当前位置:文档之家› 【技术】冲击响应谱校准技术的研究

【技术】冲击响应谱校准技术的研究

【技术】冲击响应谱校准技术的研究
【技术】冲击响应谱校准技术的研究

【关键字】技术

冲击响应谱校准技术的研究

厉巍陈永久朱永晓

(贵州航天计量测试技术研究所,贵州贵阳550009)

摘要:冲击响应谱试验已经成为大多数航天产品必做的力学环境试验项目之一,传统的冲击试验缺乏对冲击环境模拟的真实性,本文介绍了冲击响应谱的原理和冲击响应谱试验设备;用labVIEW为平台,编写了冲击响应谱校准软件,为冲击响应谱试验机的校准与数据分析提供了通用性较好的校准分析方法,并基于PXI系统设计了冲击响应谱校准装置。

关键词:航天产品LabVIEW 冲击响应谱校准PXI系统

0引言

冲击响应谱试验机是用于完成冲击响应谱试验的环境试验设备,冲击响应谱是对产品实施抗冲击设计的分析基础,也是生产中冲击环境模拟试验的基本参数,在航空、航天重点型号科研生产及有关重大科技专项中,冲击响应谱试验已经成为必做的环境试验之一。产品在实际应用过程中受力情况复杂,其中,冲击激励会使设备激起强迫振动和固有频率响应,使产品性能和结构强度受到不同程度的损害甚至失效。航空、航天、电子等行业产品在生产、运输等过程中存在着各种冲击,而这对产品的质量和可靠性有着很大的负面影响。为了解决这一问题,在此基础上产生并发展起了冲击试验。近年来,随着对环境试验的认识不断提高,对冲击环境的模拟也提出了更高的要求,冲击响应谱试验也来越被关注。

1 冲击响应谱原理

冲击信号与一般的振动信号在许多方面具有不同的特性,工程中研究冲击信号的目的并不是研究冲击波形本身,而是更加注重冲击作用于系统的效果,或者说是研究冲击运动对系统的损伤势。不论用冲击的时间历程还是用频谱都难以描述冲击的损伤势,因此必须使用能够衡量冲击效果的冲击响应谱。

冲击响应谱系指一单自由度质量弹簧阻尼系统,当公共基础受到冲击激励时产生的响应峰值作为单自由度系统固有频率的函数绘出的图,其物理模型如图1所示。

图1 冲击响应谱的物理模型

数学模型可归结为如下微分方程的解:

式中,;

2 冲击响应谱试验设备

冲击响应谱环境模拟试验比较复杂,试验设备的类型也较多,目前冲击响应谱试验通常使用的设备主要有电动振动试验台和机械式试验机两大类,其中机械式试验机主要分谐振式冲击响应谱试验机和摆锤式冲击谱试验机两种。

电动振动台模拟冲击响应谱环境试验的基本原理是:使用各种不同的波形组合来实现冲击响应谱的模拟。振动试验系统一般有控制系统、功率缩小器、台体系统三部分组成。其中控制系统包括计算机、控制仪、电荷缩小器、传感器等;台体系统包括振动台、水平滑台等。在进行试验时,在振动台上安装试验夹具和试验产品。冲击响应谱试验过程中,控制系统将设置好的冲击谱转换成时域电压驱动谱,经缓冲存储器后有数模转换器将数字量转换成模拟量,然后收入功率缩小器激励振动台,生成一次脉冲运动。振动台面上的传感器把采集到的脉冲响应信号经电荷缩小器后输入控制系统,得到加速度时域波形,控制仪将时域波形处理成冲击响应谱。

谐振板式冲击响应谱试验机的基本原理是:冲击锤对板的激励是垂直下落的(激励点在板的上表面),当一块板受到冲击时,板会被激起谐振,调整冲击力的作用效果,使板被激起的响应近似于复杂的衰减正弦波,若此响应对应的冲击响应谱值与要求的规范谱值一致,则可认为固定在板上的试验样品经受了冲击响应谱环境试验。

摆锤式冲击响应谱试验机是摆锤撞击式的(激励点在台体的侧面),主要包括试验机主机、控制系统、测量分析系统等部分。冲击锤撞击台体时,台体在此激励作用下产生瞬态振动,若此时台体上的响应对应的冲击响应谱值与要求的规范谱一致,将试验样品装在台体上,就可认为样品经受了冲击响应谱环境试验。

