当前位置:文档之家› 第2章 质点和质点系动力学题解

第2章 质点和质点系动力学题解

第2章  质点和质点系动力学题解
第2章  质点和质点系动力学题解

第2章 质点和质点系动力学

2.1 一斜面的倾角为α, 质量为m 的物体正好沿斜面匀速下滑. 当斜面的倾角增大为β时,

求物体从高为h 处由静止下滑到底部所需的时间.

解:设斜面得摩擦系数为μ。对m 分别处于倾角为α,β得斜面上,列出牛顿运动方程为

α角: 1sin 0f mg α-=

1cos 0N mg α-= 11f N μ=

β角:2sin 0f mg β-=

2cos 0N mg β-= 22f N μ= 联立解得

sin cos a g g tg ββα=- 又物体从高为h 的斜面下滑的运动方程为 21

sin 2

h at β= 解得

t =

=

2.2 用力f 推地面上的一个质量为m 的木箱,力的方向沿前下方, 且与水平面成α角. 木

箱与地面之间的静摩擦系数为0μ, 动摩擦系数为k μ. 求:(1)要推动木箱, f 最小为多少?使木箱作匀速运动, f 为多少?(2)证明当α大于某值时, 无论f 为何值都不能推动木箱, 并求α值.

解:(1)当f 的水平分力克服最大静摩擦力时,木箱可以运动,即 ()0cos sin f mg f αμα≥+ 00cos sin mg

f μαμα

-

0min 0cos sin mg

f μαμα

=

-

使木箱做匀速运动,则

()cos sin k f mg f αμα=+

0cos sin k mg

f μαμα

=-

(2)当下式成立,则无论f 多大,都不能推动木箱,即 0cos sin f f αμα< 0

1

tg αμ>

, 0

1

arctg

αμ>

2.3 质量为5000kg 的直升飞机吊起1500kg 的物体, 以0.6m/s 2

的加速度上升, 求:(1)

空气作用在螺旋桨上的升力为多少. (2)吊绳中的张力为多少. 解:(1)对飞机物体整体进行受力分析,得 ()()f M m g M m a -+=+ 代入数值得到空气作用在螺旋桨上的升力为 46.8910f N =? (2)对物体m 进行受力分析,得 T mg ma -= 解得吊绳中的张力为

()4

150010.6 1.5910T m g a N =+=?=?

2.4 质量为m 汽车以速率0v 高速行驶, 受到2

kv f -=的阻力作用, k 为常数. 当汽车关

闭发动机后, 求:(1)速率v 随时间的变化关系. (2)路程x 随时间的变化关系. (3)证明速率v 与路程x 之间的函数关系为x m

k

e v v -

=0.(4)若200=v m/s, 经过15s 后, 速

率降为10=t v m/s, 则k 为多少? 解:由题意得 2

dv

kv m dt

-= 当0t =时, 0v v = 两边分离变量

02

0v

t

v dv k dt v m

=-?? 积分得

011k

t v v m ??-=- ???

00

001v mv v k m kv t v t m =

=+??+ ???

(2)由上式两边积分得 0

00

x

t

mv dx dt m kv t =+?

?

即 0ln m kv t m x k m +??=

??? (3)由(1)中得 0

0mv kv t m v

=

- 代入(2)中的结果,得

00ln ln mv m m v m m v x k m k v ??+- ???== ? ???

???

0k x m

v v e

-=

(4)020m v s =,15t s =,10t m v s

=代入(1)中得结果,解得

300

m k =

2.5 质量为m 的质点以初速度0v 竖直上抛, 设质点在运动中受到的空气阻力与质点的速率成正比, 比例系数为0>k .试求:(1)质点运动的速度随时间的变化规律. (2)质点上升的最大高度. 解:(1)对上升过程,列出牛顿方程,得 dv

mg kv m dt

--= 即 mdv

dt mg kv

-=+

积分得

00

t

v

v mdv

dt mg kv

-=+?

?

k mg e k mg v v t m k

-

??? ??

+=-0 对下降过程,列出牛顿方程,得 dv

mg kv m dt

-=

即 mdv

dt mg kv

=-

积分得 00

t

v

v mdv

dt mg kv

=-?

?

1k t m

mg v e k -??=- ???

(2)由(1)中方程得 dv dv dy dy mg kv m m mv dt dy dt dt

--=== 即

()mg kv mg mvdv m dy dv mg kv k mg kv

+--==-++

积分得

()2020

ln m m g mg kv

y v v k k mg kv +=-++

当0v =时,有 20max

02ln mg kv m m g y v k k mg ??+=- ???

2.6 自动枪以每分钟发射120发子弹的速率连续发射. 每发子弹的质量为9.7g, 出口速率

为735m/s. 求射击时枪托对肩部的平均压力. 解:设肩部所受的平均作用力为F ,由动量定理得 Ft mv =

3

1207.910

735

11.660

mv F N t

-???=

=≈∑

2.7 质点在x 轴上受x 方向的变力F 的作用.F 随时间的变化关系为:在刚开始的0.1s

内均匀由0增至20N ,又在随后的0.2s 内保持不变,再经过0.1s 从20N 均匀地减少到0. 求:(1)力随时间变化的t F -图. (2)这段时间内力的冲量和力的平均值. (3)如果质点的质量为3kg, 初始速度为1m/s, 运动方向与力的方向相同. 当力变为零时, 质点速度为多少? 解:(1)由题意得

(2)由上图得

11

200.1200.2200.1622

I N s =

??+?+??=? 0.5200.1200.20.5200.1

150.4

I F N t ??+?+??==

= (3)由动量定理得 0t Ft mv v =- 即 0631

33

t Ft mv m v s m ++?=

==

2.8 子弹脱离枪口的速度为300m/s, 在枪管内子弹受力为5

400410/3F t =-?(SI ), 设

子弹到枪口时受力变为零. 求:(1)子弹在枪管中的运行的时间. (2)该力冲量的大

小. (3)子弹的质量.

解:(1)由541040003

t

F ?=-=得

3

310t s -=?

即子弹在枪管中的运行的时间为s 3

103-?。

(2)3

53100

4104000.63t

t I Fdt dt N s -????==-=? ??

???

