当前位置:文档之家› 冲击响应谱及冲击等效分析

冲击响应谱及冲击等效分析

地震响应的反应谱法与时程分析比较 (1)

发电厂房墙体地震响应的反应谱法与时程分析比较 1问题描述 发电厂房墙体的基本模型如图1所示: 图1 发电厂墙体几何模型 基本要求:依据class 9_10.pdf的最后一页的作业建立ansys模型,考虑两个水平向地震波的共同作用(地震载荷按RG1.60标准谱缩放,谱值如下),主要计算底部跨中单宽上的剪力与弯矩最大值,及顶部水平位移。要求详细的ansys反应谱法命令流与手算验证过程。以时程法结果进行比较。分析不同阻尼值(0.02,0.05,0.10)的影响。 RG1.60标准谱 (1g=9.81m/s2) (设计地震动值为0.1g) 频率谱值(g) 33 0.1 9 0.261 2.5 0.313 0.25 0.047 与RG1.60标准谱对应的两条人工波见文件rg160x.txt与rg160y.txt 2数值分析框图思路与理论简介 2.1理论简介 该问题主要牵涉到结构动力分析当中的时程分析和谱分析。时程分析是用于确定承受任意随时间变化荷载的结构动力响应的一种方法。谱分析是模态分析的扩展,是用模态分析结果与已知的谱联系起来计算模型的位移和应力的分析技术。 2.2 分析框架: 时程分析:在X和Z两个水平方向地震波作用下,提取底部跨中单宽上的剪力、弯矩值和顶部水平位移,并求出最大响应。 谱分析:先做模态分析,再求谱解,由于X和Z两个方向的单点谱激励,因此需进行两次谱分析,分别记入不同的工况最后组合进行后处理得出结够顶部水平位移、底部单宽上剪力和弯矩的最大响应。 3有限元模型与荷载说明 3.1 有限元模型 考虑结构的几何特性建立有限元模型,首先建立平面几何模型,并将模型进行合理的切割,采用plane42单元,使用映射划分网格的方法生产平面单元(XOY平面)。然后,采用solid45

SolidWorks Simulation响应谱分析简介

SolidWorks Simulation响应谱分析简介 在Solidworks Simulation Premium 2011中,添加了一个线性动力分析模块——“响应波谱分析”。 插图一 响应谱分析又名冲击谱分析,是一种近似的方法用于预测受到基础激励(强迫振动)的结构峰值响应的分析方法。取代耗时的时间域瞬态分析,可以采用响应谱分析快速地近似分析结构的峰值响应(如动应力等)。响应谱分析可以作为一种设计工具。它用于计算结构对多频信息瞬态激励的响应,这些激励可能来源于地震、飞行噪声/飞行过程、导弹发射等,频谱是载荷时间历程在频率域上的表示法,您可以使用响应波谱分析而非时间历史分析,来估测结构对随机载荷或与时间有关的载荷环境(例如地震、风载荷、海浪载荷、喷气发动机推力或火箭发动机振动)的响应。 响应谱分析可以被应用多种领域,如航空电子设备 (飞行器 / 导弹)、航天飞机零件、飞行器部件及任何受到地震或其他不稳定载荷的结构或部件。下面就来看下,在Solidworks Simulation中是如何进行响应谱分析的。 首先,建立新的自命,选择线性动力类型,并从子类型中选择响应波谱分析。 插图二

在响应波谱分析中,模态分析结果作为已知波谱用来计算模型中的位移和应力。因此在,响应波谱分析算例属性中需设定要包含的模态分析频率数或相关参数。 插图三 在响应波谱选项中可以选择模式组合方法: 插图四

不同的组合方法会对结果有所影响,其中绝对值和方法结果最为保守。之后按照Simulation常规方法赋予零件材料参数及交互关系(注意,线性动力分析中,只可使用结合与允许贯通两种接触选项),并对结构给予合理约束,本例中是对电路板相应固定点添加固定约束。 插图五 响应波谱分析的载荷可以为统一基准激发或选定的基准激发,类型则有位移、速度、加速度三类,这里选择统一基准激发,并选择加速度,并使用如下参数: 插图六

常见仪器分析方法的缩写、谱图和功能说明

常见仪器分析方法得缩写、谱图与功能说明

A AAS 原子吸收光谱法 AES 原子发射光谱法 AFS 原子荧光光谱法 ASV 阳极溶出伏安法?ATR 衰减全反射法?AUES俄歇电子能谱法 C CEP 毛细管电泳法?CGC毛细管气相色谱法?CIMS 化学电离质谱法 CIP 毛细管等速电泳法 CLC毛细管液相色谱法 CSFC 毛细管超临界流体色谱法?CSFE 毛细管超临界流体萃取法?CSV 阴极溶出伏安法?CZEP 毛细管区带电泳法