3 冲击响应谱校准原理

本文采用的校准方法是比较法校准,校准系统工作原理框图见图2。冲击响应谱试验机产生满足要求的冲击响应谱,采用高冲击压电加速度计采集冲击响应谱信号,经高冲击电荷缩小器进行信号缩小后,进入PXI采集系统,用校准软件进行处理,得到所需要的标准冲击响应谱,再和被校冲击响应谱相比较,完成校准。

图2 校准系统工作原理框图

按图2所连接校准设备,信号适调器输出接冲击响应谱试验机校准系统。在被校准试验机规定的冲击幅值范围内,选取相应冲击脉冲幅值进行冲击校准,同时用校准软件记录波形,进行分析。

主要校准以下技术参数:冲击响应谱最大时域幅值误差的校准,冲击响应谱时域波形持续时间误差的校准,冲击响应谱频域基本波形和允差要求,冲击响应谱台台面响应的重复性,冲击响应谱台台面响应不均匀度等。

4 冲击响应谱校准装置

校准装置主要由传感器、信号适调器、PXI系统以及校准软件(计算机)组成。校准系统框图如图3所示。PXI系统主要包括:电源单元、控制分析单元、波形采集单元、信号输出单元,以上这些单元,分别以模块形式嵌入PXI的机箱内。其中数据采集单元为多通道,可以同时进行数据采集和分析。

图3 校准装置框图

高加速度冲击的测量。高加速度冲击的测量在实践中是个技术难题。高冲击的显著特点就是时间短、能量大,难以进行控制。测量传感器的选型、测量传感器安装夹具的设计与加工、采集设备的选型、校准软件的编制中涉及高冲击测量的部分都是有待解决的技术难点。

设备的选型应满足高冲击加速度和复杂脉冲的要求。压电加速度计应具备高固有频率和坚固的结构;电荷缩小器应具备较好的滤波特性和较强的抗干扰能力。压电加速度计的安装,需要设计加工刚性和高传递性能的安装夹具。信号的采集与传输需采用低噪声电缆并适当使用滤波器件进行滤波。

5 校准系统软件

基于NI LabVIEW软件平台研发航天产品冲击响应谱试验机现场校准软件。针对现场校准的特点,研发实用简便的现场校准软件。因为冲击谱是将冲击源施加于一系列线性、单自由度质量-弹簧系统时,将各单自由度系统的响应运动中的最大响应值,作为对应于系统固有频率的函数而绘制的曲线,是一系列固有频率不同的单自由度线性系统受同一冲击激励响应的总结果,是典型的线性系统在脉冲激励下的响应求解。研发校准软件需选择合适的数据处理方案,采用变步长方法对微分方程进行求数值解,保证高的精度和数值稳定性,进而进行冲击响应谱的绘制,完成冲击响应谱试验机的各参数的现场校准。

主要特点:可对采集信号同时进行时域分析和频域分析,可以同时观测多个通道测量信号;具有过载报警功能,避免高冲击加速度的冲击响应谱由于削波造成信号失真;针对频域分析,具有报警允差线,直观便捷的完成现场校准。

6 结束语

本文对冲击响应谱的校准技术进行研究,设计并实现了一套高精度的冲击响应谱试验机校准系统,编制了冲击响应谱校准软件,可以方便、快捷的完成冲击响应谱试验机的校

准、分析,并且系统的操作界面简单、直观。

参考文献

1.力学计量国防科工委科技与质量司组织编写原子能出版社2002年

2.电子设备振动与冲击手册汪凤泉主编科学出版社1998年

3.振动与冲击手册第二卷振动与冲击测试技术《振动与冲击手册》编辑委员会编

著1990年

4.爆炸与冲击动力学宁建国王成马天宝编著国防工业出版社2010年

作者简介:厉巍,(1978.1-)女山东日照,本科学历,高级工程师,研究方向:力学计量.

此文档是由网络收集并进行重新排版整理.word可编辑版本!