0.1 0.3 0.4

(3)由I Ft m v ==?得 30.6210300

I m kg v -=

==?? 2.9 自由电子在沿x 轴的振荡电场()0cos E t ω?=+E i 中运动, 其中0E , ω, ?为常

数. 设电子电量为e -, 质量为m , 初始条件为:0=t 时, 00v =v i , 00x =r i . 略去重力和阻力的作用, 求电子的运动方程. 解:由()0cos F eE t ω?=-+得

00

t

v

v Fdt mdv mv mv ==-?

?

解得 ()000sin sin eE eE

v v t m m ?ω?ωω

=+

-+ 两边同乘dt 积分得 ()?ωω

?ω?ω++???

??++??? ??-

=t m eE t m eE v m eE x x cos sin cos 2

000200 2.10 质量为m 的物体与一劲度系数为k 的弹簧连接, 物体可以在水平桌面上运动,

摩擦系数为μ. 当用一个不变的水平力拉物体, 物体从平衡位置开始运动. 求物体到达最远时, 系统的势能和物体在运动中的最大动能. 解:分析物体水平受力,其中弹性力摩擦力为 f kx = f mg μμ=

物体到达最远时,速度为0。由动能定理得

2

102

Fx kx mgx μ--= 解得 ()

2F mg x k

μ-=

系统的势能为

()2

221

2p F m g E k x k

μ-==

当加速度为零时,动能最大。由0F kx mg μ--=得 0F m g

x k

μ-=

由动能定理得

()0

2

max 01

2x k F kx mg dx mv E μ--==?

()2

max 2k F mg E k

μ-=

2.11

劲度系数为k 的弹簧下端竖直悬挂着两个物体, 质量分别为1m 和2m . 当整个系

统达到平衡后, 突然去掉2m . 求1m 运动的最大速度. 解:未剪断前,弹簧伸长为 ()112kx m m g =+, ()121m m g

x k

+=

当剪断1m 和2m 间连线,1m 受到()112kx m m g =+和1m g 得作用向上运动。速度达到最大时,有 12m g x k

=

选1m 开始向上运动得位置为重力势能得零点,由能量守恒得

()22212121max 111222

kx kx mg x x m v =+-+

max v =

2.12 汽车以30km/h 的速度直线运行, 车上所载货物与底板之间的摩擦系数为25.0.

当汽车刹车时, 保证货物不发生滑动, 求从刹车开始到汽车静止所走过的最短路程. 解:货物保持不滑动,以速度方向为正,则加速度满足 a g μ=- 由题意有方程 201

2

s v t gt μ=-

00v gt μ=- 解得

20

14.22v s m g

μ=≈

2.13 质量为m 的小球在一个半径为r 的半球型碗的光滑内面以角速度ω在水平面内

作匀速圆周运动. 求该水平面离碗底的高度.

解:对小球进行受力分析,小球做匀速圆周运动的向心力由mg 和碗对小球的支撑力提供,即

22cos mg

m r m R tg ωωθθ

==

该水平面离碗底的高度h 为 ()1sin h R θ=- 联立求解得 2

g

h R ω=-

2.14

半径为r 的圆盘绕其中心轴在水平面内转动. 质量分

别为1m 和2m 的小木块与圆盘之间的静摩擦系数均为μ, 现用一根长为r l <的绳子将它们连接. 试求:(1)1m 放在圆心,

2m 放在距圆心l 处, 要使物体不发生相对滑动, 圆盘转动的

最大角速度.(2)将1m 和2m 位置互换, 结果如何?(3)两小木块都不放在圆心, 但联线过圆心, 结果又如何? 解:(1)由题意得 ()2

122max m m g m l μω+=

max ω=

(2)1m 和2m 位置互换,得

max ω=

(3)两小木块都不放在圆心, 但联线过圆心,木块所受摩擦力不变,但离心力为两木块之差,即

()()2

2

121121m m g m l m l l μωω

+=--

max ω=

2.15 半径为r 的光滑球面的顶点处, 质点以初速度为零开始下滑. 求质点滑到顶点下

什么位置脱离球面.

解:由重力提供向心力,当球面对质点吴支持力时,质点脱离球面,有

2

sin mv F mg r

θ==

由能量守恒得

()2

11sin 2

mgr mv θ-=

习题2.14题图

联立求解得 2sin 3

θ=

2.16 求解如下问题:(1)一力F 以5m/s 的速度匀速提升质量为10kg 的物体, 在10s

内力F 做功多少?(2)若提升速度改为10m/s, 把该物体匀速提升到相同高度, 力F 做功多少?(3)a 和b 两种情况中, 它们的功率如何?(4)若用常力F 将该物体从静止加速提升到相同高度, 使物体最后的速度为5m/s, 则力F 做功多少?平均功率为多大?又开始时和结束时的瞬时功率各为多少? 解:(1)3510W mgh mgvt J ===? (2)由于提升高度不变,所以功不变。 3510W mgh mgvt J ===? (3)5000

50010W P W t =

== 500010005

W P W t ===

(4)由题意得

5v at == 2

1502

h at == 解得

20t s =, 2

0.25m a s =

2

151252W mgh mv J =+

= 5125256.2520

W P W t === 00P Fv W ==

()512.5t P Fv m a g v W ==+= 2.17 子弹水平射入一端固定在弹簧上的木

块内, 木块可以在水平桌面上滑动, 它们之间的动摩擦系数为2.0, 由弹簧的压缩距离求出子弹的速度. 设弹簧初始时处于自然长

度, 劲度系数为100N m , 子弹和木块的

质量分别为0.02kg 和8.98kg, 子弹射入木块后, 弹簧被压缩10cm. 求子弹的速度. 解:设子弹的质量为m ,初速度为0v ,木块的质量为M ,由动量守恒得 ()0mv m M v =+

习题2.17题图

由能量守恒得

()()2211

22

m M v m M g x k x μ+=+?+? 联立求解得 0320m v s

=

2.18 质量为m 的小球从某一高度水平抛出, 落在水平桌面上发生弹性碰撞,并在抛出1s 后, 跳回到原来高度, 速度大小和方向与抛出时相同. 求小球与桌面碰撞中, 桌面给小球冲量的大小和方向. 解:由题意在数值方向上得 ()2F t mv mv mv ?=--= v gt = 联立求解得 1222I mv m g mg ??

=== ???

