当前位置:文档之家› 机器学习中矩阵低秩与稀疏近似

机器学习中矩阵低秩与稀疏近似

机器学习中矩阵低秩与稀疏近似
机器学习中矩阵低秩与稀疏近似

我看矩阵在实际生活中的应用

矩阵在实际生活中的应用 华中科技大学文华学院 城市建设工程学部

环境工程1班丛 目录 摘要 (3) 实际应用举例 (4) 论文总结 (15) 参考文献 (16)

摘要:随着现代科学的发展,数学在经济中广泛而深入的应用 是当前经济学最为深刻的因素之一,马克思曾说过:“一门学科 只有成功地应用了数学时,才真正达到了完善的地步”。下面 通过具体的例子来说明矩阵在经济生活中、人口流动、电阻电路、密码学、文献管理的应用。 关键词:矩阵、人口流动、电阻电路、密码学、文献管理

一:矩阵在经济生活中的应用 1.“活用”行列式定义 定义:用符号表示的n阶行列式D指的是n!项代数和,这些项是一切可能的取自D不同行与不同列上的n个元素的乘积的符号为。由定义可以看出。n阶行列式是由n!项组成的,且每一项为来自于D 中不同行不同列的n个元素乘积。 实例1:某市打算在第“十一”五年规划对三座污水处理厂进行技术改造,以达到国家标准要求。该市让中标的三个公司对每座污水处理厂技术改造费用进行报价承包,见下列表格(以1万元人民币为单位).在这期间每个公司只能对一座污水处理厂进行技术改造,因此该市必须把三座污水处理厂指派给不同公司,为了使报价的总和最小,应指定哪个公司承包哪一座污水处理厂? 设这个问题的效率矩阵为,根据题目要求,相当于从效率矩阵中选取来自不同行不同列的三个元素“和”中的最小者!从行列式定义知道,这样的三个元素之共有31=6(项),如下: 由上面分析可见报价数的围是从最小值54万元到最大值58万元。

由④得到最小报价总数54万元,因此,该城市 应选定④即 2.“借用”特征值和特征向量 定义:“设A是F中的一个数.如果存在V中的零向量,使得,那么A就叫做的特征值,而叫做的属于本征值A的一个特征向量。 实例2:发展与环境问题已成为21世纪各国政府关注 和重点,为了定量分析污染与工业发展水平的关系,有人提出了以下的工业增长模型:设是某地区目前的污染水平(以空气或河湖水质的某种污染指数为测量单位),是目前的工业发展水平(以某种工业发展指数为测量单位).若干年后(例如5年后)的污染水平和工业发展水平分别为和 它们之间的关系为 试分析若干年后的污染水平和工业发展水平。对于这个 问题,将(1)写成矩阵形式,就是

低秩矩阵恢复代码

function x_out= MSB(Aop,y_vec,s_x,lambda1,rnk,iter) % function [x_out obj_func]= MSB(Aop,y_vec,[m n],lambda1,rnk) % This code solves the problem of recovering a low rank matrix from its % lower dimensional projections % Minimize ||X||* (nuclear norm of Z) % Subject to A(X) = Y %formulated as an unconstarined nuclear norm minmization problem using Split bregman algorithm % Minmimize (lambda1)||W||* + 1/2 || A(X) - y ||_2^2 + eta/2 || W-X-B1 ||_2^2 %W is auxillary variable and B1 is the bregman variable %INPUTS %Aop : Linear operator %y_vec : Vector of observed values %s_x : size of the data matrix to be recovered (in form of [m n]) %lambda1:regularization parameter %rnk : rank estimation for X %iter : maximum number of iterations to be carried out %OUTPUTS %x_out : recovered matrix if nargin < 6 error('Insufficient Number of arguments'); end %Variable and parameter initialization eta1=.001; % Regularization parameter s_new=s_x(1)*s_x(2); W=zeros(s_new,1); % proxy variable B1=ones(s_new,1); % bregman variable % create operator for least square mimimization I=opDiag(s_new,1); Aop_concat = opStack([1 eta1],Aop,I);

图论应用案例

题目:最小生成树在城市交通建设中的应用 姓名: 学号: 指导老师: 专业:机械工程 2014年3月16

目录 摘要..................................................................................... 错误!未定义书签。 1 绪论 (1) 2 有关最小生成树的概念 (2) 3 prim算法介绍 (3) 4 系统设计及其应用 (5) 一、系统设计 (5) 二、最小生成树应用 (8) 5 总结 (11) 参考文献 (12) 附件: (13)