冲击响应谱校准技术的研究

冲击响应谱校准技术的研究 厉巍 陈永久 朱永晓 (贵州航天计量测试技术研究所,贵州 贵阳550009) 摘要:冲击响应谱试验已经成为大多数航天产品必做的力学环境试验项目之一,传统的冲击试验缺乏对冲击环境模拟的真实性,本文介绍了冲击响应谱的原理和冲击响应谱试验设备;用labVIEW 为平台,编写了冲击响应谱校准软件,为冲击响应谱试验机的校准与数据分析提供了通用性较好的校准分析方法,并基于PXI 系统设计了冲击响应谱校准装置。 关键词:航天产品LabVIEW 冲击响应谱 校准 PXI 系统 0引言 冲击响应谱试验机是用于完成冲击响应谱试验的环境试验设备,冲击响应谱是对产品实施抗冲击设计的分析基础,也是生产中冲击环境模拟试验的基本参数,在航空、航天重点型号科研生产及有关重大科技专项中,冲击响应谱试验已经成为必做的环境试验之一。产品在实际应用过程中受力情况复杂,其中,冲击激励会使设备激起强迫振动和固有频率响应,使产品性能和结构强度受到不同程度的损害甚至失效。航空、航天、电子等行业产品在生产、运输等过程中存在着各种冲击,而这对产品的质量和可靠性有着很大的负面影响。为了解决这一问题,在此基础上产生并发展起了冲击试验。近年来,随着对环境试验的认识不断提高,对冲击环境的模拟也提出了更高的要求,冲击响应谱试验也来越被关注。 1 冲击响应谱原理 冲击信号与一般的振动信号在许多方面具有不同的特性,工程中研究冲击信号的目的并不是研究冲击波形本身,而是更加注重冲击作用于系统的效果,或者说是研究冲击运动对系统的损伤势。不论用冲击的时间历程还是用频谱都难以描述冲击的损伤势,因此必须使用能够衡量冲击效果的冲击响应谱。 冲击响应谱系指一单自由度质量弹簧阻尼系统,当公共基础受到冲击激励时产生的响应峰值作为单自由度系统固有频率的函数绘出的图,其物理模型如图1所示。 图1 冲击响应谱的物理模型 数学模型可归结为如下微分方程的解: 式中,u x -=δ;

机械振动与冲击 信号处理 第4部分:冲击响应谱分析(标准状态:现行)

I C S17.160 J04 中华人民共和国国家标准 G B/T29716.4 2018/I S O18431-4:2007 机械振动与冲击信号处理 第4部分:冲击响应谱分析 M e c h a n i c a l v i b r a t i o na n d s h o c k S i g n a l p r o c e s s i n g P a r t4:S h o c k-r e s p o n s e s p e c t r u ma n a l y s i s (I S O18431-4:2007,I D T) 2018-03-15发布2018-10-01实施中华人民共和国国家质量监督检验检疫总局

目 次 前言Ⅲ 引言Ⅳ 1 范围1 2 规范性引用文件1 3 术语和定义1 4 符号和缩略语1 5 冲击响应谱基本原理2 6 冲击响应谱的计算5 7 采样频率的影响9 参考文献12

前言 G B/T29716‘机械振动与冲击信号处理“由以下部分组成: 第1部分:引论; 第2部分:傅立叶变换的时域窗; 第3部分:时频分析方法; 第4部分:冲击响应谱分析; 第5部分:时基分析方法三 本部分为G B/T29716的第4部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分使用翻译法等同采用I S O18431-4:2007‘机械振动与冲击信号处理第4部分:冲击响应谱分析“三 与本部分中规范性引用的国际文件有一致性对应关系的我国文件如下: G B/T2298 2010机械振动二冲击与状态监测词汇(I S O2041:2009,I D T)三 本部分由全国机械振动二冲击与状态监测标准化技术委员会(S A C/T C53)提出并归口三 本部分起草单位:西北机电工程研究所二杭州亿恒科技有限公司二中国测试技术研究院二交通运输部公路科学研究所二孝感松林国际计测器有限公司二湖北省电力公司电力科学研究院二中船重工第七一一研究所三 本部分主要起草人:李超位二焦明纲二顾国富二王宝元二洪丽娜二赵玉刚三