D DDTA导数差热分析法?DIA注入量焓测定法 DPASV 差示脉冲阳极溶出伏安法 DPCSV差示脉冲阴极溶出伏安法 DPP 差示脉冲极谱法?DPSV 差示脉冲溶出伏安法?DPVA差示脉冲伏安法?DSC 差示扫描量热法 DTA差热分析法 DTG差热重量分析法 E?EAAS电热或石墨炉原子吸收光谱法 ETA 酶免疫测定法?EIMS 电子碰撞质谱法 ELISA酶标记免疫吸附测定法 EMAP 电子显微放射自显影法?EMIT酶发大免疫测定法?EPMA 电子探针X射线微量分析法 ESCA 化学分析用电子能谱学法 ESP 萃取分光光度法 F?FAAS 火焰原子吸收光谱法 FABMS 快速原子轰击质谱法 FAES 火焰原子发射光谱法 FDMS 场解析质谱法 FIA流动注射分析法 FIMS场电离质谱法?FNAA 快中心活化分析法?FT-IR傅里叶变换红外光谱法 FT-NMR傅里叶变换核磁共振谱法?FT—MS傅里叶变换质谱法?GC 气相色谱法?GC—IR 气相色谱—红外光谱法?GC—MS气相色谱-质谱法?GD-AAS 辉光放电原子吸收光谱法?GD-AES 辉光放电原子发射光谱法

机械振动与冲击 信号处理 第4部分:冲击响应谱分析(标准状态:现行)

I C S17.160 J04 中华人民共和国国家标准 G B/T29716.4 2018/I S O18431-4:2007 机械振动与冲击信号处理 第4部分:冲击响应谱分析 M e c h a n i c a l v i b r a t i o na n d s h o c k S i g n a l p r o c e s s i n g P a r t4:S h o c k-r e s p o n s e s p e c t r u ma n a l y s i s (I S O18431-4:2007,I D T) 2018-03-15发布2018-10-01实施中华人民共和国国家质量监督检验检疫总局

目 次 前言Ⅲ 引言Ⅳ 1 范围1 2 规范性引用文件1 3 术语和定义1 4 符号和缩略语1 5 冲击响应谱基本原理2 6 冲击响应谱的计算5 7 采样频率的影响9 参考文献12

前言 G B/T29716‘机械振动与冲击信号处理“由以下部分组成: 第1部分:引论; 第2部分:傅立叶变换的时域窗; 第3部分:时频分析方法; 第4部分:冲击响应谱分析; 第5部分:时基分析方法三 本部分为G B/T29716的第4部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分使用翻译法等同采用I S O18431-4:2007‘机械振动与冲击信号处理第4部分:冲击响应谱分析“三 与本部分中规范性引用的国际文件有一致性对应关系的我国文件如下: G B/T2298 2010机械振动二冲击与状态监测词汇(I S O2041:2009,I D T)三 本部分由全国机械振动二冲击与状态监测标准化技术委员会(S A C/T C53)提出并归口三 本部分起草单位:西北机电工程研究所二杭州亿恒科技有限公司二中国测试技术研究院二交通运输部公路科学研究所二孝感松林国际计测器有限公司二湖北省电力公司电力科学研究院二中船重工第七一一研究所三 本部分主要起草人:李超位二焦明纲二顾国富二王宝元二洪丽娜二赵玉刚三

IR图谱分析方法

IR图谱分析方法 (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式: 不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子), T:化合价为3价的原子个数(主要是N原子), O:化合价为1价的原子个数(主要是H原子), 例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度; (2)分析3300~2800cm^-1区域C-H伸缩振动吸收;以3000 cm^-1为界:高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm^-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm^-1有吸收,则应在 2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔 2200~2100 cm^-1 烯 1680~1640 cm^-1 芳环 1600,1580,1500,1450 cm^-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区 ,以确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm^-1的三个峰,说明醛基的存在。 至此,分析基本搞定,剩下的就是背一些常见常用的健值了! …………………………………………………………………………………………………… ………