2.19

炮弹质量为m , 以速率v 飞行. 其内部炸药使炮弹分为两块, 并使弹片增加动能T . 如果两块弹片的质量之比为k , 且仍按原方向飞行. 求它们各自的速率. 解:由题意得

1

2

m k m =, 12m m m += 解得 11km m k =

+, 21m

m k

=+ 由动量守恒和能量守恒得

11221211km m

mv m v m v v v k k

=+=+++ 222

22112212111112222121km m mv T m v m v v v k k

+=+=

+++ 解得

()2

2

222211220m mv m mvv m m m v mT ----=

22v v =

2v v =

22

11

1mv m v v v v m -=

==-=

第二章 质点动力学

普通物理
黄 武 英
第二章
一.牛顿第一定律
质点动力学
三.牛顿第三定律
§2.1 牛顿定律
二.牛顿第二定律
§2.2 常见的力
一.万有引力 五.四种基本力 二.重力 三.弹力 四.摩擦力
牛顿定律应用举例
§2.3 单位制和量纲 §2.4 动量定理和动量守恒定律 §2.5 动能定理和功能原理 §2.6 能量守恒定律 §2.7 角动量定理和角动量守恒定律
物理与电子信息学院
§2.4 动量定理和动量守恒定律
一、质点的动量定理 二、动量定理的应用 三、质点系的动量定理 四、质心运动定理 五、质点系的动量守恒定律 六、变质量物体的运动方程
§2.5 动能定理和功能原理
一、动能及功的定义 三、功率 五、保守力和非保守力 六、质点的功能原理 七、质点系的动能定理和功能原理 二、动能定理
四、功的计算举例
§2.6 能量守恒定律
一、机械能守恒定律 二、守恒定律(机械能与动量) 的综合应用 三、能量转化及守恒定律 四、碰撞
§2.7角动量守恒定律
一、力矩 二、角动量 三、角动量守恒定律
四、动能定理
K rb G K 2 2 1 Wab = ∫K f ? dr = 1 2 mVb ? 2 mVa
ra
本章小结 G G dp d (mv ) G 一、牛顿第二定律 = =F dt dt
二、质点系的动量定理
五、质点系的功能原理和机械能守恒定律
Ekb + E pb ? ( Eka + E pa ) = W外 + W非保守内力
则: E kb + E pb = E ka + E pa 六、角动量定理和角动量守恒定律 K K dL 角动量定理 M= G dt 若 M =0 (条件)
功能原理
若外力和非保守内力都不作功或所作的总功为零(条件) 机械能守恒定律
G I =

t2
t1
G G G F合外 dt = ∑ mi vi (t 2 ) ? ∑ mi vi (t1 )
i i
三、质点系的动量守恒定律 若系统不受外力作用,或所受外力的矢量和为零(条件) n K K K K 则: ∑ miVi=m1V1 + m2V2 + " mnVn = 恒量
i =1
G

dL =0 dt
G L = 常矢量
角动量守恒定律

第2章 质点动力学

第2章 质点动力学 一、选择题 1. 如图1所示,物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的 (A) 速度逐渐减小, 加速度逐渐减小 (B) 速度逐渐减小, 加速度逐渐增大 (C) 速度继续增大, 加速度逐渐减小 (D) 速度继续增大, 加速度逐渐增大 [ ] 2. 一物体作匀速率曲线运动, 则 (A) 其所受合外力一定总为零 (B) 其加速度一定总为零 (C) 其法向加速度一定总为零 (D) 其切向加速度一定总为零 [ ] 3. 对一运动质点施加以恒力, 质点的运动会发生什么变化? (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性 (C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化 [ ] 4. 用细绳系一小球使之在竖直平面内作圆周运动, 小球在任意位置 (A) 都有切向加速度 (B) 都有法向加速度 (C) 绳子的拉力和重力是惯性离心力的反作用力 (D) 绳子的拉力和重力的合力是惯性离心力的反作用力 [ ] 5. 如图2所示,三艘质量均为0m 的小船以相同的速度v 鱼贯而行.今从中间船上同时以速率u (与速度v 在同一直线上)把两个质量均为m 的物体分别抛到前后两船上. 水和空气的阻力均不计, 则抛掷后三船速度分别为 (A) v ,v ,v (B) u +v ,v ,u -v (C) u m m m 0++ v ,v ,u m m m +-v (D) u m m m 0++ v ,v ,u m m m 0 +-v [ ] 6. 质量为m 的铁锤竖直落下, 打在木桩上并停下. 设打击时间为?t , 打击前铁锤速率为 v ,则在打击木桩的时间内, 铁锤所受平均合外力的大小为 (A) t m ?v (B) mg t m -?v (C) mg t m +?v (D) t m ?v 2 [ ] 7. 用锤压钉不易将钉压入木块, 用锤击钉则很容易将钉击入木块, 这是因为 (A) 前者遇到的阻力大, 后者遇到的阻力小 (B) 前者动量守恒, 后者动量不守恒 (C) 后者锤的动量变化大, 给钉的作用力就大 (D) 后者锤的动量变化率大, 给钉的作用力就大 [ ] 8. 质点系的内力可以改变 (A) 系统的总质量 (B) 系统的总动量 图1 图2 v

力学课程标准

《力学》课程标准 第一部分:课程性质、课程目标 一、课程性质 本课程为物理学专业本科生专业基础课程的必修科目。 力学是物理学其他分支研究的基石和起点。本课程是物理学专业本科学生必修的第一门专业课,本课程中的知识、物理问题的研究方法、运用高等数学知识解决物理问题的方法等都是后续各专业课程的基础。 二、课程目标 通过本课程的学习,使学生比较系统地掌握力学的基本知识,并能灵活地应用力学知识去解决物理学及其它学科中有关力学的基本问题,对牛顿力学及其应用有全面深入的认识,运用牛顿力学的原理和定律,用矢量代数和微积分的方法解决质点力学、质点系力学、刚体力学、振动与波的基本问题,为学习后续课程打好坚实的基础,也为今后从事中学物理教学工作或进一步深造打好基础;了解物理学及力学的基本研究方法;深刻理解中学物理教材中的力学问题,并能独立解决今后在工作中遇到的一般力学问题。 第二部分:教材与主要参考书 一、指定教材 梁昆淼,力学(上册)(第4版),高等教育出版社,2010。 二、推荐阅读书籍 1、赵凯华,罗蔚茵,新概念物理教程——力学(第二版),高等教育出版社,2004。 2、漆安慎,杜婵英,普通物理学教程——力学(第二版),高等教育出版社,2005。 3、张永德主编,强元棨,程稼夫编著,物理学大题典1力学(上、下册),科学出版社、中国科学技术大学出版社,2005。 4、费恩曼,莱顿,桑兹著,郑永令,华宏鸣,吴子仪等译,费曼物理学讲义(第1卷),上海科学技术出版社,2006。 第三部分:课程教学主要内容及基本要求 一、内容概要 本课程将主要介绍以下几块内容:质点运动学、质点动力学、质点系动力学、刚体力学、振动与波。具体将涉及质点运动的描述、质点运动的原因、刚体的运动情况、振动波动的描述及原理等力学所必需的

