当前位置:文档之家› 高中各种函数图像及其性质(精编版)

高中各种函数图像及其性质(精编版)

高中各种函数图像及其性质

一次函数

(一)函数

1、确定函数定义域的方法:

(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;

(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

(二)一次函数 1、一次函数的定义

一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。

⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.

⑵当0b =,0k ≠时,y kx =仍是一次函数.

⑶当0b =,0k =时,它不是一次函数.

⑷正比例函数是一次函数的特例,一次函数包括正比例函数.

2、正比例函数及性质

一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零

当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.

(1) 解析式:y=kx (k 是常数,k ≠0)

(2) 必过点:(0,0)、(1,k )

(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限

(4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小

(5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴

3、一次函数及性质

一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.

注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数

一次函数y=kx+b 的图象是经过(0,b )和(-

k

b

,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

(1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-

k

b

,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限

⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨

⎧<>00

b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨

⎧<<0

b k 直线经过第二、三、四象限

(4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.

(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.

(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;

当b<0时,将直线y=kx 的图象向下平移b 个单位.

4、一次函数y=kx +b 的图象的画法.

根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取

它与两坐标轴的交点:(0,b ),

.即横坐标或纵坐标为0的点.

b>0 b<0 b=0

k>0

经过第一、二、三象限 经过第一、三、四象限 经过第一、三象限

图象从左到右上升,y 随x 的增大而增大

k<0

经过第一、二、四象限 经过第二、三、四象限 经过第二、四象限

图象从左到右下降,y 随x 的增大而减小

5、正比例函数与一次函数之间的关系

一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)

6、正比例函数和一次函数及性质 正比例函数

一次函数

概 念

一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数 一般地,形如y=kx +b(k,b 是常数,k≠0),那

么y 叫做x 的一次函数.当b=0时,是y=kx ,所以说正比例函数是一种特殊的一次函数.

自变量 范 围 X 为全体实数 图 象 一条直线 必过点

(0,0)、(1,k )

(0,b )和(-k

b

,0)

走 向

k>0时,直线经过一、三象限; k<0时,直线经过二、四象限

k >0,b >0,直线经过第一、二、三象限 k >0,b <0直线经过第一、三、四象限 k <0,b >0直线经过第一、二、四象限 k <0,b <0直线经过第二、三、四象限

增减性 k>0,y 随x 的增大而增大;(从左向右上升) k<0,y 随x 的增大而减小。(从左向右下降) 倾斜度 |k|越大,越接近y 轴;|k|越小,越接近x 轴 图像的 平 移

b>0时,将直线y=kx 的图象向上平移b 个单位; b<0时,将直线y=kx 的图象向下平移b 个单位.

6、直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠

(3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k

7、用待定系数法确定函数解析式的一般步骤:

(1)根据已知条件写出含有待定系数的函数关系式;

(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;

(3)解方程得出未知系数的值;

(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.

8、一元一次方程与一次函数的关系

任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.

9、一次函数与一元一次不等式的关系

任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.

10、一次函数与二元一次方程组

(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=b

c x b a +-的图象相同.

(2)二元一次方程组⎩⎨

⎧=+=+2

22111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b c

x b a +-和

y=2

222b c

x b a +-

的图象交点.

二次函数

一、二次函数概念:

1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:

⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.

二、二次函数的基本形式

① 一般式:()()2

0f x ax bx c a =++≠

② 顶点式:()()()2

0f x a x m n a =++≠ ③ 零点式:()()()()120f x a x x x x a =--≠

()()20f x ax bx c a =++≠

0a > 0a <

图像

定义域 (),-∞+∞

对称轴 2b x a

=-

顶点坐标

24,24b ac b a

a ⎛⎫

-- ⎪⎝⎭

值域

24,4ac b a ⎛⎫

-+∞ ⎪⎝⎭

24,4ac b a ⎛⎫

--∞ ⎪⎝

单调区间

,2b a ⎛⎫-∞- ⎪⎝⎭

递减

,2b a ⎛⎫

-+∞ ⎪⎝⎭

递增 ,2b a ⎛

⎫-∞- ⎪⎝⎭

递增

,2b a ⎛⎫

-+∞ ⎪⎝⎭

递减 当2

40b ac ∆=->时,二次函数的图像和x 轴有两个交点()11,0M x ,()22,0M x ,

线段1212M M x x =-== 当2

40b ac ∆=-=时,二次函数的图像和x 轴有两个重合的交点,02b M a ⎛⎫

-

⎪⎝⎭

. 特别地,当且仅当0b =时,二次函数()()2

0f x ax bx c a =++≠为偶函数.