反应谱与时程理论对比

反应谱是在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形。更直观的定义为:一组具有相同阻尼、不同自振周期的单质点体系,在某一地震动时程作用下的最大反应,为该地震动的反应谱。 反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静 力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK= αG 其中α为地震影响系数,即单质点弹性体系在地震时最大反应加速度。另一方面地震影响系数也可视为作用在质点上的地震作用与结构重力荷载代表值之比。 目前,反应谱分析法比较成熟,一些主要国家的抗震规范均将它作为基本设计方法。不过,它主要适合用于规则结构。对于不规则结构以及高层建筑,各国规范多要求采用时程分析法进行补充计算。 地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后使用静力法进行结构分析。但它并不是结构真实的动力响应分析,只是对于结构动力响应最大值进行估算的近似方法,在线弹性范围内,反应谱分析法被认为是高效而且合理的方法。反应谱分为加速度反应谱、速度反应谱和位移反应谱。基于不同周期结构相应峰值的大小,我们可以绘制结构速度及加速度的反应谱曲线。一般情况下,随着周期的延长,位移反应谱为上升曲线,速度反应谱为平直曲线,加速度反应谱为下降曲线,目前结构设计主要依据加速度反应谱。 加速度反应谱在短周期部分为快速上升曲线,并且在结构周期与场地特征周期接近时出现峰值,后面更大范围为逐渐下降阶段。峰值出现的时间与对应的结构周期和场地特征周期有关。一般来说结构自振周期的延长,地震作用将减小。当结构自振周期接近场地特征周期时,地震作用最大。 反应谱分析方法需要先求解一个方向地震作用响应,再基于三个正交方向的分量考虑结构总响应,即基于振型组合求解一个方向的地震响应,再基于方向组合求解结构总响应。 振型组合方法有SRSS法,CQC法。 1.SRSS法 SRSS法是平方和平方根法,这种方法假定所有最大模态值在统计上都是相互独立的,通过求各参与阵型的平方和平方根来进行组合。该法不考虑各振型间的藕联作用,实际上结构模态都是相互关联的,不可避免的存在藕联效应,对那些相邻周期几乎相等的结构,或者不规则结构不适用此法。《抗规》GB50011-2010规定的SRSS法为如下所示:

谱分析-相关函数法

海浪谱分析—相关函数法 一、 基本概念 已经提出的海浪频谱很多,其中大部分是由观测到的波要素连同某些假定推导出来的,大部分则利用定点波面记录通过特殊的谱分析方法得到。后一方法是目前得到海浪谱的主要手段。 在固定点连续记录到波面()t η,通常认为它是弱平稳的过程,其相关函数为: ()()()[]τηητ+=t t E R (1.1) 由已有理论可知此过程的单侧谱为 ()()dt e R S t i ωτπω-∞ ? = 2 (1.2) 假定海浪为具有各态历经性的平稳随机过程,可利用过程中的现实(一次波面记录)的离散值n x x x ,...,,21计算相关函数 ()()()t R t R m x x N t R N n n n ?-=?=-=?∑-=+ννννννν??,...,2,1,0,1?1 (1.3) 式中,N 为样本容量;ν-N 为乘积n n x x ν+的个数。由此相关函数并参照式(1.2)可得谱的估计值为 ()()t t e t R S t i m ?

代入式(1.5),t N T ?=,可得 ()21 2 1 221?∑∑=?=??=??=N n t n i n N n t n i n e x N t t e x t N S ω ωππω(1.7) 当1=?t 时,上式变为 ()πωπωω <=∑=,21 1 21?N n n i n e x N S (1.8) 而 ()()t S t S ??=ωω1 ??(1.9) 式(1.8)右侧称为周期图,它可通过对样本实行离散傅里叶变化得到。 因此估计谱通常有两种途径,其一通过相关函数,其二通过周期图。在每一途径中又可采用不同的方法。不管用何法,都要对实测记录取离散值,并进行中心化处理。采样间隔的选取,非常重要。在图(1.1)中,细线代表谱中圆频率为1ω的组成波,今按时间间隔t ?读取波面值,连接这些离散值得粗线所示的圆频率为()12ωω<的波动。容易推想,许多高频率的波动可表现为同一低频的波动。 设定义圆频率 t N ?=πω(1.10) 则可证明频率,...4,2N N ωωωω±±的波动,由于离散化的结果均变现为频率()N ωωω<的波动。 设k r ,都是整数,t k t ?=,则 ()t i r i ae ae N ωωωη==+2(1.11)