大学物理2-1第二章(质点动力学)习题答案

习 题 二 2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。 [解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv (1) 由牛顿第二定律 t v m ma f d d == 即 t v m kv d d ==- 所以 t m k v v d d -= 对等式两边积分 ??-=t v v t m k v v 0 d d 0 得 t m k v v -=0ln 因此 t m k e v v -=0 (2) 由牛顿第二定律 x v mv t x x v m t v m ma f d d d d d d d d ==== 即 x v mv kv d d =- 所以 v x m k d d =- 对上式两边积分 ??=-00 0d d v s v x m k 得到 0v s m k -=- 即 k mv s 0 = 2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为 ??? ? ??--= -m kt e k F mg v 1 [证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正 方向,开始沉降处为坐标原点。由牛顿第二定律得 t v m ma f F mg d d ==--

即 t v m ma kv F mg d d ==-- 整理得 m t kv F mg v d d =-- 对上式两边积分 ??=--t v m t kv F mg v 00 d d 得 m kt F mg kv F mg -=---ln 即 ??? ? ??--= -m kt e k F mg v 1 2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即伞,受空气的阻力与速率的平方成正比,即2kv F =。求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。 [解] 设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。 此时 2 T kv mg = 即 k mg v = T 有牛顿第二定律 t v m kv mg d d 2=- 整理得 m t kv mg v d d 2= - 对上式两边积分 mgk m t kv mg v t v 21d d 00 2?? =- 得 m t v k mg v k mg = +-ln 整理得 T 22221 111v e e k mg e e v kg m t kg m t kg m t kg m t +-=+-=

质点动力学

第一章 质点运动学 1.下列物理量是标量的为( ) A .速度 B .加速度 C .位移 D .路程 2.下列物理量中是矢量的有 ( ) A . 内能 B. 动量 C . 动能 D . 功 答案:1.D 2.B 一、位矢、位移、速度、加速度等概念 1.一质点作定向直线运动,,下列说法中,正确的是 ( ) A.质点位置矢量的方向一定恒定,位移方向一定恒定 B.质点位置矢量的方向不一定恒定,位移方向一定恒定 C.质点位置矢量的方向一定恒定,位移方向不一定恒定 D.质点位置矢量的方向不一定恒定,位移方向不一定恒定 2.质点的运动方程是cos sin r R ti R tj ωω=+ ,,R ω为正的常数,从/t πω=到 2/t πω=时间内,该质点的位移是 ( ) A .2Rj - B .2Ri C .2j - D .0 3.一质点以半径为R 作匀速圆周运动,以圆心为坐标原点,质点运动半个周期内, 其位移大小r ?= _ _______,其位矢大小的增量r ?=_________. 4.质点在平面内运动,矢径 ()r r t = ,速度()v v t = ,试指出下列四种情况中哪种质点一 定相对于参考点静止: ( ) A. 0dr dt = B .0dr dt = C .0dv dt = D .0 dv dt = 5.质点作曲线运动,某时刻的位置矢量为r ,速度为v ,则瞬时速度的大小是( ), 切向加速度的大小是( ),总加速度大小是( ) A.dt r d B. dt r d C. dt dr D. dt v d E. dt v d F. dt dv

6. 在平面上运动的物体,若0=dt dr ,则物体的速度一定等于零。 ( ) 7. 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速度为v ,平均速率为v ,它们之间的关系应该是: ( ) A . v = v ,v ≠v B .v ≠v, v =v C .v ≠v, v ≠v D .v = v , v =v 8.平均速度的大小等于平均速率。 ( ) 9. 质点沿半径为R 的圆周作匀速率运动,每t 时间转一周,在2t 时间间隔中,其平均速度大小 与平均速率大小分别为 ( ) A .2πR/t, 2πR/t. B. 0, 2πR/t. C.0, 0. D.2πR/t, 0. 10.质点作曲线运动,r 表示位置矢量, s 表示路程, at 表示切向加速度,下列表达式中 , 正确 的是 ( ) (1)dv/dt=a ; (2)dr/dt=v ; (3)ds/dt=v ; (4) dt v d =at. A. 只有(1)、(4)是正确的. B .只有(2)、(4)是正确的. C .只有(2) 是正确的. D .只有(3)是正确的 11.质点作半径为R 的变速圆周运动时的加速度大小为(v 为任一时刻速率): ( ) A.dt dv B.R v 2 C.R v dt dv 2+ D.2/124 2)]()[(R v dt dv + 12.已知一质点在运动,则下列各式中表示质点作匀速率曲线运动的是( ),表示作 匀速直线运动的是( ),表示作变速直线运动的是( ),表示作变速曲线运动 的是( ) A. 0,0==n t a a ; B. 0,0≠≠n t a a ; C. 0,0=≠n t a a ; D. 0,0≠=n t a a 13.质点作直线运动的条件是: C.