冲击响应谱

冲击响应谱 1简介 冲击响应谱通常简称“冲击谱”,它是工程中广泛应用的一个重要概念。国家电工委员会(IEC)、国家标准化组织(ISO)所属的技术委员会以及我国的国家标准,都已经把冲击谱作为规定冲击环境的方法之一。因此,冲击谱是对设备实施抗冲击设计的分析基础,也是控制产品冲击环境模拟实验的基本参数。 2冲击谱详解 所谓冲击谱,是将冲击源施加于一系列线性、单自由度质量-弹簧系统时,将各单自由度系统的响应运动中的最大响应值,作为对应于系统固有频率的函数而绘制的曲线,即称为冲击谱。由定义可知,冲击谱是单自由度系统受冲击作用后所产生的响应运动在频域中的特性描述。它不同于冲击源的傅里叶频谱,其区别在于:傅里叶频谱仅仅研究冲击源本身在频域中的能量分布属性,只是冲击源函数在频域中的展开,它不涉及任何一个要研究的机械系统的响应。虽然冲击频谱与傅里叶频谱两者都是频率的函数,但有着明显的区别。 换言之,冲击谱是一系列固有频率不同的单自由度线性系统受同一冲击激励响应的总结果。产品受冲击作用,其冲击响应的最大值意味着产品出现最大应力,即试验样品有最大的变形。因此,冲击响应的最大加速度Amax与产品受冲击作用造成的损伤及故障产生的原因直接相关,由此引出了最大冲击响应谱。 3最大冲击响应谱又可以作如下细分 1.正初始冲击响应谱(+I)是指激励脉冲持续时间内,一系列被激励单自由度系统与激励脉冲同方向上出现的最大响应值。Amax(+I)与相应系统的固有频率fn的关系曲线。 2.正残余冲击响应谱(+R)是指激励脉冲持续时间结束后,一系列被激单自由度系统与激励脉冲同方向上出现的最大响应值Amax(+R)与相应系统的固有频率fn的关系曲线。 3.负初始冲击响应谱(-I)是指激励脉冲持续时间内,一系列被激励单自由度系统与激励脉冲反方向上出现的最大值Amax(-I)与相应的系统固有频率fn的关系曲线。 4.负残余冲击响应谱(-R)是指激励脉冲持续时间结束后,一系列被激单自由度系统与激励脉冲反方向上出现的最大值Amax(-R)与相应的系统固有频率fn的关系曲线。 冲击响应谱反映的是环境特性,根据分析冲击响应谱,可以为设计产品的抗冲击能力提供依据。要获取冲击响应谱,首先要采集环境冲击的时域信号,然后再通过软件进行分析,获取冲击响应谱。国内外都有相应的系统可以完成这个工作。比如国内的INTEST(英泰斯特),提供了冲击加速度时域采集、频域分析、冲击响应谱分析等多种功能,还可以在软件中生成标准脉冲的、归一化后的冲击响应谱,为工程应用提供最直接的解决方案。 4冲击响应谱技术参数 冲击响应谱试验机是用来衡量冲击运动对电工电子产品作用力的大小,考核试品在冲击环境下功能的适应性和结构完好性。 产品特点: 摆锤式结构。 plc控制预设能量自动冲击无二次冲击。 冲击能量无级可调。 计算机测量同时采集时域、频域冲击波形 结合式程序调节器,低频能量调节方便。

冲击响应谱计算的matlab程序

disp(' ') disp(' srs.m ver 2.0 July 3, 2006') disp(' by Tom Irvine Email: tomirvine@https://www.doczj.com/doc/921969198.html,') disp(' ') disp(' This program calculates the shock response spectrum') disp(' of an acceleration time history, which is pre-loaded into Matlab.') disp(' The time history must have two columns: time(sec) & acceleration') disp(' ') % clear t; clear y; clear yy; clear n; clear fn; clear a1; clear a2 clear b1; clear b2; clear jnum; clear THM; clear resp; clear x_pos; clear x_neg; % iunit=input(' Enter acceleration unit: 1= G 2= m/sec^2 '); % disp(' ') disp(' Select file input method '); disp(' 1=external ASCII file '); disp(' 2=file preloaded into Matlab '); file_choice = input(''); % if(file_choice==1) [filename, pathname] = uigetfile('*.*'); filename = fullfile(pathname, filename); % fid = fopen(filename,'r'); THM = fscanf(fid,'%g %g',[2 inf]); THM=THM'; else THM = input(' Enter the matrix name: '); end % t=double(THM(:,1));