1. 二次函数基本形式:2y ax =的性质:

a 的绝对值越大,抛物线的开口越小。

2b x a

=-

2b x a =-

2. 2y ax c =+的性质:

上加下减。

3. ()2y a x h =-的性质:

左加右减。

4. ()2y a x h k =-+的性 质:

三、二次函数图象的平移

1. 平移步骤:

方法一:⑴ 将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标()h k ,;

⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,

处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

2. 平移规律

在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.

方法二:

⑴c bx ax y ++=2

沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2

变成

m c bx ax y +++=2(或m c bx ax y -++=2)

⑵c bx ax y ++=2

沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2

变成

c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)

四、二次函数()2

y a x h k =-+与2y ax bx c =++的比较

从解析式上看,()2

y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2

2424b ac b y a x a a -⎛

⎫=++ ⎪⎝

⎭,其中2424b ac b h k a a -=-=

,.

五、二次函数2y ax bx c =++图象的画法

五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定

其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们

选取的五点为:顶点、与y 轴的交点()0c ,

、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,

,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

六、二次函数2y ax bx c =++的性质

1. 当0a >时,抛物线开口向上,对称轴为2b

x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭

,. 当2b x a <-

时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b

x a

=-时,y 有最小值2

44ac b a

-.

2. 当0a <时,抛物线开口向下,对称轴为2b

x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭

,.当

2b x a <-

时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b

x a

=-时,y 有最大值

2

44ac b a

-. 七、二次函数解析式的表示方法

1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);

2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写

成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

八、二次函数的图象与各项系数之间的关系

1. 二次项系数a

二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.

⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;

⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.

总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.

2. 一次项系数b

在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.

⑴ 在0a >的前提下,

当0b >时,02b

a

-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b

a

-=,即抛物线的对称轴就是y 轴; 当0b <时,02b

a

-

>,即抛物线对称轴在y 轴的右侧.

⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b

a

->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b

a

-=,即抛物线的对称轴就是y 轴; 当0b <时,02b

a

-

<,即抛物线对称轴在y 轴的左侧. ab 的符号的判定:对称轴a

b

x 2-

=在y 轴左边则0>ab ,在y 轴的右侧则0

3. 常数项c

⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.

二次函数解析式的确定:

根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:

1. 已知抛物线上三点的坐标,一般选用一般式;

2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;

3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;

4. 已知抛物线上纵坐标相同的两点,常选用顶点式.

九、二次函数图象的对称

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达

1. 关于x 轴对称

2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;

()2

y a x h k =-+关于x 轴对称后,得到的解析式是()2

y a x h k =---;

2. 关于y 轴对称

2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;

()2

y a x h k =-+关于y 轴对称后,得到的解析式是()2

y a x h k =++;

3. 关于原点对称

2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2

y a x h k =-+关于原点对称后,得到的解析式是()2

y a x h k =-+-;

4. 关于顶点对称(即:抛物线绕顶点旋转180°)

2

y ax bx c =++关于顶点对称后,得到的解析式是2

2

2b y ax bx c a

=--+-;

()2y a x h k =-+关于顶点对称后,得到的解析式是()2

y a x h k =--+.

5. 关于点()m n ,

对称 ()2

y a x h k =-+关于点()m n ,对称后,得到的解析式是()2

22y a x h m n k =-+-+-

根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适

的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

十、二次函数与一元二次方程:

1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):

一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.

图象与x 轴的交点个数:

① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,

,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠

的两根.这两点间的距离21AB x x =-=.

② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.

1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'

当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.

2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;

3. 二次函数常用解题方法总结:

⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;

⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,

b ,

c 的符号判断图象的位置,要数形结合;

⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.

二次函数与一元二次方程、一元二次不等式的关系

从函数观点来看,

一元二次不等式()200ax bx c a ++>≠的解集就是二次函数

()()20f x ax bx c a =++≠的图像上,位于x 轴上方的点的横坐标的集合;

一元二次不等式()200ax bx c a ++<≠的解集就是二次函数

()()20f x ax bx c a =++≠的图像上,位于x 轴下方的点的横坐标的集合;

一元二次不等式()2

00ax bx c a ++≥≠的解集就是二次函数

()()20f x ax bx c a =++≠的图像上,

位于x 轴上方的点和与x 轴的交点的横坐标的集合;

一元二次不等式()2

00ax bx c a ++≤≠的解集就是二次函数

()()20f x ax bx c a =++≠的图像上,

位于x 轴下方的点和与x 轴的交点的横坐标的集合.

一元二次方程()2

00ax bx c a ++=≠的解就是二次函数()()

2

0f x ax bx c a =++≠的图像上,与x 轴的交点的横坐标.

反比例函数

1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线

反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

2、性质:

1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|

5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于原点对称。

7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交

点,则n^2+4k·m≥(不小于)0。

8.反比例函数y=k/x的渐近线:x轴与y轴。

9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.