大学物理第二章(质点动力学)习题答案

习题二 2-1 质量为m得子弹以速率水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k,忽略子弹得重力,求:(1)子弹射入沙土后,速度大小随时间得变化关系; (2)子弹射入沙土得最大深度。 [解] 设任意时刻子弹得速度为v,子弹进入沙土得最大深度为s,由题意知,子弹所受得阻力f= - kv (1) 由牛顿第二定律 即 所以 对等式两边积分 得 因此 (2) 由牛顿第二定律 即 所以 对上式两边积分 得到 即 2-2 质量为m得小球,在水中受到得浮力为F,当它从静止开始沉降时,受到水得粘滞阻力为f=kv(k为常数)。若从沉降开始计时,试证明小球在水中竖直沉降得速率v与时间得关系为 [证明] 任意时刻t小球得受力如图所示,取向下为y轴得正方向,开始沉降处为坐标原点。由牛顿第二定律得 即 整理得 对上式两边积分 得 即 2-3 跳伞运动员与装备得质量共为m,从伞塔上跳出后立即张伞,受空气得阻力与速率得平方成正比,即。求跳伞员得运动速率v随时间t变化得规律与极限速率。 [解] 设运动员在任一时刻得速率为v,极限速率为,当运动员受得空气阻力等于运动员及装备得重力时,速率达到极限。 此时 即 有牛顿第二定律 整理得 对上式两边积分 得 整理得 2-4 一人造地球卫星质量m=1327kg,在离地面m得高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f得大小;(2)卫星得速率v;(3)卫星得转动周期T。 [解] 卫星所受得向心力即就是卫星与地球之间得引力

由上面两式得()() () N 1082.71085.110 63781063788.9132732 6 3 2 32 e 2 e ?=?+??? ?=+=h R R mg f (2) 由牛顿第二定律 ()() s m 1096.61327 1085.11063781082.736 33e ?=?+???=+= m h R f v (3) 卫星得运转周期 ()() 2h3min50s s 1043.710 96.61085.1106378223 3 63e =?=??+?=+=ππv h R T 2-5 试求赤道上方得地球同步卫星距地面得高度。 [解] 设同步卫距地面高度为h ,距地心为R +h ,则 所以 代入第一式中 解得 2-6 两个质量都就是m 得星球,保持在同一圆形轨道上运行,轨道圆心位置上及轨道附近都没有其它星球。已知轨道半径为R ,求:(1)每个星球所受到得合力;(2)每个星球得运行周期。 [解] 因为两个星球在同一轨道上作圆周运动,因此,她们受到得合力必须指向圆形轨道得圆心,又因星球不受其她星球得作用,因此,只有这两个星球间得万有引力提供向心力。所以两个星球必须分布在直径得两个端点上,且其运行得速度周期均相同 (1)每个星球所受得合力 (2) 设运动周期为T 联立上述三式得 所以,每个星球得运行周期 2-7 2-8 2-9 一根线密度为得均匀柔软链条,上端被人用手提住,下端恰好碰到桌面。现将手突然松开,链条下落,设每节链环落到桌面上之后就静止在桌面上,求链条下落距离s 时对桌面得瞬时作用力。 [解] 链条对桌面得作用力由两部分构成:一就是已下落得s 段对桌面得压力,另一部分就是正在下落得段对桌面得冲力,桌面对段得作用力为。显然 时刻,下落桌面部分长s 。设再经过,有落在桌面上。取下落得段链条为研究对象,它在时

力学习题第二章质点动力学(含答案)

第二章质点动力学单元测验题 一、选择题 1.如图,物体A和B的质量分别为2kg和1kg,用跨过定滑轮的细线相连,静 止叠放在倾角为θ=30°的斜面上,各接触面的静摩擦系数均为μ=0.2,现有一沿斜面向下的力F作用在物体A上,则F至少为多大才能使两物体运动. A.3.4N; B.5.9N; C.13.4N; D.14.7N 答案:A 解:设沿斜面方向向下为正方向。A、B静止时,受力平衡。 A在平行于斜面方向:F m g sin T f f 0 A12 B在平行于斜面方向:1sin0 f m g T B 静摩擦力的极值条件:f1m g cos, B f m m g 2(B A)cos 联立可得使两物体运动的最小力F min满足: F min (m B m A)g sin (3m B m A )g cos=3.6N 2.一质量为m的汽艇在湖水中以速率v0直线运动,当关闭发动机后,受水的阻力为f=-kv,则速度随时间的变化关系为 A.v k t =v e m; B. v= -t k t v e m 0; C. v=v + k m t ; D. v=v - k m t 答案:B 解:以关闭发动机时刻汽艇所在的位置为原点和计时零点,以v0方向为正方向建立坐标系. 牛顿第二定律: dv ma m kv dt 整理: d v v k m dt

积分得:v= - v e k t m 3.质量分别为m和m( 12m m)的两个人,分别拉住跨在定滑轮(忽略质量)21 上的轻绳两边往上爬。开始时两人至定滑轮的距离都是h.质量为m的人经过t 1 秒爬到滑轮处时,质量为m的人与滑轮的距离为 2 m m1m-m1 1; C.1(h gt2)2h gt 1 2 A.0; B.h+; D.(+) m m2m2 222 答案:D 解:如图建立坐标系,选竖直向下为正方向。设人与绳之间的静摩擦力为f,当 质量为m的人经过t秒爬到滑轮处时,质量为m的人与滑轮的距离为h',对二者12 分别列动力学方程。 对m: 1 f m g m a m 11m1 1 dv m 1 dt 对m: 2 f m g m a m 22m2 2 dv m 2 dt 将上两式对t求积分,可得: fdt m gt m v m 11m1 1dy m 1 dt fdt m gt m v m 22m2 2dy m 2 dt 再将上两式对t求积分,可得: 1 fdt m gt 0m h 22 11 2 1 fdt m gt m h m h 22 222 2

第三章 刚体动力学(I)dch3B

x y o A B ' x ' y A a ω α 三、平面图形上各点的加速度 n BA a t BA a t r n r e a a a a a ++=动系:Ax’y’ 动 点:刚体上的B 点 牵连运动:平移相对运动:圆周运动 t t r n n r e ,,BA BA a a a a a a A ===2 n t ,ω α?=?=AB a AB a BA BA t n BA BA A B a a a a ++=问题:是否有加速度投影定理?是否有加速度瞬心?