【技术】冲击响应谱校准技术的研究

【关键字】技术 冲击响应谱校准技术的研究 厉巍陈永久朱永晓 (贵州航天计量测试技术研究所,贵州贵阳550009) 摘要:冲击响应谱试验已经成为大多数航天产品必做的力学环境试验项目之一,传统的冲击试验缺乏对冲击环境模拟的真实性,本文介绍了冲击响应谱的原理和冲击响应谱试验设备;用labVIEW为平台,编写了冲击响应谱校准软件,为冲击响应谱试验机的校准与数据分析提供了通用性较好的校准分析方法,并基于PXI系统设计了冲击响应谱校准装置。 关键词:航天产品LabVIEW 冲击响应谱校准PXI系统 0引言 冲击响应谱试验机是用于完成冲击响应谱试验的环境试验设备,冲击响应谱是对产品实施抗冲击设计的分析基础,也是生产中冲击环境模拟试验的基本参数,在航空、航天重点型号科研生产及有关重大科技专项中,冲击响应谱试验已经成为必做的环境试验之一。产品在实际应用过程中受力情况复杂,其中,冲击激励会使设备激起强迫振动和固有频率响应,使产品性能和结构强度受到不同程度的损害甚至失效。航空、航天、电子等行业产品在生产、运输等过程中存在着各种冲击,而这对产品的质量和可靠性有着很大的负面影响。为了解决这一问题,在此基础上产生并发展起了冲击试验。近年来,随着对环境试验的认识不断提高,对冲击环境的模拟也提出了更高的要求,冲击响应谱试验也来越被关注。 1 冲击响应谱原理 冲击信号与一般的振动信号在许多方面具有不同的特性,工程中研究冲击信号的目的并不是研究冲击波形本身,而是更加注重冲击作用于系统的效果,或者说是研究冲击运动对系统的损伤势。不论用冲击的时间历程还是用频谱都难以描述冲击的损伤势,因此必须使用能够衡量冲击效果的冲击响应谱。 冲击响应谱系指一单自由度质量弹簧阻尼系统,当公共基础受到冲击激励时产生的响应峰值作为单自由度系统固有频率的函数绘出的图,其物理模型如图1所示。 图1 冲击响应谱的物理模型 数学模型可归结为如下微分方程的解: 式中,; ; 2 冲击响应谱试验设备

冲击响应谱分析原理以及合成与振动控制

冲击响应谱(SRS)是一个瞬态加速度脉冲可能对结构造成破坏的图示。它绘制了一组单自由度(SDOF)弹簧的峰值加速度响应,就像在刚性无质量的基础上一样,质量阻尼器系统都经历相同的基本激励。每个SDOF系统具有不同的固有频率;它们都有相同的粘滞阻尼因子。频谱的结果是在固有频率(水平方向)上绘制峰值加速度(垂直)得出的。一个SRS是由一个冲击波产生,使用以下过程: 指定SRS的阻尼比(5%是最常见的)、使用数字滤波器模拟频率单自由度、fn和阻尼ξ。应用瞬态作为输入,计算响应加速度波形。保留在脉冲持续时间和之后的峰值正负响应。选择其中一个极值,并将其绘制成fn的频谱振幅。对每个(对数间隔)fn重复这些步骤。 由此产生的峰值加速度与弹簧-质量阻尼系统固有频率的曲线称为冲击响应谱,简称SRS。一个SDOF机械系统由以下组件组成: ①质量,米 ②弹簧,K ③阻尼器,C Fn,固有频率和临界阻尼因子,ξ,描述一个应用系统,可以从上面的参数计算。对于小于或等于0.05的小阻尼比,频率响应的峰值发生在fn的邻近区域,其中

Q为质量因子,等于1/(2ξ)。 任何瞬态波形都可以作为SRS呈现,但这种关系不是唯一的;许多不同的瞬态波形可以产生相同的SRS。SRS不包含所有关于瞬态波形的信息,因为它只跟踪峰值瞬时加速度。 不同的阻尼比为相同的冲击波形产生不同的SRS。零阻尼会产生最大的响应,而高阻尼则会产生较平的SRS。阻尼比与质量因子Q有关,在正弦振动的情况下也可以被认为是传递率。阻尼比为5%(ξ=0.05)时,Q值为10。如果没有指定阻尼因子(或Q),则SRS图是不完整的。 ★SRS箱的频率间隔 一个SRS由多个在对数频率范围内均匀分布的箱组成。频率分布可以由两个数字来定义:一个参考频率和期望的分数倍频间隔,如1/1、1/3或1/6。(倍频程是频率的两倍)例如,250hz和500hz的频率相差一个倍频程, 1 kHz和2 kHz的频率也是一样。 比例带宽显示对于分析各种自然系统,如人类对噪声和振动的反应,是非常有用的。许多机械系统表现出的特征非常适合以比例带宽分析。 为了获得更好的频率分辨率,频率范围可以以倍频程的一部分划分比例间隔。例如,有1/3倍频间隔,每个倍频程有3个SDOF滤波器。一般来说,对于1/N个分数倍频程,每个倍频程有N个带通滤波器。这里1/N称为分数倍