冲击响应谱

冲击响应谱 1简介 冲击响应谱通常简称“冲击谱”,它是工程中广泛应用的一个重要概念。国家电工委员会(IEC)、国家标准化组织(ISO)所属的技术委员会以及我国的国家标准,都已经把冲击谱作为规定冲击环境的方法之一。因此,冲击谱是对设备实施抗冲击设计的分析基础,也是控制产品冲击环境模拟实验的基本参数。 2冲击谱详解 所谓冲击谱,是将冲击源施加于一系列线性、单自由度质量-弹簧系统时,将各单自由度系统的响应运动中的最大响应值,作为对应于系统固有频率的函数而绘制的曲线,即称为冲击谱。由定义可知,冲击谱是单自由度系统受冲击作用后所产生的响应运动在频域中的特性描述。它不同于冲击源的傅里叶频谱,其区别在于:傅里叶频谱仅仅研究冲击源本身在频域中的能量分布属性,只是冲击源函数在频域中的展开,它不涉及任何一个要研究的机械系统的响应。虽然冲击频谱与傅里叶频谱两者都是频率的函数,但有着明显的区别。 换言之,冲击谱是一系列固有频率不同的单自由度线性系统受同一冲击激励响应的总结果。产品受冲击作用,其冲击响应的最大值意味着产品出现最大应力,即试验样品有最大的变形。因此,冲击响应的最大加速度Amax与产品受冲击作用造成的损伤及故障产生的原因直接相关,由此引出了最大冲击响应谱。 3最大冲击响应谱又可以作如下细分 1.正初始冲击响应谱(+I)是指激励脉冲持续时间内,一系列被激励单自由度系统与激励脉冲同方向上出现的最大响应值。Amax(+I)与相应系统的固有频率fn的关系曲线。 2.正残余冲击响应谱(+R)是指激励脉冲持续时间结束后,一系列被激单自由度系统与激励脉冲同方向上出现的最大响应值Amax(+R)与相应系统的固有频率fn的关系曲线。 3.负初始冲击响应谱(-I)是指激励脉冲持续时间内,一系列被激励单自由度系统与激励脉冲反方向上出现的最大值Amax(-I)与相应的系统固有频率fn的关系曲线。 4.负残余冲击响应谱(-R)是指激励脉冲持续时间结束后,一系列被激单自由度系统与激励脉冲反方向上出现的最大值Amax(-R)与相应的系统固有频率fn的关系曲线。 冲击响应谱反映的是环境特性,根据分析冲击响应谱,可以为设计产品的抗冲击能力提供依据。要获取冲击响应谱,首先要采集环境冲击的时域信号,然后再通过软件进行分析,获取冲击响应谱。国内外都有相应的系统可以完成这个工作。比如国内的INTEST(英泰斯特),提供了冲击加速度时域采集、频域分析、冲击响应谱分析等多种功能,还可以在软件中生成标准脉冲的、归一化后的冲击响应谱,为工程应用提供最直接的解决方案。 4冲击响应谱技术参数 冲击响应谱试验机是用来衡量冲击运动对电工电子产品作用力的大小,考核试品在冲击环境下功能的适应性和结构完好性。 产品特点: 摆锤式结构。 plc控制预设能量自动冲击无二次冲击。 冲击能量无级可调。 计算机测量同时采集时域、频域冲击波形 结合式程序调节器,低频能量调节方便。

红外谱图峰位分析方法

红外谱图分析(一) 基团频率和特征吸收峰 物质的红外光谱,是其分子结构的反映,谱图中的吸收峰,与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到的。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律来。实验表明,组成分子的各种基团,如O—H、N—H、C—H、C═C、C≡C、C═O等,都有自己特定的红外吸收区域,分子其它部分对其吸收位置影响较小。通常把这种能代表基团存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。 根据化学键的性质,结合波数与力常数、折合质量之间的关系,可将红外4 000~400 cm-1划分为四个区:4 000~2 500 cm-1 氢键区 2 500~2 000 cm-1 产生吸收基团有O—H、C—H、N—H; 叁键区 2 000~1 500 cm-1 C≡C、C≡N、C═C═C 双键区 1 500~1 000 cm-1 C═C、C═O等 单键区 按吸收的特征,又可划分为官能团区和指纹区。 一、官能团区和指纹区 红外光谱的整个围可分成4 000~1 300 cm-1与1 300~600 cm-1两个区域。 4 000~1 300 cm-1区域的峰是由伸缩振动产生的吸收带。由于基团的特征吸收峰一般位于高频围,并且在 该区域,吸收峰比较稀疏,因此,它是基团鉴定工作最有价值的区域,称为官能团区。 在1 300~600 cm-1区域中,除单键的伸缩振动外,还有因变形振动产生的复杂光谱。当分子结构稍有不同时,该区的吸收就有细微的差异。这种情况就像每个人都有不同的指纹一样,因而称为指纹区。指纹区 对于区别结构类似的化合物很有帮助。 指纹区可分为两个波段 (1)1 300~900 cm-1这一区域包括C—O,C—N,C—F,C—P,C—S,P—O,Si—O等键的伸缩振 动和C═S,S═O,P═O等双键的伸缩振动吸收。

时间序列分析方法第章谱分析

第六章 谱分析 Spectral Analysis 到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为: 我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τY 的协方差具有什么样的启示。这种方法被称为在时间域(time domain)上分析时间序列+∞ ∞-}{t Y 的性质。 假设+∞ ∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为: 假设这些自协方差函数是绝对可加的,则自协方差生成函数为: 这里z 表示复变量。将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:

注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞ ∞-}{j γ,原则上都可 以计算)(ωY s 的数值。 利用De Moivre 定理,我们可以将j i e ω-表示成为: 因此,谱函数可以等价地表示成为: 注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为: ω的下面我们考虑)1(MA 过程, 此时:z z θψ+=1)(,则母体谱为: 可以化简成为: 显然,当0>θ时,谱函数)(ωY s 在],0[π内是ω的单调递减函数;当0<θ时,谱函数)(ωY s 在],0[π内是ω的单调递增函数。