?加速度瞬心:在某瞬时,平面图形上加速度为零的点。 当平面图形的角速度与角加速度不同时为零时,必存在唯一的一点,在该瞬时其加速度为零。 问题:当平面运动刚体在某瞬时角加速度为零时,如何确定加速度瞬心的位置,要确定该位置需要已知哪些运动条件? 问题:当平面运动刚体在某瞬时角速度为零时,如何确定加速度瞬心的位置,要确定该位置需要已知哪些运动条件 ? 2 n t ,ω α?=?=MP a MP a MP MP t n MP MP M a a a +=

O A B ω A a B a a C AB 杆瞬时平移 ω 为常量 ω V C o 纯滚动 当平面运动刚体瞬时平移时,加速度瞬心在加速度垂线上 问题:确定图示瞬时平面运动刚体上加速度为零的点。

例:A 端沿直线以匀速u 运动,求绳铅垂时AB 杆的角加速度和杆中点C 的加速度。已知:r BD r AB ==,2解:1、研究AB 杆,速度分析 AB 杆瞬时平移 =AB ωu v v B A ==θ u A B D C B v 2、C 点加速度分析 t n CA CA A C a a a a ++=t CA C a a =

大学物理练习题运动学动力学答案

练习题1:质点运动学和动力学 一、判断题(每题2分,共20分) 1.物体做匀速圆周运动,由于速率大小不变,所以加速度为零。(×) 2.质点的位置矢量方向不变,质点一定作直线运动。(√) 3. 物体匀速率运动,加速度必定为零。( × ) 4. 对于一个运动的质点,具有恒定速率,但可能有变化的速度。( √ ) 5. 物体作曲线运动时,一定有加速度,加速度的法向分量一定不等于零。( √ ) 6.质点运动经一闭合路径,保守力对质点作的功为零。(√) 7.一个系统如果只受到保守内力的作用,此系统机械能守恒。(√) 8.质量为 M 的木块静止在光滑水平面上,一质量为 m的子弹水平地射入木块后又穿出木块,则在子弹射穿木块的过程中,子弹和木块组成的系统动量守恒。(√) 9. 子弹分别打在固定的软和硬的两块木块内,则木块受到的冲量相同,但硬木块的平均作用力大。(√) 10. 一对内力作功之和必为零。(×) 二、选择题(每题2分,共20分) 1.当物体的加速度不为零时,则:( B ) (A)对该物体必须做功;(B)对该物体必须施力,且合力不会为零; (C)它的速率必然增大;(D)它的动能必然增大。 2. 质点在O?xy平面内运动,其运动方程为r?=2ti?+(4?t2)j? (SI),则当t=2S时,质点的速度是 ( A )

(A) (2i ??4j ?)m s ? (B) (?2i ?)m s ? (C) (?4j ?)m s ? (D) (2i ?+4j ?)m s ? 3、下列几种运动形式,哪一种运动是加速度矢量a ??保持不变的运动?( C )。 A 、单摆运动; B 、匀速度圆周运动; C 、抛体运动; D 、以上三种运动都是a ??保持不变的运动。 4. 一个质点在做圆周运动时,则有( B ) (A) 切向加速度一定改变,法向加速度也改变; (B) 切向加速度可能不变,法向加速度一定改变; (C) 切向加速度可能不变,法向加速度不变; (D) 切向加速度一定改变,法向加速度不变。 5. 质点作半径为R 的变速圆周运动的加速度大小为( D ) (A)/dv dt (B)2/v r (C)2//dv dt v r + (D) 6. 质点系统不受外力作用的非弹性碰撞过程中 ( C ) (A) 动能和动量都守恒; (B) 动能和动量都不守恒; (C) 动能不守恒,动量守恒; (D) 动能守恒,动量不守恒。 7. 质点的内力可以改变 ( C ) (A) 系统的总质量; (B) 系统的总动量; (C) 系统的总动能; (D) 系统的总角动量。 8. 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则 ( B ) (A) 它的加速度方向永远指向圆心,其速率保持不变; (B) 它受到的轨道的作用力的大小不断增加; (C) 它受到的合外力大小变化,方向永远指向圆心;

质点和质点系动力学习题课

质点和质点系动力学习题课 例: 1m ,2m ,l ,相互作用 符合万有引力定律 12 求:两质点间距变为l /2时 V 2V 两质点的速度 1m 2/l 2m 解:02211=-V m V m 2/21212 122221121l m m G V m V m l m m G -+=- l m m G m V )(22121+=,l m m G m V )(22112+= 例:在两个质点组成的系统中,若质点之间只有万有引力作用, 且此系统所受外力的矢量和为零,则此系统 (A )动量与机械能一定都守恒 (B )动量与机械能一定都不守恒 (C )动量不一定守恒,机械能一定守恒 (D )动量一定守恒,机械能不一定守恒 例:恒力F ,1m 自平衡位置 由静止开始运动 求:AB 系统受合外力为零时的 速度,以及此过程中F A 、T A

解:A B 系统受水平方向合外力 k F x kx F /0=?=- k F Fx A F /2== 222121)(21kx V m m A F ++=, ) (21m m k F V += =T A 2 1212221222121m m m m k F kx V m ++=+ 例:三艘船(M )鱼贯而行,速度都是V ,从中间船上同时以 相对船的速度u 把质量都为m 的物体分别抛到前后两艘船上 m 求:抛掷物体后,三艘船的速度? 解:以第二艘船和抛出的两个物体为系统,水平方向动量守恒 V V V u m V u m MV V m M =?+-+++=+2222)()()2( 以第一船和抛来物体为系统 1)()(V M m V u m MV +=++,m M mu V V ++=1 以第三船和抛来物体为系统 3)()(V M m V u m MV +=+-+,m M mu V V +-=3

第二章 质点动力学习题答案

第二章 质点动力学习题答案 2-1一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向 与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道. 解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v 方向为X 轴,平行 斜面与X 轴垂直方向为Y 轴.如图2-1. 图2-1 X 方向: 0=x F t v x 0= ① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v 2 sin 2 1t g y α= 由①、②式消去t ,得 2 2 sin 21x g v y ?= α 2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空气阻力数值为f KV =,K 为 常数.求物体升高到最高点时所用时间及上升的最大高度. 解:⑴研究对象:m ⑵受力分析:m 受两个力,重力P 及空气阻力f ⑶牛顿第二定律: 合力:f P F += a m f P =+ y 分量:dt dV m KV mg =-- dt KV mg mdV -=+? 即 dt m KV mg dV 1- =+ ? ? - = +t v v dt m KV mg dV 10