最小生成树在城市交通建设中的应用 摘要:连通图广泛应用于交通建设,求连通图的最小生成树是最主要的应用。比如要在n个城市间建立通信联络网,要考虑的是如何保证n点连通的前提下最节省经费,就应用到了最小生成树。 求图的最小生成树有两种算法,一种是Prim(普里姆)算法,另一种是Kruskal(克鲁斯卡尔)算法。 本文通过将城市各地点转换成连通图,再将连通图转换成邻接矩阵。在Microsoft Visual C++上,通过输入结点和权值,用普里姆算法获得权值最小边来得到最小生成树,从而在保证各个地点之间能连通的情况下节省所需费用。 本文从分析课题的题目背景、题目意义、题目要求等出发,分别从需求分析、总体设计、详细设计、测试等各个方面详细介绍了系统的设计与实现过程,最后对系统的完成情况进行了总结。 关键字:PRIM算法、最小生成树、邻接矩阵、交通建设

Abstract Connected graph is widely applied in traffic construction, connected graph of minimum spanning tree is the main application.Such as to establish a communication network between the n city, want to consider is how to ensure n points connected under the premise of the most save money, apply to the minimum spanning tree. O figure there are two kinds of minimum spanning tree algorithm, one kind is Prim (she) algorithm, the other is a Kruskal algorithm (Kruskal). In this article, through the city around point into a connected graph, then connected graph is transformed into adjacency matrix.On Microsoft Visual c + +, through the input nodes and the weights, gain weight minimum edge using she algorithm to get minimum spanning tree, which in the case of guarantee every location between connected to save costs. Based on the analysis topic subject background, significance, subject requirements, etc, from requirements analysis, general design, detailed design, testing, and other aspects detailed introduces the system design and implementation process, finally the completion of the system are summarized. Key words: PRIM algorithm, minimum spanning tree, adjacency matrix, traffic construction

关于矩阵秩的证明

关于矩阵秩的证明 -----09数应鄢丽萍 中文摘要 在高等代数中,矩阵的秩是一个重要的概念。它是矩阵的一个数量特征,而且在初等变换下保持不变。关于矩阵秩的问题,通常转化为矩阵是否可逆,线性方程组的解的情况等来解决。 所谓矩阵的行秩就是指矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩,由于矩阵的行秩与列秩相等,故统称为矩阵的秩。向量组的秩就是向量组中极大线性无关组所含向量的个数。 关键词:初等变换向量组的秩极大线性无关组

约定用E 表示单位向量,A T 表示矩阵A 的转置,r(A)表示矩阵A 的秩。在涉及矩阵的秩时,以下几个简单的性质: (1) r(A)=r(A T ); (2) r(kA)=? ??=≠0 00 )(k k A r (3) 设A,B 分别为n ×m 与m ×s 矩阵,则 r(AB)≤min{r(A),r(B),n,m,s} (4) r(A)=n,当且仅当A ≠0 (5) r ???? ??B O O A =r(A)+r(B)≤r ??? ? ??B O C A (6) r(A-B)≤r(A)+r(B) 矩阵可以进行加法,数乘,乘法等运算,运算后的新矩阵的秩与原矩阵的秩有一定关系。

定理1:设A,B 为n ×n 阶矩阵,则r(A+B)≤r(A)+r(B) 证: 由初等变换可得 ???? ??B O O A →???? ??B A O A →???? ??+B B A O A 即???? ??E E O E ???? ??B O O A ???? ??E E O E =??? ? ??+B B A O A 由性质5可得 r ???? ??B O O A =r ??? ? ??+B B A O A 则有r(A)+r(B)≥r(A+B) 定理2(sylverster 公式)设A 为s ×n 阶矩阵,B 为n ×m 阶矩阵,则有r(A)+r(B)-n ≤r(AB) 证:由初等变换可得 ???? ??O A B E n →? ??? ??-AB O B E n →???? ??-AB O O E n 即? ??? ??-s n E A O E ??? ? ??O A B E n ? ??? ? ?-m n E O B E =???? ??-AB O O E n 则r ???? ??O A B E n =r ??? ? ??-AB O O E n 即r(A)+r(B)-n ≤r(AB)