对)1(AR 过程而言,有: 这时只要1||<φ,则有:)1/(1)(z z φψ-=,因此谱函数为: 该谱函数的性质为:当0>φ时,谱函数)(ωY s 在],0[π内是ω的单调递增函数;当0<φ时,谱函数)(ωY s 在],0[π内是ω的单调递减函数。 一般地,对),(q p ARMA 过程而言: ) (ωY s 利用上述谱公式,可以实现谱函数与自协方差函数之间的转换。 解释母体谱函数 假设0=k ,则利用命题6.1可以得到时间序列的方差,即0γ,计算公式为: 根据定积分的几何意义,上式说明母体谱函数在区间],[ππ-内的面积就是0γ,也就是过程的方差。

SAP2000之反应谱分析

反应谱分析:基本概念 地震作用本质上是一种地面运动荷载,虽然其发生的过程总体上很短暂,但是作用的大小是随时间变化的,目前结构分析的发展水平允许我们基于振型叠加法或其它方法在地震作用的整个过程中对结构的响应进行完整计算,这就是我们所常说的结构的时程分析。但是这种分析方法往往需要更复杂的计算工作,并且所进行的分析往往需要更详尽并有针对性的场地信息,这一点并不是所有实际工程都能够提供的,另外,时程分析会输出地震作用整个过程每一时刻的结构位移及内力响应,对于这些信息的统计需要大量的工作量,并且难以形成直接指导结构设计的信息。因此虽然时程分析是更为真实的结构动力分析,但是满足大部分结构规范要求和工程师需求的仍然是地震作用的反应谱分析。 地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力方法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后再使用静力方法进行结构分析。时程分析的不足恰好是反应谱分析方法的优点,光滑设计反应谱是地震运动的平均值,它仅包括计算每个振型中的位移和构件力的最大值,因此不需要对于多条地震波的复杂计算。并且结构反应谱分析所给出的结构响应信息可以很方便的应用于结构设计,避免了对于整个时间范围内结构响应的处理。

反应谱分析:振型组合的基本理论与方法SAP2000对于反应谱分析振型组合分析,给出了CQC法、SRSS法、ABS法、GMC法、10Pct法和Dbl Sum法等六种组合方法。我国2002新的规范规定考虑结构藕联效应的情况,可以采用SRSS和CQC两种组合方法。 1. ABS法 ABS法是绝对值相加法。这种方法的假设条件是所有振型的最大模态值都发生在相同的时间点上,通过求它们的绝对值和的方法来对振型进行组合。实际上同一时刻基本上不可能所有模态均发生最大值,因此,这一组合方法是用于计算结构中的位移或内力峰值的最保守方法。 2. SRSS法

ANSYS响应谱分析实例-平板结构

!ANSYS响应谱分析 !响应谱分析实例-平板结构 finish /CLEAR /FILENAME,example,1 /PREP7 /TITLE, DYNAMIC LOAD EFFECT ON SIMPLY-SUPPORTED THICK SQUARE PLATE ! 定义单元类型 ET,1,SHELL281 ! 定义厚度 SECTYPE,1,SHELL SECDATA,1,1,0,5 ! 定义材料属性 MP,EX,1,200E9 MP,NUXY,1,0.3 MP,ALPX,1,0.1E-5 MP,DENS,1,8000 ! 定义模型 N,1,0,0,0 N,9,0,10,0 FILL NGEN,5,40,1,9,1,2.5 N,21,1.25,0,0 N,29,1.25,10,0 FILL,21,29,3 NGEN,4,40,21,29,2,2.5 EN,1,1,41,43,3,21,42,23,2 EGEN,4,2,1 EGEN,4,40,1,4 FINISH /SOLU ANTYPE,MODAL ! 定义分析类型为模态分析 MODOPT,REDUC MXPAND,16,,,YES SFE,ALL,,PRES,,-1E6 ! 施加面载荷 D,ALL,UX,0,,,,UY,ROTZ ! 施加约束 D,1,UZ,0,0,9,1,ROTX D,161,UZ,0,0,169,1,ROTX D,1,UZ,0,0,161,20,ROTY D,9,UZ,0,0,169,20,ROTY

NSEL,S,LOC,X,.1,9.9 NSEL,R,LOC,Y,.1,9.9 M,ALL,UZ ! 选择主自由度 NSEL,ALL SOLVE *GET,F,MODE,1,FREQ FINISH /SOLU ANTYPE,SPECTR ! 定义分析类型 SPOPT,PSD,2,ON ! 利用前两阶模态并计算应力PSDUNIT,1,PRES ! 定义功率谱为面载荷谱DMPRAT,0.02 PSDFRQ,1,1,1.0,80.0 PSDVAL,1,1.0,1.0 LVSCALE,1 ! 比例使用载荷因子PFACT,1,NODE PSDRES,DISP,REL PSDCOM SOLVE FINISH /eof /POST1 SET,3,1 ! 读取位移 /VIEW,1,2,3,4 PLNSOL,U,Z PRNSOL,U,Z FINISH /SOLUTION ANTYPE,HARMIC ! 重新定义求解类型HROPT,MSUP ! 利用模态叠加法HROUT,OFF,ON KBC,1 HARFRQ,1,80 DMPRAT,0.02

