 ,kg/h ; p c 、c ─设计主蒸汽压力、主蒸汽比容; p 0、 ─实测主蒸汽压力、主蒸汽比容。 1.3 汽轮机相对效率计算 a. 非再热机组 汽轮机相对效率: H 0 H k 100% oi 0 - H ' 式中 ' H k ─ 汽轮机等熵排汽焓,kJ/kg ; ─ 汽轮机排汽焓,kJ/kg 。 K N H

中储式制粉系统试验及优化调整 李海明

中储式制粉系统试验及优化调整李海明 发表时间:2019-07-08T12:33:01.993Z 来源:《电力设备》2019年第4期作者:李海明 [导读] 摘要:中储式制粉系统是锅炉系统的重要形式之一,通过其试验的开展以及调整过程的优化,则能够实现系统的更好应用,促使锅炉使用质量的提升。 (大唐双鸭山热电有限公司黑龙江双鸭山 155100) 摘要:中储式制粉系统是锅炉系统的重要形式之一,通过其试验的开展以及调整过程的优化,则能够实现系统的更好应用,促使锅炉使用质量的提升。本文就某热电部的锅炉进行系统分析,并探索更好的优化调整策略。 关键词:中储式制粉系统;试验;优化调整 1、设备概况 黑龙江某热电公司1#、2#锅炉为武汉锅炉股份有限责任公司生产的WGZ670/13.7—19型超高压力、自然循环、倒U形布置、单汽包、单炉膛、一次中间再热、直流燃烧器四角切圆燃烧、配钢球磨中储式制粉系统、尾部竖井为双烟道、挡板调温、管式空气预热器、平衡通风、固态排渣、紧身封闭、全悬吊、高强螺栓连接的全钢构架。 现阶段,两台磨煤机制粉出力处于比较低迷状态之中,设计阶段其出力是37t/h,磨煤机制粉的应用出力则与之不同,1#磨煤机制粉出力是25.4t/h,2#磨煤机制粉出力只有19.7t/h。制粉工作开展过程中,电能的消耗处于偏高状态,1#磨煤机制粉系统耗电是30.66kWh/t,2#磨煤机制粉系统耗电是32.08kWh/t。1#磨煤机制粉系统煤粉细度R90是22.8%,2#磨煤机制粉系统煤粉细度R90是8.8%;1#磨煤机制粉系统煤粉细度R200是5.2%,2#磨煤机制粉系统煤粉细度R200是0.4%,由此可以得出,1#磨煤机制粉系统煤粉细度R200处于比较高的状态之中,而2#磨煤机制粉系统煤粉细度R90则处于比较低迷状态之中。 2、中储式制粉系统试验 2.1最佳通风量试验 现阶段,为了避免中储式制粉系统出现积粉闪爆情况,需要调整一次风压与再循环风门至比较较好状态之中,这样能够提高排粉机电流,避免出现排粉机电流较低情况。这就需要最佳通风量试验的开展,对不同的风压与再循环风门开度进行查找,这样能够保证锅炉运行处于安全状态之中,与此同时还能够对制粉电能消耗的最佳通风量起到一定的减少作用。 2.2煤粉细度调整试验 通过试验了解到当前1#磨制粉系统成粉的R200仅仅是5.2%,所生产出来的煤粉比较粗糙,会对煤粉的燃尽率产生一定影响,进而降低整个锅炉的使用效率;2#磨制粉系统成粉的R90只有8.8%,所生产出来的煤粉比较细腻,致使粗细分离器的分离效率明显超出相关标准,分离出许多质量合格的煤粉,并将分离处的合格煤粉输送至回粉管,致使循环倍率处于偏高状态之中,显著降低制粉出力。所以,利用上述相关试验,我们发现:在变频电机转速不同的情况下,制粉系统的阻力会出现相应变化,并且会影响制粉出力与煤粉细度,促使其产生一定变化,进而在保障锅炉处于安全工作状态的同时,又能对制粉系统耗电的最佳煤粉细度起到一定降低作用。