矩阵的秩

授课题目:第五节 矩阵的秩 教学目的:理解矩阵的秩的定义,掌握秩的求法,重点掌握线性方程组有解的充 要条件. 教学重点:掌握秩的求法和线性方程组有解的充要条件. 教学难点:线性方程组有解的充要条件. 课时安排:2学时. 授课方式:多媒体与板书结合. 教学基本内容: 2.5 矩阵的秩 1概念 定义1 在矩阵m n A ?中任取k 行k 列,位于这些行列交叉处的2 k 个元素按原次序组成的 k 阶行列式称为A 的k 阶子式.则A 中不为零的子式的最高阶数称为矩阵A 的秩,记为()R A ,并规定(0)0 R =. 注1) 若()R A r =,则A 中至少有一个r 阶子式不等于零;而若存在1r +阶子式,则所有的1r +阶子式全为0. 2)对m n A ?,有()m in (,)R A m n ≤. 3)()()T R A R A =. 4) 对于n 阶方阵A ,()R A n =的充分必要条件是0A ≠,故也称0A ≠的A 为满秩矩阵. 5) 定义1 对给定的m n ?矩阵A ,称其非零子式的最高阶数为A 的秩,记作()R A ,并规定(0)0R =.一些教科书称这样定义的秩为矩阵的行列式秩. 在第4章建立向量组秩的概念后,分别定义矩阵的行秩与列秩,届时指出矩阵秩就是其列向量组的秩或行向量组的秩. 6) 若发现A 有一k 阶非零子式,则必成立()R A k ≥. 2 计算 直接按定义去计算矩阵的秩,需要求出矩阵最高阶的非零子式,在一般情形下这决非轻而易举的事情,但对形状特殊的行阶梯形矩阵而言,这却是极为简单的. 性质1 行阶梯形矩阵的秩等于其非零行的行数. 定理1 矩阵经行初等变换后,其秩不变. 推论1 矩阵经列初等变换后,其秩不变. 推论2 设A 为m n ?矩阵,B 为m 阶满秩方阵, C 为n 阶满秩方阵,则 ()()()()r A r B A r A C r B A C ===.

矩阵应用简介

矩阵应用简介 The introduction of Matrix application 作者:刁士琦 2015/12/27

摘要 本课题以线性代数的应用为研究对象,通过网络、书籍查询相关知识与技术发展。 全文分为四部分,第一部分是绪论,介绍本课题的重要意义。第二部分是线性代数的发展。第三部分是经典矩阵应用。第四部分是矩阵应用示例。第五部分为结论。 关键词:莱斯利矩阵模型、希尔密码

目录 摘要 (2) 1 引言 (4) 2 矩阵的发展 ............................................................................................ 错误!未定义书签。 3 经典矩阵应用 (4) 3.1矩阵在经济学中的应用 (4) 3.2矩阵在密码学中的应用 (7) 3.3莱斯利矩阵模型 (5) 4 矩阵应用示例 (6) 4.1经济学应用示例 (6) 4.2希尔密码应用示例 (7) 4.3植物基因分布 (7) 6 结论 (8) 参考文献 (9)

1引言 线性代数是以向量和矩阵为对象,以实向量空间为背景的一种抽象数学工具,它的应用遍及科学技术的国民经济各个领域。 2矩阵的发展 1850年,西尔维斯特在研究方程的个数与未知量的个数不相同的线性方程时,由于无法使用行列式,所以引入了Matrix-矩阵这一词语。现代的矩阵理论给出矩阵的定义就是:由mn 个数排成的m行n列的数表。在此之后,西尔维斯特还分别引入了初等因子、不变因子的概念[5]。虽然后来一些著名的数学家都对矩阵中的不同概念给出了的定义,也在矩阵领域的研究中做了很多重要的工作。但是直到凯莱在研究线性变化的不变量时,才把矩阵作为一个独立的数学概念出来,矩阵才作为一个独立的理论加以研究。 矩阵概念的引入,首先是由凯莱发表的一系列和矩阵相关的文章,将零散的矩阵的知识发展为系统完善的理论体系。矩阵论的创立应归功与凯莱。凯莱在矩阵的创立过程中做了极大的贡献。其中矩阵的转置矩阵、对称矩阵和斜对称矩阵的定义都是由凯莱给出的。“从逻辑上来说,矩阵的概念应限于行列式的概念,但在历史上却正好相反。”凯莱如是说。1858年,《A memoir on the theory of matrices》系统阐述了矩阵的理论体系,并在文中给出了矩阵乘积的定义。 对矩阵的研究并没有因为矩阵论的产生而停止。1884年,西尔维斯特给出了矩阵中的对角矩阵和数量矩阵的定义。1861年,史密斯给出齐次方程组的解的存在性和个数时引进了增广矩阵和非增广矩阵的术语。同时,德国数学家弗罗伯纽斯的贡献也是不可磨灭的,他的贡献主要是在矩阵的特征方程、特征根、矩阵的秩、正交矩阵、矩阵方程等方面。并给出了正交矩阵、相似矩阵和合同矩阵的概念,指明了不同类型矩阵之间的关系和矩阵之间的重要性质。 3经典矩阵应用 3.1矩阵在经济学中的应用 投入产出综合平衡模型是一种宏观的经济模型,这是用来全面分析某个经济系统内