如何进行ANSYS谱分析

如何进行ANSYS谱分析 谱是谱值和频率的关系曲线,反映了时间-历程载荷的强度和频率之间的关系。 响应谱代表系统对一个时间-历程载荷函数的响应,是一个响应和频率的关系曲线。 谱分析是一种将模态分析结果和已知谱联系起来的计算结构响应的分析方法,主要用于确定结构对随机载荷或随时间变化载荷的动力响应。谱分析可分为时间-历程分析和频域的谱分析。时间-历程谱分析主要应用瞬态动力学分析。谱分析可以代替费时的时间-历程分析,主要用于确定结构对随机载荷或时间变化载荷(地震、风载、海洋波浪、喷气发动机推力、火箭发动机振动等)的动力响应情况。谱分析的主要应用包括核电站(建筑和部件),机载电子设备(飞机/导弹),宇宙飞船部件、飞机构件,任何承受地震或其他不规则载荷的结构或构件,建筑框架和桥梁等。 功率谱密度(Power Spectrum Density):是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值-频率值的关系曲线,其中PSD可以是位移PSD、速度PSD、加速度PSD、力PSD等形式。数学上,PSD-频率关系曲线下面的面积就是方差,即响应标准偏差的平方值。 ANSYS谱分析分为3种类型: *响应谱分析(SPRS OR MPRS) ANSYS响应谱分为单点响应谱和多点响应谱,前者指在模型的一个点集(不局限于一个点)定义一条响应谱;后者指在模型的多个点集定义多条响应谱。 * 动力设计分析(DDAM) 动力分析设计是一种用于分析船舶装备抗震性的技术 *随机振动分析(PSD) 随机振动分析主要用于确定结构在具有随机性质的载荷作用下的响应。 与响应谱分析类似,随机振动分析也可以是单点的或多点的。。在单点随机振动分析时,要求在结构的一个点集上指定一个PSD;在多点随机振动分析时,则要求在模型的不同点集上指定不同的PSD。 一单点响应谱分析 基本步骤 (1)建立模型 (2)求得模态解 (3)求得谱解 (4)扩展模态 (5)合并模态

各种仪器分析的基本原理及谱图表示方法

紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息

冲击响应谱分析原理以及合成与振动控制

冲击响应谱(SRS)是一个瞬态加速度脉冲可能对结构造成破坏的图示。它绘制了一组单自由度(SDOF)弹簧的峰值加速度响应,就像在刚性无质量的基础上一样,质量阻尼器系统都经历相同的基本激励。每个SDOF系统具有不同的固有频率;它们都有相同的粘滞阻尼因子。频谱的结果是在固有频率(水平方向)上绘制峰值加速度(垂直)得出的。一个SRS是由一个冲击波产生,使用以下过程: 指定SRS的阻尼比(5%是最常见的)、使用数字滤波器模拟频率单自由度、fn和阻尼ξ。应用瞬态作为输入,计算响应加速度波形。保留在脉冲持续时间和之后的峰值正负响应。选择其中一个极值,并将其绘制成fn的频谱振幅。对每个(对数间隔)fn重复这些步骤。 由此产生的峰值加速度与弹簧-质量阻尼系统固有频率的曲线称为冲击响应谱,简称SRS。一个SDOF机械系统由以下组件组成: ①质量,米 ②弹簧,K ③阻尼器,C Fn,固有频率和临界阻尼因子,ξ,描述一个应用系统,可以从上面的参数计算。对于小于或等于0.05的小阻尼比,频率响应的峰值发生在fn的邻近区域,其中

Q为质量因子,等于1/(2ξ)。 任何瞬态波形都可以作为SRS呈现,但这种关系不是唯一的;许多不同的瞬态波形可以产生相同的SRS。SRS不包含所有关于瞬态波形的信息,因为它只跟踪峰值瞬时加速度。 不同的阻尼比为相同的冲击波形产生不同的SRS。零阻尼会产生最大的响应,而高阻尼则会产生较平的SRS。阻尼比与质量因子Q有关,在正弦振动的情况下也可以被认为是传递率。阻尼比为5%(ξ=0.05)时,Q值为10。如果没有指定阻尼因子(或Q),则SRS图是不完整的。 ★SRS箱的频率间隔 一个SRS由多个在对数频率范围内均匀分布的箱组成。频率分布可以由两个数字来定义:一个参考频率和期望的分数倍频间隔,如1/1、1/3或1/6。(倍频程是频率的两倍)例如,250hz和500hz的频率相差一个倍频程, 1 kHz和2 kHz的频率也是一样。 比例带宽显示对于分析各种自然系统,如人类对噪声和振动的反应,是非常有用的。许多机械系统表现出的特征非常适合以比例带宽分析。 为了获得更好的频率分辨率,频率范围可以以倍频程的一部分划分比例间隔。例如,有1/3倍频间隔,每个倍频程有3个SDOF滤波器。一般来说,对于1/N个分数倍频程,每个倍频程有N个带通滤波器。这里1/N称为分数倍