dt m KV mg KV mg K 1ln 10 - =++ )(0KV mg e KV mg t m K +?=+- mg K e KV mg K V t m K 1)(10- += ?- ① 0=V 时,物体达到了最高点,可有0t 为 )1ln(ln 00 0mg KV K m mg KV mg K m t + = += ② ∵ dt dy V = ∴ Vdt dy = dt mg K e KV mg K Vdt dy t t m K t y ? ?? ?? ????-+= = -0 1)(1 mgt K e KV mg K m y t m K 11)(02 -??????-+- =- 021()1K t m m mg KV e mgt K K -+--??=???? ③ 0t t = 时,max y y =, )1ln(11)(0)1ln(02 max 0mg KV K m mg K e KV mg K m y mg KV K m m K +?- ??? ?????-+= +?- )1ln(11)(0 2 2 002 mg KV g K m mg KV mg KV mg K m +-?? ??? ? ?????? +-+= )1ln() (02 20 002 mg KV g K m KV mg KV KV mg K m + - ++= )1ln(02 20mg KV g K m K mV + - = 2-3 一条质量为m ,长为l 的匀质链条,放在一光滑的水平桌面,链子的一端由极小的一 段长度被推出桌子边缘,在重力作用下开始下落,试求链条刚刚离开桌面时的速度.

质点运动学

第二章 牛顿运动定律及其应用 教学基本要求 1、掌握牛顿运动定律及其适用条件。 2、掌握质点动力学的第一类问题,理解第二类问题。 3、了解非惯性系和惯性力 教学内容提要 1 牛顿运动定律 (1)第一定律 任何物体都保持静止或匀速直线运动状态,直到其他物体对它作用的力迫使它改变这种状态为止。 (2)第二定律 m =F a (3)第三定律 当物体A 以力F 作用于物体B 时,物体B 也同时以' F 作用于物体A 上,力F 和力'F 总是大小相等,方向相反,且在同一条直线上。 2.适用条件 (1)质点 (2)低速 (3)惯性系 3 惯性力 为了使牛顿第二定律在非惯性系中成立而引进的一个虚拟的力00m =-F a 0a 为非惯性系的加速度 教学重点难点分析 动力学的主要任务是揭示运动状态变化与外界作用的联系,反映这个联系的规律就是牛顿运动定律。牛顿三大定律涉及到力的溉念,因此在学习动力学时应抓住力的概念和力的规律这两条线索进行复习。又因牛顿定律研究的对象是质点。在应用牛顿定律研究力学问题时,必须用隔离体法把研究对象隔离开来进行受力分析。注意牛顿定律只在惯性系中成立,其解题一般步骤如下: 1.确定对象,受力分析。认真分析题意,确定研究对象。采用“隔离体法”对研究对象进行正确的受力分析,并画出受力分析图。 2.明确关系,运动分析。弄清物理过程,明确物理关系,进行运动分析。主要分析加速度相对于什么参考系以及它的方向。若有两个以上质点的运动,要找出他们的加速度间的关系。 3.选定坐标,列出方程。依据题目具体条件选定坐标系。在此基础上,对研究对象列出牛顿第二定律的分量式和其他必要的辅助性方程,所列方程的总数与未知量的数目要相等。 4.解出方程,讨论结果。解方程时,一般先进行文字运算,然后将已知量统一单位制后代入,求得结果。最后讨论结果的物理意义,判断其是否合理和正确。 本章的主要内容都是以力为核心的,正确的分析物体受力情况将是关键,在分析受力情况时,请同学们注意以下几个问题: (1)遗漏某些作用力 分析力时可能产生的错误之一是遗漏某些作用力。为了防止这种错误,应当注意掌握

第2章-质点动力学答案

% 2015-2016(2)大学物理A (1)第二次作业 第二章 质点动力学答案 [ A ] 1、【基础训练1 】 一根细绳跨过一光滑的定滑轮,一端挂一质量为M 的物体,另一端被人用双手拉着,人的质量M m 2 1 = .若人相对于绳以加速度a 0向上爬,则人相对于地面的加速度(以竖直向上为正)是 (A) 3/)2(0g a +. (B) )3(0a g --. (C) 3/)2(0g a +-. (D) 0a [解答]: ()()()()00000() ,/3, 2/3 Mg T Ma T mg m a a M m g M m a ma a g a a a g a -=-=+-=++=-∴+=+ 、 [ D ]2、【基础训练3】 图示系统置于以g a 2 1 = 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦并不计空气阻力,则绳中张力为 (A) mg . (B) mg 2 1. (C) 2mg . (D) 3mg / 4. [解答]: 设绳的张力为T ,F 惯=ma mg ?T +ma =ma‘, T =ma’, mg +mg /2=2ma’. 》 所以 a’=3g/4, T=3mg/4 [ B ] 3、【基础训练5】 光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1 2F. … [解答]: 2F=(m 1+m 2)a, F+N=m 2a, B A a m 1 m 2F F

大学物理第2章质点动力学

第2章 质点动力学 2.1 牛顿运动定律 一、牛顿第一定律 任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改变这种状态为止。 二、牛顿第二定律 物体所获得的加速度的大小与合外力的大小成正比,与物体的质量成反比, 方向与合外力的方向相同。表示为 a m f = 说明: ⑴ 物体同时受几个力n f f f Λ21,的作用时,合力f 等于这些力的矢量和。 ∑=+++==n i n i f f f f f 121Λ 力的叠加原理 ⑵ 在直角坐标系中,牛顿方程可写成分量式 x x ma f =,y y ma f =,z z ma f =。 ⑶ 在圆周运动中,牛顿方程沿切向和法向的分量式 t t ma f = n n ma f = ⑷ 动量:物体质量m 与运动速度的乘积,用表示。 v m p = 动量是矢量,方向与速度方向相同。 由于质量是衡量,引入动量后,牛顿方程可写成 dt p d dt v d m a m f === 当0=f 时, 0=dt p d ,=p d 常量,即物体的动量大小和方向均不改变。此结论成为质点动量守恒定律。

三、牛顿第三定律:物体间的作用力和反作用力大小相等,方向相反,且在同一直线上。 说明:作用力和反作用力是属于同一性质的力。 四、国际单位制量纲 基本量与基本单位 导出量与导出单位 五、常见的力 力是物体之间的相互作用。 力的基本类型:引力相互作用、电磁相互作用和核力相互作用。 按力的性质来分,常见的力可分为引力、弹性力和摩擦力。 六、牛顿运动定律的应用 用牛顿运动定律解题时一般可分为以下几个步骤: (1)隔离物体,受力分析。 (2)建立坐标,列方程。 (3)求解方程。 (4)当力是变力时,用牛顿第二定律得微分方程形式求解。