Sparse and Low-Rank Matrix Decompositions

Sparse and Low-Rank Matrix Decompositions 摘要:我们考虑如下的基本问题:给定一个由未知稀疏矩阵和未知的低秩矩阵的和的矩阵,能够精确的恢复他们吗?这种恢复的能力有很大的用处在许多领域,一般情况下,这个目标是病态的和NP难的。本文提出了如下的研究:(a)一个新的矩阵不确定性原则;(b)一个简单的基于凸优化的精确分解方法。我们的不确定规则是一个量化的概念,即矩阵不可能稀疏当有漫行列空间时。他决定了什么时候分解问题是病态的,并形成了我们的分解方法和分析基础。我们提出决定条件—在稀疏和低秩元素上—在这种条件下我们的方法可以精确的恢复。 1、引言 给定一个由未知稀疏矩阵和未知低秩矩阵加和的矩阵,我们研究如何把矩阵分开为稀疏成分和低秩成分。这样的问题在很多领域得到应用,比如:统计模型选择,机器学习,系统鉴别,计算复杂度理论,及光学等。本文我们提出在何种条件下这个分解问题是适定的,例如,稀疏和低秩成分在根本上是可识别的,目前的凸松弛精确的恢复稀疏和低秩成分。 主要结果:令,是一个稀疏矩阵,是一个低秩矩阵。给定矩阵C后,目标是在不知道的稀疏模式和的秩或奇异值的情况下恢复和。在没

有额外条件下这个问题是完全不适定的。在很多条件下,一个特定的解是不存在的;比如说低秩矩阵本身就稀疏,这就使得很难从另一个稀疏矩阵中唯一的区别出来。为了知道何时精确解所示可能的,我们定义了新的秩-稀疏不相关概念,他通过一个不确定原则将矩阵的稀疏模式和矩阵的行或列空间联系到一起。我们的分析是几何形式的,并且从切空间到稀疏和低秩矩阵代数簇扮演了重要的角色。 解决这样的分解问题是NP难的。一个合理的首要方法是最小化,满足约束条件A+B=C,式中,作为稀疏和秩的折中。这个问题在解决上是复杂且顽固的;我们提出一个较好的凸优化问题,目标是 的凸松弛。我们松弛 通过用L1范数来代替他,他表示矩阵A中所有元素绝对值的和。我们松弛通过用核范数来代替他,核范数是矩阵B的奇异值的和。注意到核范数可以被看作是‘L1范数’施加到奇异值上(即矩阵的秩是非零奇异值的个数)。L1范数和核范数是 非常好的替代品,并且一些结果给出在一些条件下这些松弛可以恢复稀疏和低秩对象。因此,我们得目的是把C分解为,用如下的凸松弛:

浅谈矩阵在实际生活中的应用

浅谈矩阵在实际生活中的应用 摘要:从数学的发展来看,它来源于生活实际,在科技日新月异的今天, 数学越来越多地被应用于我们的生活,可以说数学与生活实际息息相关。我们在学习数学知识的同时,不能忘记把数学知识应用于生活。在学习线性代数的过程中,我们发现代数在生活实践中有着不可或缺的位置。在本文中,我们对代数中的矩阵在成本计算、人口流动、加密解密、计算机图形变换等方面的应用进行了探究。 关键词:线性代数矩阵实际应用 Abstract:From the development of mathematics, we can see that it comes from our life. With the development of science and technology, the math is more and more being used in our lives, it can be said that mathematics and real life are closely related. While learning math knowledge we can not forget to apply mathematical knowledge to our life. In the process of learning linear algebra, we found that algebra has an indispensable position in life practice. In this article, we explore the application of the matrix in the costing, population mobility, encryption and decryption, computer graphics transform. Keywords: linear algebra matrix practical application

邻接矩阵的应用1

目录 前言 (1) 1. 邻接矩阵发展简史 (3) 2.基本概念及记号 (4) 3. 无向图的邻接矩阵 (6) 3.1 无向图的邻接矩阵定义及表示 (6) 3.2 无向图的邻接矩阵的性质 (8) 4. 有向图的邻接矩阵 (9) 4.1 有向图的邻接矩阵的定义及表示 (9) 4.2 有向图的邻接矩阵的性质 (10) 5. 邻接矩阵的重要定理及应用 (11) 6. 邻接矩阵的应用 (13) 6.1 邻接矩阵生成图的遍历序列 (13) 6.2用邻接矩阵生成图的广度优先遍历序列 (15) 6.3 矩阵构造最小生成树 (16) 6.4 用邻接矩阵寻找关键路径 (19) 参考文献 (21) 致谢 (22)