midas反应谱分析

反应谱分析 北京迈达斯技术有限公司

目录 简要 (1) 设定操作环境及定义材料和截面 (2) 定义材料 (2) 定义截面 (3) 建立结构模型 (4) 主梁及横向联系梁模型 (4) 输入横向联系梁 (5) 输入桥墩 (5) 刚性连接 (7) 建立桥墩和系梁 (9) 输入边界条件 (10) 输入支座的边界条件 (10) 刚性连接 (11) 输入横向联系梁的梁端刚域 (12) 输入桥台的边界条件 (13) 输入二期恒载 (14) 输入质量 (15) 输入反应谱数据 (17) 输入反应谱函数 (17) 输入反应谱荷载工况 (18) 运行结构分析 (19) 查看结果 (20) 荷载组合 (20) 查看振型形状和频率 (21) 查看桥墩的支座反力 (24)

简要 本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。 例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。桥台部分由于刚度很大,不另外建立模型只输入边界条件;基 础部分假设完全固定,也只按边界条件来定义。 下面是桥梁的一些基本数据。 跨 径:45 m + 50 m + 45 m = 140 m 桥 宽:11.4 m 主梁形式:钢箱梁 钢 材:GB(S) Grade3(主梁) 混 凝 土:GB_Civil(RC) 30(桥墩) 图1. 桥梁剖面图[单位: mm]

设定操作环境及定义材料和截面 开新文件(新项目),以‘Response.mcb’为名保存(保存)。 文件 / 新项目t 文件 / 保存( Response ) 将单位体系设定为kN(力), m(长度)。 工具 / 单位体系 长度>m ; 力>kN ? 定义材料 分别输入主梁和桥墩的材料数据。 模型 / 材料和截面特性 / 材料 材料号(1); 类型>S钢材 规范>GB(S); 数据库>Grade3 ? 材料号(2); 类型>混凝土 规范>GB-Civil(RC) ; 数据库>30 ? 图2. 定义材料

冲击响应谱计算的matlab程序

disp(' ') disp(' srs.m ver 2.0 July 3, 2006') disp(' by Tom Irvine Email: tomirvine@https://www.doczj.com/doc/0b2660764.html,') disp(' ') disp(' This program calculates the shock response spectrum') disp(' of an acceleration time history, which is pre-loaded into Matlab.') disp(' The time history must have two columns: time(sec) & acceleration') disp(' ') % clear t; clear y; clear yy; clear n; clear fn; clear a1; clear a2 clear b1; clear b2; clear jnum; clear THM; clear resp; clear x_pos; clear x_neg; % iunit=input(' Enter acceleration unit: 1= G 2= m/sec^2 '); % disp(' ') disp(' Select file input method '); disp(' 1=external ASCII file '); disp(' 2=file preloaded into Matlab '); file_choice = input(''); % if(file_choice==1) [filename, pathname] = uigetfile('*.*'); filename = fullfile(pathname, filename); % fid = fopen(filename,'r'); THM = fscanf(fid,'%g %g',[2 inf]); THM=THM'; else THM = input(' Enter the matrix name: '); end % t=double(THM(:,1));

【技术】冲击响应谱校准技术的研究

【关键字】技术 冲击响应谱校准技术的研究 厉巍陈永久朱永晓 (贵州航天计量测试技术研究所,贵州贵阳550009) 摘要:冲击响应谱试验已经成为大多数航天产品必做的力学环境试验项目之一,传统的冲击试验缺乏对冲击环境模拟的真实性,本文介绍了冲击响应谱的原理和冲击响应谱试验设备;用labVIEW为平台,编写了冲击响应谱校准软件,为冲击响应谱试验机的校准与数据分析提供了通用性较好的校准分析方法,并基于PXI系统设计了冲击响应谱校准装置。 关键词:航天产品LabVIEW 冲击响应谱校准PXI系统 0引言 冲击响应谱试验机是用于完成冲击响应谱试验的环境试验设备,冲击响应谱是对产品实施抗冲击设计的分析基础,也是生产中冲击环境模拟试验的基本参数,在航空、航天重点型号科研生产及有关重大科技专项中,冲击响应谱试验已经成为必做的环境试验之一。产品在实际应用过程中受力情况复杂,其中,冲击激励会使设备激起强迫振动和固有频率响应,使产品性能和结构强度受到不同程度的损害甚至失效。航空、航天、电子等行业产品在生产、运输等过程中存在着各种冲击,而这对产品的质量和可靠性有着很大的负面影响。为了解决这一问题,在此基础上产生并发展起了冲击试验。近年来,随着对环境试验的认识不断提高,对冲击环境的模拟也提出了更高的要求,冲击响应谱试验也来越被关注。 1 冲击响应谱原理 冲击信号与一般的振动信号在许多方面具有不同的特性,工程中研究冲击信号的目的并不是研究冲击波形本身,而是更加注重冲击作用于系统的效果,或者说是研究冲击运动对系统的损伤势。不论用冲击的时间历程还是用频谱都难以描述冲击的损伤势,因此必须使用能够衡量冲击效果的冲击响应谱。 冲击响应谱系指一单自由度质量弹簧阻尼系统,当公共基础受到冲击激励时产生的响应峰值作为单自由度系统固有频率的函数绘出的图,其物理模型如图1所示。 图1 冲击响应谱的物理模型 数学模型可归结为如下微分方程的解: 式中,; ; 2 冲击响应谱试验设备