冲击响应谱的振动数据采集

冲击响应谱(SRS)用于描述瞬态和冲击波形对单自由度(DOF)机械系统的影响。根据时间波形计算的SRS可用于预测该波形对更复杂的多自由度结构的影响。有时,需要生成特定的SRS波形。SRS合成模块根据用户定义的SRS 目标谱生成短暂的瞬态时间波形。 SRS合成基础 冲击响应谱合成的目的是生成满足冲击响应谱(SRS)域中定义的所需响应谱(RRS)标准的时域波形。单个正弦波就产生具有一个尖峰的SRS。为了生成由测试目标谱定义的任意SRS形状的信号,可以将多个正弦波组合成一个复合波形。 SRS合成使用一系列的正弦波(称为小波)来生成时间波形。从波形中生成SRS并不是一个线性过程,而且有许多具有相同SRS的时间波形。没有直接的方法计算来自SRS的时间信号。SRS合成算法采用迭代的方法,将多个小波组合成一个“假想”波形,然后将得到的SRS与指定目标谱进行比较,从这个结果产生的误差,用于产生一个新的“假想”波形。重复这个过程,直到结果达到预期目标。

一旦我们有一组包含足够多频率的小波,SRS在一定程度上就是可控的。改变这些正弦波的振幅会改变SRS的形状。这是SRS合成的基本原理。为了说明合成过程,请参考下图。首先,用户需要定义一个RRS(所需的响应谱)作为目标。然后定义各SDOF滤波器共振频率对应的若干小波。可以调整这些小波的振幅,使合成波形的冲击响应谱接近RRS。 ★晶钻仪器推荐 ●手持式动态信号分析仪CoCo-80X :可用于冲击响应谱采集 ●Spider-81 振动控制器,可以用于冲击响应谱采集与控制 ●Spider-80X 模块化动态数据采集器,可用于冲击响应谱采集与控制 杭州锐达数字技术有限公司是美国晶钻仪器公司中国总代理,负责产品销售、技术支持与产品维护,是机械状态监测、振动噪声测试、动态信号分析、动态数据采集、应力应变测试等领域的供应商,提供手持一体化动态信号分析系统、

冲击响应谱

冲击响应谱 冲击响应谱通常简称“冲击谱”,它是工程中广泛应用的一个重要概念。国家电工委员会(IEC)、国家标准化组织(ISO)所属的技术委员会以及我国的国家标准,都已经把冲击谱作为规定冲击环境的方法之一。因此,冲击谱是对设备实施抗冲击设计的分析基础,也是控制产品冲击环境模拟实验的基本参数。 所谓冲击谱,是将冲击源施加于一系列线性、单自由度质量-弹簧系统时,将各单自由度系统的响应运动中的最大响应值,作为对应于系统固有频率的函数而绘制的曲线,即称为冲击谱。由定义可知,冲击谱是单自由度系统受冲击作用后所产生的响应运动在频域中的特性描述。它不同于冲击源的傅里叶频谱,其区别在于:傅里叶频谱仅仅研究冲击源本身在频域中的能量分布属性,只是冲击源函数在频域中的展开,它不涉及任何一个要研究的机械系统的响应。虽然冲击频谱与傅里叶频谱两者都是频率的函数,但有着明显的区别。 换言之,冲击谱是一系列固有频率不同的单自由度线性系统受同一冲击激励响应的总结果。产品受冲击作用,其冲击响应的最大值意味着产品出现最大应力,即试验样品有最大的变形。因此,冲击响应的最大加速度Amax与产品受冲击作用造成的损伤及故障产生的原因直接相关,由此引出了最大冲击响应谱。 最大冲击响应谱又可以作如下细分: 1.正初始冲击响应谱(+I)是指激励脉冲持续时间内,一系列被激励单自由度系统与激励脉冲同方向上出现的最大响应值。Amax(+I)与相应系统的固有频率fn的关系曲线。 2.正残余冲击响应谱(+R)是指激励脉冲持续时间结束后,一系列被激单自由度系统与激励脉冲同方向上出现的最大响应值Amax(+R)与相应系统的固有频率fn 的关系曲线。 3.负初始冲击响应谱(-I)是指激励脉冲持续时间内,一系列被激励单自由度系统与激励脉冲反方向上出现的最大值Amax(-I)与相应的系统固有频率fn的关系曲线。 4.负残余冲击响应谱(-R)是指激励脉冲持续时间结束后,一系列被激单自由度系统与激励脉冲反方向上出现的最大值Amax(-R)与相应的系统固有频率fn的关系曲线。 冲击响应谱反映的是环境特性,根据分析冲击响应谱,可以为设计产品的抗冲击能力提供依据。要获取冲击响应谱,首先要采集环境冲击的时域信号,然后再通过软件进行分析,获取冲击响应谱。国内外都有相应的系统可以完成这个工作。比如国内的INTEST(英泰斯特),提供了冲击加速度时域采集、频域分析、冲击响应谱分析等多种功能,还可以在软件中生成标准脉冲的、归一化后的冲击响应谱,为工程应用提供最直接的解决方案。