平顶山学院本科毕业论文(设计) 前言 图论最早起源于一些数学游戏的难题研究,如欧拉所解决的哥尼斯堡七桥问题,以及在民间广泛流传的一些游戏难题.这些古老的难题,当时吸引了很多学者的注意.在这些问题研究的基础上又继续提出了著名的四色猜想和汉米尔顿(环游世界)数学难题. 1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学的发展,图论在解决运筹学,网络理论,信息论,控制论,博奕论以及计算机科学等各个领域的问题时,发挥出越来越大的作用.在人们的社会实践中,图论已成为解决自然科学、工程技术、社会科学、生物技术以及经济、军事等领域中许多问题的有力工具之一,因此越来越受到数学家和实际工作者的喜爱.我们所学的这一章只是介绍一些基本概念、原理以及一些典型的应用实例,目的是在今后对工程技术有关学科的学习研究时,可以把图论的基本知识、方法作为工具[]1. “图论”是数学的一个分支,它以图为研究对象.图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系. 图论是一门极有兴趣的学问,其广阔的应用领域涵盖了人类学、计算机科学、化学、环境保护、电信领域等等.严格地讲,图论是组合数学的一个分支,例如,它交叉运用了拓扑学、群论和数论.图论就是研究一些事物及它们之间关系的学科,现实世界中的许多事物能用图来表示其拓扑结构,把实际问题的研究转化为图的研究,利用图论的相关结论 对这些问题作分析或判断[]1. 图论是近二十年来发展十分迅速、应用比较广泛的一个新兴的数学分支,在许多领域,诸如物理学、化学、运筹学、信息论、控制论、计算机等方面甚至在生产生活中都有广泛的应用.因此受到全世界越来越广泛的重视。图论的内容十分丰富,涉及面也比较广. 研究节点和边组成的图形的数学理论和方法,为运筹学的一个分支。图论的基本元素是节点和边(也称线、弧、枝),用节点表示所研究的对象,用 1

循环矩阵在密码学中的应用

题目循环矩阵在密码学中的应用 学生姓名韩媛媛学号 1109014156 所在院(系) 数学与计算机科学学院 专业班级数学与应用数学1102 指导教师潘平 2015 年 5 月 10 日

循环矩阵在密码学中的应用 韩媛媛 (陕西理工学院数学与计算机科学学院数学与应用数学专业1102班级,陕西 汉中 723000) 指导教师:潘平 [摘要]矩阵是线性代数的重要构成部分,而循环矩阵就是一类有特殊结构的矩阵,在许多实际问题中有广泛的 应用,有关循环矩阵的问题仍是矩阵论研究中的热点。在当今社会,随着科学技术水平的迅速发展,我们需要更深入的研究数学工具在现实中的实际应用。密码学是研究编译密码和破解密码的尖端技术科学,与数学、信息学、计算机科学有着广泛而密切的联系,由于循环矩阵是现代科技工程中具有广泛应用的一类特殊矩阵,具有良好的性质和结构,因而关于循环矩阵的研究非常活跃,本文中简单介绍了ElGamal 密码体制,以及循环矩阵在ElGamal 中加密解密过程的描述。利用循环矩阵在密码学中的研究,探索循环矩阵在几类典型密码中加密和破译的研究有着重要的现实意义。 [关键字]循环矩阵;密码学;有限域 1. 循环矩阵的概念 定义 1.1 ] 1[设),(n n n n R C A ??∈如果矩阵A 的最小多项式等于特征多项式,则称A 为循环矩 阵. 定义1.2 设A 是n 维向量空间V 上的一个线性变换,若存在向量V ∈α,使得,α αα1A ,,A -n 线性无关.则称α为A 的一个循环向量. 定义1.3 已知n 阶基本循环矩阵 ? ????????? ????? ???? ?=00 110000000001000010 D , 并令 ),,2,1(n i D I i i ==, 称121,,,-n I I I I 为循环矩阵基本列(其中n n I D I ==为单位矩阵). 2. 循环矩阵的性质 2.1 循环矩阵基本性质 性质2.1.1 ]3[循环矩阵基本列121,,,-n I I I I 是线性无关的. 性质2.1.2 ] 3[任意的n 阶循环矩阵A 都可以用循环矩阵基本列线性表出,即 11110--+++=n n I a I a I a A . 性质2.1.3 同阶循环矩阵的和矩阵为循环矩阵.

矩阵在通信中的应用论文

矩阵理论(论文) 矩阵理论在通信领域的应用 学生: 学号:

矩阵理论在通信领域的应用 【摘要】矩阵是数学的基本概念之一,也是线性代数的核心内容。矩阵广泛运用于各个领域,如数学建模、密码学、化学、通信和计算机科学等,解决了大量的实际问题。本文主要介绍矩阵在通过信领域的应用,如:在保密通信中,应用逆矩阵对通信的信息进行加密;在信息论中,利用矩阵理论计算信源熵、信道容量等;在信息论的信道编码中,利用监督矩阵,生成矩阵,对信道中的信息进行编码,利用错误图样对信道传输的信息进行纠正;此外,矩阵分析在MIMO技术这个模块中也有着很重要的应用,基本可以说矩阵分析是MIMO技术研究的基础。关键词:矩阵;保密通信;信道容量;信道编码;MIMO 1、引言 随着科技快速稳健的发展,通信技术也得到了飞速的发展,人们对通信的要求也不断提高,不仅要求通信的实时性、有效性,还要求通信的保密性。而现实环境中,由于噪声的影响,常常使通信出现异常,这就要求人们对接收到的信号能够更好的实现检错纠错。此外,在频谱资源的匮乏己经成为实现高速可靠传输通信系统的瓶颈。一方面,是可用的频谱有限;另一方面,是所使用 的频谱利用率低下。因此,提高频谱利用率就成为解决实际问题的重要手段。多进多出(MIMO)[1]技术即利用多副发射天线和多副接收天线进行无线传输的 技术,该技术能够很好的解决频谱利用率的问题。然而对以上通信中存在的问题的分析和研究都需要用到矩阵理论的知识,本文把矩阵理论和其在通信领域的应用紧密结合,通过建立一些简单的分析模型,利用矩阵知识将通信领域很多复杂的计算和推导变得简单明了。 2、矩阵在通信领域中的应用 2.1 矩阵在保密通信中的应用[2] 保密通信是当今信息时代的一个非常重要的课题, 而逆矩阵正好在这一领域有其应用。我们可以用逆矩阵[3][4]所传递的明文消息进行加密(即密文消息),然后再发给接收方,而接收方则可以采用相对应的某种逆运算将密文消息编译成明文。

图论实现邻接矩阵实验报告C语言

邻接矩阵的生成 一、实验目的 了解邻接矩阵的定义和其基本概念以及构建方式。 二、实验内容 1、根据已知图形的内容输入相关参数生成邻接矩阵; 2、用C语言编程来实现此算法。用下面的实例来调试程序: 三、使用环境 Xcode编译器,编写语言C。 四、编程思路 邻接矩阵表示的是顶点与边的关系,因此需要一个一维数组Vertex[]来保存顶点的相关信息,一个二维数组Edges[][]来保存边的权植,因为C语言二维数组的输出需要用循环语句,因此为了方便,构造一个输出函数Out,用来打印数组各元素的数值。

五、调试过程 1.程序代码: #include #define VERTEX_MAX 26//最大顶点数目 #define MAXVALUE 32767//顶点最大权值 //定义图 typedef struct { char Vertex[VERTEX_MAX]; //保存顶点信息 int Edges[VERTEX_MAX][VERTEX_MAX]; //保存边的权值 int isTrav[VERTEX_MAX]; //是否遍历 int VertexNum ; //顶点数目 int EdgeNum; //边的数目 }Graph; //创建邻接矩阵 void Create(Graph *G) { int i,j,k,weight; //i,j,k分别为迭代数,weight是权值 char start,end; //边或者弧的起始顶点 printf("输入各个顶点的信息:\n"); //输入各个顶点的信息 for(i=0;iVertexNum;i++) { getchar(); printf("这是第%d 个顶点的名字:",i+1); scanf("%c",&(G->Vertex[i]));//保存到数组中 } //输入每个边的起始顶点和权值 printf("输入每个边的起始顶点和权值,例如A,B,1:\n"); for(k=0;kEdgeNum;k++) { getchar(); printf("这是第%d 个边:",k+1); scanf("%c,%c,%d",&start,&end,&weight);//起点,终点,权值 for(i=0;start!=G->Vertex[i];i++);//查找起点 for(j=0;end!=G->Vertex[j];j++); //查找终点 G->Edges[i][j]=weight;//保存权值 G->Edges[j][i]=weight; } } void Out(Graph *G) //输出邻接矩阵 { int i,j;//迭代数

高等数学的矩阵在实际生活中的应用

矩阵在实际生活中的应用 一.【摘要】 随着科学技术的发展,数学的应用越来越广泛,可以说和我们的生活息息相关。而高等数学中的线性代数,也同样有着广泛的应用。本篇论文中,我们就对线性代数中的矩阵在生产成本、人口流动、加密解密、计算机图形变换等方面的应用进行研究。 【关键词】 高等数学矩阵实际应用 二.应用举例 1.生产成本计算:在社会生产管理中经常要对生产过程中产生的很多数据进行统计、处理、分析,以此来对生产过程进行了解和监控,进而对生产进行管理和调控,保证正常平稳的生产以达到最好的经济收益。但是得到的原始数据往往纷繁复杂,这就需要用一些方法对数据进行处理,生成直接明了的结果。在计算中引入矩阵可以对数据进行大量的处理,这种方法比较简单快捷。 例1.某工厂生产三种产品A、B、C。每种产品的原料费、支付员工工资、管理费和其他费用等见表1,每季度生产每种产品的数量见表2。财务人员需要用表格形势直观地向部门经理展示以下数据:每一季度中每一类成本的数量、每一季度三类成本的总数量、四个季度每类成本的总数量。 表1.生产单位产品的成本(元)表2.每种产品各季度产量(件) 产品 成本 A B C 原料费用10 20 15 支付工资30 40 20