底部剪力法--反应谱法--时程分析法概念及分析

底部剪力法/反应谱法/时程分析法一些有用的概念 从传统的观点来看,底部剪力法,反应谱法和时程分析法是三大最常用的结构地震响应分析方法。那么正确的认识它们的一些关键概念,对于建筑结构的抗震设计具有非常重要的意义。HiStruct在此简单的总结一些,全当抛砖引玉。 1. 底部剪力法 高规规定:高度不超过40m、以剪切变形为主且质量和刚度沿高度分布比较均匀的高层建筑结构,可采用底部剪力法。底部剪力法适用于基本振型主导的规则和高宽比很小的结构,此时结构的高阶振型对于结构剪力的影响有限,而对于倾覆弯矩则几乎没有什么影响,因此采用简化的方式也可满足工程设计精度的要求。底部剪力法尚有一个重要的意义就是我们可以用它的理念,简化的估算建筑结构的地震响应,从而至少在静力的概念上把握结构的抗震能力,它还是很有用的。 2. 反应谱方法 高规规定:高层建筑结构宜采用振型分解反应谱法。对质量和刚度不对称、不均匀的结构以及高度超过100m的高层建筑结构应采用考虑扭转耦联振动影响的振型分解反应谱法。反应谱的振型分解组合法常用的有两种:SRSS和CQC。虽然说反应谱法是将并非同一时刻发生的地震峰值响应做组合,仅作为一个随机振动理论意义上的精确,但是从实际上它对于结构峰值响应的捕捉效果还是很不错的。一般而

言,对于那些对结构反应起重要作用的振型所对应频率稀疏的结构,并且地震此时长,阻尼不太小(工程上一般都可以满足)时,SRSS 是精确的,频率稀疏表面上的反应就是结构的振型周期拉的比较开;而对于那些结构反应起重要作用的振型所对应的频率密集的结果(高振型的影响较大,或者考虑扭转振型的条件下),CQC是精确的。这是因为对于建筑工程上常用的阻尼而言,振型相关系数(见高规3.3.11-6)在很窄的范围内才有显著的数值。 3.反应谱分析的精确性 对于采用平均意义上的光滑反应谱进行分析而言,其峰值估计与相应的时程分析的平均值相比误差很小,一般只有百分之几,因此可以很好的满足工程精度的要求,正是在这个平均(普遍性)意义上,我们认为反应谱分析方法是精确的。但是对于单个锯齿形的反应谱而言,其分析结果与单个波的时程分析,误差可以达到10-30%之间,因此在个别(特殊性)意义上而言,反应谱分析结果是有误差的,因此,规范规定对于复杂的或者高层建筑需要采用时程分析进行补充计算和验证。 4.反应谱分析与时程分析对于高阶振型计算的不同之处 一般反应谱的高频段是采用平台段来表达的,实际上对于高阶振型反应不显著的结构而言,反应谱适用性很好,也足够准确。但是对于高柔结构而言,一般高阶振型的影响比较显著,采用时程分析的时候,

时间序列分析方法第章谱分析完整版

时间序列分析方法第章 谱分析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第六章 谱分析 Spectral Analysis 到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为: 我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τ Y 的协方差具有什么样的启示。这种方法被称为在时间域(time domain)上分析时间序列+∞∞-}{t Y 的性质。 在本章中,我们讨论如何利用型如)cos(t ω和)sin(t ω的周期函数的加权组合来描述时间序列t Y 数值的方法,这里ω表示特定的频率,表示形式为: 上述分析的目的在于判断不同频率的周期在解释时间序列+∞∞ -}{t Y 性质时所发挥的重要程度如何。如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示可以描述的任何数据性质,都可以利用另一种表示来加以体现。对某些性质来说,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。 § 母体谱 我们首先介绍母体谱,然后讨论它的性质。 6.1.1 母体谱及性质 假设+∞∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为: 假设这些自协方差函数是绝对可加的,则自协方差生成函数为: 这里z 表示复变量。将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱: 注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都可以计算)(ωY s 的数值。 利用De Moivre 定理,我们可以将j i e ω-表示成为: 因此,谱函数可以等价地表示成为: 注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为: 利用三角函数的奇偶性,可以得到: 假设自协方差序列+∞∞-}{j γ是绝对可加的,则可以证明上述谱函数

相关主题
文本预览
相关文档 最新文档