当1#磨制粉系统风量为93609m3/h,2#磨制粉系统风量为86403m3/h时,调整粗粉分离器,所作出的调整,包括以下两点: 第一,调整制粉系统两侧粗粉分离器静叶挡板开度,将其由原来的90度调整为60度; 第二,调整2#磨粗粉分离器动叶转动速度,将其由原来的800r/min调整至400r/min。 通过开展上述调整工作,煤粉细度出现了一定变化:对于1#磨而言,其制粉系统成粉的R90由27.8%变为22.8%,制粉系统成粉的 R200由5.2%变为0.84%;对于2#磨而言,其制粉系统成粉的R90由8.8%%变为24.6%,制粉系统成粉的R200由0.1%变为0.48%。 2.3钢球最佳装载量优化试验 对于磨煤机出力与钢球装载量而言,二者不是处于同比例增加状态之中,在对钢球装载量加大的过程中,到达一定数量之后,如果继续对钢球装载量增加,所增加的磨煤机出力就会比较低。然而,磨煤机磨煤单位电能消耗不再处于稳定情况,会出现一定变化,会处于增加状态之中,最佳装载量就是此时的钢球装载量。倘若磨煤机钢球量处于偏高状态之中,就会增加制粉系统电能消耗;如果磨煤机钢球量处于偏高状态之中,就会对制粉系统的出力情况造成影响。除了磨煤机钢球装载量会对制粉出力造成影响之外,煤粉细度还会受到磨煤机大、小钢球装载比例的影响。由此可见,通过进行有关试验,对磨煤机的最佳钢球装载量和大、小钢球装载比例进行明确,具有非常重要的作用。当1#磨制粉系统风量为93609m3/h,2#磨制粉系统风量为86403m3/h时,确保粗粉分离器静叶挡风板角度、动叶变频电机转速与磨煤机出口温度处于固定状态,钢球装载量每加大2t,对制粉出力与制粉电耗进行测量,并在此基础上,将最终制粉电耗计算出来,最佳钢球装载量就是,当制粉电耗处于最低状态时的钢球装载量。 1#磨煤机原来出力为26t/h,2#磨煤机原来出力为19t/h,在增加钢球量的过程中,就会加大制粉出力,此时的1#磨煤机出力调整为36t/h,2#磨煤机出力调整为33t/h,其效果会出现显著变化。1#磨煤机原来制粉电耗为29.01kWh/t,2#磨煤机原来制粉电耗为 34.56kWh/t,伴随着供求量的不断增多,制粉电耗也会出现降低情况,此时的1#磨煤机制粉电耗调整为22.58kWh/t,2#磨煤机出力调整为22.81kWh/t,这样便能够达到良好的节能作用。 2.4调节粗粉分离器挡板 利用相关试验,对粗粉分离器挡板,开展相关的内外开度标定工作,对粗粉分离器内部挡板做出相关调整,使其处于平整状态之中,这样能够确保挡板开度保持一致状态,进而使粗粉分离器内部气流平稳,回粉量比较低,并且确保煤粉细度度的均匀度。倘若粗粉分离器挡板开度处于不一致的情况下,其内部气流就会出现紊乱情况,回粉量就会明显加大,很难使煤粉细度的均匀性得到保障。 3、试验结果分析 通过相关优化调整试验工作的开展,1#炉的1#磨制粉系统与2#磨制粉系统都产生了一系列变化,具体情况如下: 3.1相比较于有关优化试验工作开展之前,二者的制粉出力都得到了明显改善,并且显著减少了制粉电耗。与此同时,也有助于两炉三磨运行工作的顺利开展。除此之外,制粉降耗效果也比较突出,在进行相关优化工作试验前,1#磨制粉电耗为30.661kWh/t,2#磨制粉电耗为32.08kWh/t,经过优化试验都产生了相应改变,出现了明显增加情况,1#磨制粉电耗调整为22.58kWh/t,2#磨制粉出力调整为 22.81kWh/t。 3.2关于煤粉细度方面,针对1#磨制粉系统与2#磨制粉系统的静叶挡板开度作出相关调整,将其由原来的90度调整至60度,当动叶转

相关主题
文本预览
相关文档 最新文档