解 我们用矩阵的方法考虑这个问题。两张表格的数据都可以表示成一个矩阵。如下所示: 通过矩阵的乘法运算得到 MN 的第一行元素表示了四个季 度中每个季度的原料总成本; MN 的第二行元素表示了四个季度中每个季度的支付工资总成本; MN 的第三行元素表示了四个季度中每个季度的管理及其他总成本。 MN 的第一列表示了春季生产三种产品的总成本; MN 的第二列表示了夏季生产三种产品的总成本; MN 的第三列表示了秋季生产三种产品的总成本; MN 的第四列表示了冬季生产三种产品的总成本。 对总成本进行汇总,每一类成本的年度总成本由矩阵的每一行元素相加得到,每一季度的总成本可由每一列相加得到。如下表: 表3. 总成本汇总表 管理及其他费用 10 15 10 产品 季度 春季 夏季 秋季 冬季 A 2000 3000 2500 2000 B 2800 4800 3700 3000 C 2500 3500 4000 2000 季度 春季 夏季 秋季 冬季 全年 原料费 113500 178500 159000 110000 561000 支付工资 222000 352000 303000 220000 1097000 ????? ??=200040003500250030003700480028002000250030002000N

矩阵的应用

矩阵在经济生活中的应用 班级:电子商务151 姓名:xx 学号:2015xxxxxx 总述:随着社会的不断发展,科技的不断进步,大学经济数学在各个方面的应用越来越广。而经济数学中的线性代数之矩阵,同样也同样有着广泛的应用。比如矩阵在生产成本、人口流动、加密解密等方面的应用。 一、首先,我来阐述下矩阵的基本概念。 1、由m ?n 个数a ij (i =1, 2,???,m ;j =1, 2,???,n )按一定秩序排列成的一个m 行n 列的矩形表, 称为一个m 行n 列的矩阵, 简称m ?n 记 其中,矩阵还可以分为,对角矩阵、单位矩阵、数量矩阵三角形矩阵、同型矩阵等等。 2、矩阵的乘法、矩阵转置、逆矩阵、行列式等知识的应用 二、现在来谈谈它在生活中的应用 1.生产成本计算:在社会生产管理中经常要对生产过程中产生的很多数据进行统计、处理、分析,以此来对生产过程进行了解和监控,进而对生产进行管理和调控,保证正常平稳的生产以 111212122212n n m m mn a a a a a a a a a ?? ? ? ???

达到最好的经济收益。但是得到的原始数据往往纷繁复杂,这就需要用一些方法对数据进行处理,生成直接明了的结果。在计算中引入矩阵可以对数据进行大量的处理,这种方法比较简单快捷。 例1、某企业生产4种产品, 各种产品的季度产值(单位: 万元)如下表所示: 这个排成4行4列的矩形产值阵列 结论:具体描述了这家企业各种产品各季度的产值, 同时也揭示了产值的季增长率及年产量等情况。使得生产数据更加简单明了,便于数据的分析和企业未来发展规划的布局与展开。 例2、生产m 种产品需用n 种材料, 如果以a ij 表示生产第i 种产品(i =1, 2,???,m )耗用第j 种材料( j =1, 2,???,n )的定额, 则消耗定额可以用一个矩形表表示, 如下表所示 80587578987085849075909088708280?? ? ? ???

图论最短路径分析及应用

最短路问题及其应用 1 引言 图论是应用数学地一个分支,它地概念和结果来源非常广泛,最早起源于一些数学游戏地难题研究,如欧拉所解决地哥尼斯堡七桥问题,以及在民间广泛流传地一些游戏难题,如迷宫问题、博弈问题、棋盘上马地行走路线问题等.这些古老地难题,当时吸引了很多学者地注意.在这些问题研究地基础上又继续提出了著名地四色猜想和汉米尔顿(环游世界)数学难题. 1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学地发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学等各个领域地问题时,发挥出越来越大地作用.在实践中,图论已成为解决自然科学、工程技术、社会科学、军事等领域中许多问题地有力工具之一. 最短路问题是图论理论地一个经典问题.寻找最短路径就是在指定网络中两结点间找一条距离最小地路.最短路不仅仅指一般地理意义上地距离最短,还可以引申到其它地度量,如时间、费用、线路容量等. 最短路径算法地选择与实现是通道路线设计地基础,最短路径算法是计算机科学与地理信息科学等领域地研究热点,很多网络相关问题均可纳入最短路径问题地范畴之中.经典地图论与不断发展完善地计算机数据结构及算法地有效结合使得新地最短路径算法不断涌现. 2 最短路 2.1 最短路地定义 对最短路问题地研究早在上个世纪60年代以前就卓有成效了,其中对赋权图()0 w≥地有效算法是由荷兰著名计算机专家E.W.Dijkstra在1959年首次提出地, ij 该算法能够解决两指定点间地最短路,也可以求解图G中一特定点到其它各顶点地最短路.后来海斯在Dijkstra算法地基础之上提出了海斯算法.但这两种算法都不能解决含有负权地图地最短路问题.因此由Ford提出了Ford算法,它能有效地解决含有负权地最短路问题.但在现实生活中,我们所遇到地问题大都不含负权,所以我们在()0 w≥地情况下选择Dijkstra算法. ij 定义①1若图G=G(V,E)中各边e都赋有一个实数W(e),称为边e地权,则称这