第2章 质点动力学

第2章质点动力学 一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 固体间的静摩擦力:(最大值) 固体间的滑动摩擦力: 3、流体阻力:或。 4、万有引力: 特例:在地球引力场中,在地球表面附近:。 式中R为地球半径,M为地球质量。 在地球上方(较大),。 在地球内部(),。 三、惯性参考系中的力学规律牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了

惯性系。 牛顿第二定律: 普遍形式:; 经典形式:(为恒量) 牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系 的运动状态,这体现了惯性力就是参考系的加速度效应。 2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出 分量式的运动方程。 变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第2章质点动力学 二、解题示例 【例2-1】如题图2-1a所示一倾角为的斜面放在水平面上,斜面上放一木块,两者间摩擦

大学物理_第2章_质点动力学_习题答案

第二章 质点动力学 2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。 解:物体与斜面间的摩擦力f =uN =umgcos30 物体向斜面上方冲去又回到斜面底部的过程由动能定理得 22011 2(1) 22 mv mv f s -=-? 物体向斜面上方冲到最高点的过程由动能定理得 201 0sin 302 mv f s mgh f s mgs -=-?-=-?-o 2(2) s ∴= 把式(2)代入式(1)得, 220.198 u = 2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。 解:小球在运动的过程中受到重力G r 和轨道对它的支持力T r .取如图所示的自然坐标系,由牛顿定律得 22 sin (1) cos (2) t n dv F mg m dt v F T mg m R αα=-==-=r r r 由,,1ds rd rd v dt dt dt v αα= ==得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有, 90 2 n (sin )m cos 3cos '3cos ,e v vdv rg d v v r v mg mg r mg α αα ωαα α=-===+==-=-? ?o r 得则小球在点C 的角速度为 =由式(2)得 T 由此可得小球对园轨道得作用力为 T T 方向与反向 2-3如本题图,一倾角为的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者 习题2-2图

《质点动力学》选择题解答与分析

2 质点力学的运动定律守恒定律 2.1直线运动中的牛顿运动定律 1. 水平地面上放一物体A,它与地面间的滑动摩擦系数为μ.现加一恒力F ? 如图所示.欲使物体A有最大加速度,则恒力F ? 与水平方向 夹角θ 应满足 (A) sinθ =μ.(B) cosθ =μ. (C) tgθ =μ.(D) ctgθ =μ. 答案:(C) 参考解答: 按牛顿定律水平方向列方程: , ) sin ( cos a m F g m F A A = - -μ θ θ 显然加速度a可以看作θ的函数,用高等数学求极值的方法, 令,0 d d = θ a ,有.μ θ= tg 分支程序: 凡选择回答错误的,均给出下面的进一步讨论: 1.一质量为m的木块,放在木板上,当木板与水平面间的夹角θ由00变化到0 90的过程中,画出木块与木板之间摩擦力f随θ变化的曲线(设θ角变化过程中,摩擦系数μ不变).在图上标出木块开始滑动时,木板与水平面间的夹角θ0,并指出θ0与摩擦系数μ的关系. (A) 图(B)正确,sinθ0 =μ.(B) 图(A)正确,tgθ 0=μ. 答案:(B) 参考解答: (1) 当θ较小时,木块静止在木板上,静摩擦力; sinθ mg f= (正确画出θ为0到θ 0之间的f-θ 曲线) (2) 当θ=θ 0时(tgθ 0=μ),木块开始滑动; F θ A

(3) 0θθ>时,滑动摩擦力,cos θμmg f = (正确画出θ为θ 0到90°之间的f -θ曲线) . 2.2曲线运动中的牛顿运动定律 1. 如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是 正确的? (A) 它的加速度大小不变,方向永远指向圆心. (B) 它的速率均匀增加. (C) 它的合外力大小变化,方向永远指向圆心. (D) 它的合外力大小不变. (E) 轨道支持力的大小不断增加. 答案: (E) 参考解答: 根据牛顿定律法向与切向分量公式: .dt d ,2υυm F R m F t n == .cos ,sin θθmg F mg N F t n =-= 物体做变速圆周运动,从A 至C 的下滑过程中速度增大,法向加速度增大。 由轨道支持力提供的向心力增大。 凡选择回答错误的,均给出下面的进一步讨论: 1.1质点作圆周运动时,所受的合外力一定指向圆心.这种说法 (A) 正确. (B) 不正确. 答案: (E) 参考解答: 作圆周运动的质点,所受合外力有两个分量,一个是指向圆心的法向分量, 另一个是切向分量,只要质点不是作匀速率圆周运动,它的切向分量就不为零, 所受合外力就不指向圆心. 2.3动量与动量守恒 1. 用一根细线吊一重物,重物质量为5kg ,重物下面再系一根同样的细线,细线 只能经受70N 的拉力.现在突然向下拉一下下面的线.设力最大值为50N ,则 (A)下面的线先断. (B)上面的线先断. A O θC

大学物理第二章 质点动力学习题解答

第二章 习题解答 2-17 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-=ρ(单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。 解:∵j i dt r d a ?6?12/22+==ρρ, j i a m F ?12?24+==ρρ 为一与时间无关的恒矢量,∴质点受恒力而运动。 F=(242+122)1/2=125N ,力与x 轴之间夹角为: '34265.0/?===arctg F arctgF x y α 2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为: j t b i t a r ?sin ?cos ωω+=ρ,a,b,ω为正常数,证明作用于质点的合力总指向原点。 证明:∵r j t b i t a dt r d a ρρρ2222)?sin ?cos (/ωωωω-=+-== r m a m F ρ ρρ2ω-==, ∴作用于质点的合力总指向原点。 2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可 伸长。 解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律: ②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ ①+②可求得:g m m g m F a μμ-+-= 2 112 将a 代入①中,可求得:2 111) 2(m m g m F m T +-= μ 2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2 的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。 解:隔离m 1,m 2及定滑轮,受力及运动情况如图示,应用牛顿第二定律: f 1 N 1 m 1 g T a F N 2 m 2g T a N 1 f 1 f 2 T' a T' a

相关主题
文本预览
相关文档 最新文档