冲击响应谱合成

冲击响应谱合成 电子电工产品环境试验 第二部分 :试验方法 试验Ei:冲击冲击响应谱合成 1 范围 GB/T2423的部分规定了合成冲击响应谱(SRS)实验.适用于需要模复杂瞬态激励的样品。 2 规范性引用文件 下列文件中的条款通过GB/T2423的本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不住日期的引用文件,其最新版本适用于本部分。 GB/T2421—1999 电工电子产品环境试验总则(idt IEC 60068—1:1998) GB/T2423(10—2008电工电子产品环境试验第2部分:试验方法试验Fc:振动(正弦) ( IEC 60068—2—6:1995,IDT) GB/T2423.5—1995 电工电子产品环境试验第2部分:试验方法试验Ea和导则:冲击 (idt IEC 60068—2—27:1987) GB/T2423.43—2008电工电子产品环境试验第2部分:试验方法振动、冲击和类似动态试验样品的安装(IEC 60068—2—47:1999,IDT) GB/T2423.56—2006电工电子产品环境试验第2部分:试验方法试验Fh:宽频带随机振动(数控)和导则( IEC 60068—2—64:1993,IDT) IEC60068—2—57:1999 环境试验第2部分:试验方法试验Ff:振动时间历程法

ISO 266:1997 声学优选频率 ISO 2041:1990振动和冲击词汇 3 术语和定义 在LSO2041:1990,GB/T2423.102008,GB/T2423.5—1995和GB/T2423.56—2006中给出的术语和定义,与以下定义一起使用。 3.1 -3dB带宽 -3dBbandwidth 在频率响应函数中对应于一个共振峰值的最大响应0,707倍的两点间的频带宽度。 3.2 临界阻尼 critical damping 在可能的最短时间内允许唯一系统返回其起始位置并且不产生震荡的最小粘性阻尼。 3.2 危险频率critical frequency 下列情况的频率: GB/T2423.57—2008/ IEC60068—2—81:2003 ——由于振动,样品呈现出功能失效和/或性能降低,和/或 ——机械共振和/或其他响应效应,如颤动 3.4 阻尼 damping 一般的术语解释为在一个系统中的能量耗散的许多机械作用。在实际应用 中,阻尼取决于许多参数,诸如结构类型、振型、应变、外加力、速率、材料、连接滑移等。

冲击响应谱计算的matlab程序

disp(' ') disp(' ver July 3, 2006') disp(' by Tom Irvine Email') disp(' ') disp(' This program calculates the shock response spectrum') disp(' of an acceleration time history, which is pre-loaded into Matlab.') disp(' The time history must have two columns: time(sec) & acceleration') disp(' ') % clear t; clear y; clear yy; clear n; clear fn; clear a1; clear a2 clear b1; clear b2; clear jnum; clear THM; clear resp; clear x_pos; clear x_neg; % iunit=input(' Enter acceleration unit: 1= G 2= m/sec^2 '); % disp(' ') disp(' Select file input method '); disp(' 1=external ASCII file '); disp(' 2=file preloaded into Matlab '); file_choice = input(''); % if(file_choice==1) [filename, pathname] = uigetfile('*.*'); filename = fullfile(pathname, filename); % fid = fopen(filename,'r'); THM = fscanf(fid,'%g %g',[2 inf]); THM=THM'; else THM = input(' Enter the matrix name: '); end % t=double(THM(:,1));

相关主题
文本预览
相关文档 最新文档