图论知识及运用举例

图论知识及运用举例 1 概论 图论中的“图”是指某类具体事物和这些事物之间的联系。如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。 图是运筹学(Operations Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。下面将要讨论最短路问题、最大流问题、最小费用流问题和匹配问题等。 2 图的基本概念 2.1 无向图 一个无向图(undirected graph)G 是由一个非空有限集合)(G V 和)(G V 中某些元素的无序对集合)(G E 构成的二元组,记为))(),((G E G V G =。其中},,,{)(21n v v v G V =称为图G 的顶点集(vertex set )或节点集(node set ), )(G V 中的每一个元素),,2,1(n i v i =称为该图的一个顶点(vertex )或节点(node );},,,{)(21m e e e G E =称为图G 的边集(edge set ),)(G E 中的每一个元素k e (即)(G V 中某两个元素j i v v ,的无序对) 记为),(j i k v v e =或i j j i k v v v v e == ),,2,1(m k =,被称为该图的一条从i v 到j v 的边(edge )。 当边j i k v v e =时,称j i v v ,为边k e 的端点,并称j v 与i v 相邻(adjacent );边k e 称为与顶点j i v v ,关联(incident )。如果某两条边至少有一个公共端点,则称这两条边在图G 中相邻。 边上赋权的无向图称为赋权无向图或无向网络(undirected network )。我们对图和网络不作严格区分,因为任何图总是可以赋权的。 一个图称为有限图,如果它的顶点集和边集都有限。图G 的顶点数用符号||V 或)(G ν表示,边数用||E 或)(G ε表示。 当讨论的图只有一个时,总是用G 来表示这个图。从而在图论符号中我们常略去字母G ,例如,分别用ν,,E V 和ε代替)(),(),(G G E G V ν和)(G ε。 端点重合为一点的边称为环(loop)。 一个图称为简单图(simple graph),如果它既没有环也没有两条边连接同一对顶点。 2.2 有向图 定义 一个有向图(directed graph 或 digraph )G 是由一个非空有限集合V 和V 中某些元素的有序对集合A 构成的二元组,记为),(A V G =。其中},,,{21n v v v V =称为图G 的顶点集或节点集, V 中的每一个元素),,2,1(n i v i =称为该图的一个顶点或节点;},,,{21m a a a A =称为图G 的弧集(arc set ),A 中的每一个元素k a (即V 中某两个元素j i v v ,的有序对) 记为),(j i k v v a =或),,2,1(n k v v a j i k ==,被称为该图的一条从i v 到j v 的弧(arc )。 当弧j i k v v a =时,称i v 为k a 的尾(tail ),j v 为k a 的头(head ),并称弧k a 为i v 的出弧(outgoing arc ),为j v 的入弧(incoming arc )。 对应于每个有向图D ,可以在相同顶点集上作一个图G ,使得对于D 的每条弧,G 有一条有相同端点的边与之相对应。这个图称为D 的基础图。反之,给定任意图G ,对于它的每个边,给其端点指定一个顺序,从而确定一条弧,由此得到一个有向图,这样的有向图称为G 的一个定向图。 以下若未指明“有向图”三字,“图”字皆指无向图。 2.3 完全图、二分图

矩阵的秩及其求法

第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全 为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义)。 例1 设 为阶梯形矩阵,求R (B )。 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2. 结论:阶梯形矩阵的秩=台阶数。 例如 一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。 () n m ij a A ?={}),min 1(n m k k ≤≤? ? ??? ??----=1 10145641321A 182423=C C 43334=C C 101 22--= D 1 0156 43213-=D n m ?k n k m c c () n m ij a A ?=0, r D ≠()(). T R A R A =0,A ≠0.A ≠??? ? ? ??=000007204321B 0 2 021≠????? ??=010*********A ????? ??=001021B ???? ? ??=100010011C 125034000D ?? ? = ? ? ??2 123508153000720 000 0E ?? ? ?= ? ??? ()3=A R ()2=B R ()3=C R ()2R D =()3 R E =

相关主题
相关文档 最新文档