10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|

11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

12.|k|越大,反比例函数的图象离坐标轴的距离越远。

13.反比例函数图象是中心对称图形,对称中心是原点

指数函数

概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。

注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。

⒉指数函数的定义仅是形式定义。

指数函数的图像与性质:

规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;

当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。

在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函数;当0<a<1时,

图像在R上是减函数。

4. 指数函数既不是奇函数也不是偶函数。

比较幂式大小的方法:

1.当底数相同时,则利用指数函数的单调性进行比较;

2.当底数中含有字母时要注意分类讨论;

3.当底数不同,指数也不同时,则需要引入中间量进行比较;

4.对多个数进行比较,可用0或1作为中间量进行比较

底数的平移:

在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

对数函数

1.对数函数的概念

由于指数函数y=a x

在定义域(-∞,+∞)上是单调函数,所以它存在反函数,

我们把指数函数y=a x

(a >0,a ≠1)的反函数称为对数函数,并记为y=log a x(a >0,a ≠1).

因为指数函数y=a x

的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞).

2.对数函数的图像与性质

对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x . 据此即可以画出对数函数的图像,并推知它的性质.

为了研究对数函数y=log a x(a >0,a ≠1)的性质,我们在同一直角坐标系中作出函数

y=log 2x ,y=log 10x ,y=log 10x,y=log 2

1x,y=log

10

1x 的草图

由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=log a x(a >0,a ≠1)的图像的特征和性质.见下表.

a >1

a <1

图象

性质(1)x>0

(2)当x=1时,y=0

(3)当x>1时,y>0

0<x<1时,y<0

(3)当x>1时,y<0

0<x<1时,y>0 (4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数

补充性质设y1=log a x y2=log b x其中a>1,b>1(或0<a<1 0<b<1) 当x>1时“底大图低”即若a>b则y1>y2

当0<x<1时“底大图高”即若a>b,则y1>y2

比较对数大小的常用方法有:

(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.

(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.

(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.

(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.

3.指数函数与对数函数对比

名称指数函数对数函数

一般形式y=a x(a>0,a≠1) y=log a x(a>0,a≠1) 定义域(-∞,+∞) (0,+∞)

值域(0,+∞) (-∞,+∞)

函数值变化情况

当a>1时,

<

<

=

=

>

>

)0

(1

)0

(1

)0

(1

x

x

x

a x

当0<a<1时,

<

>

=

=

>

<

)0

(1

)0

(1

)0

(1

x

x

x

a x

当a>1时

<

<

=

=

>

>

)1

(0

)1

(0

)1

(0

log

x

x

x

x

a

当0<a<1时,

<

>

=

=

>

<

)1

(0

)1

(0

)1

(0

log

x

x

x

x

a

单调性当a>1时,a x是增函数;

当0<a<1时,a x是减函数.

当a>1时,log a x是增函数;当0<a<1时,log a x是减函数.

图像y=a x的图像与y=log

a x的图像

关于直线y=x对称.

幂函数

幂函数的图像与性质

幂函数n

y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n

y x =,当11

2,1,,,323

n =±±±

的图像和性质,列表如下. 从中可以归纳出以下结论:

① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.

② 11

,,1,2,332a =

时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1

,1,22

a =---时,幂函数图像不过原点且在()0,+∞上是减函数.

④ 任何两个幂函数最多有三个公共点.

n y x =

奇函数

偶函数

非奇非偶函数

1n >

01

n <<

0n <

高中数学的所有重要函数图像及其性质图像特点单调性定义域值域

数函数 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x 的对称图形,因为它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。 (2)对数函数的值域为全部实数集合。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 (5)显然对数函数无界。 指数函数 指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得 如图所示为a的不同大小影响函数图形的情况。 可以看到: (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性 注图:(1)为奇函数(2)为偶函数 1.定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

高中各种函数图像画法与函数性质

一次函数 (一)函数 1、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 二次函数

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2 y a x h k =--- 2. 关于y 轴对称 2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2 y a x h k =-+关于原点对称后,得到的解析式是()2 y a x h k =-+- 4. 关于顶点对称(即:抛物线绕顶点旋转180°) 2 y ax bx c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2 y a x h k =--+. 5. 关于点()m n , 对称 ()2 y a x h k =-+关于点()m n , 对称后,得到的解析式是()222y a x h m n k =-+-+-

(完整版)高中各种函数图像及其性质(精编版)

高中各种函数图像及其性质 一次函数 (一)函数 1、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b(k,b是常数,且k 0 )的函数,叫做一次函数,其中x 是自变量。当 b 0时,一次函数y kx,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当 b 0,k 0时,y kx仍是一次函数. ⑶当 b 0,k 0时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数. 注:正比例函数一般形式y=kx (k 不为零)① k 不为零② x 指数为 1 ③ b 取零当k>0 时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0 时,?直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小. (1)解析式:y=kx (k 是常数,k≠ 0) (2)必过点:(0,0)、(1,k) (3)走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5)倾斜度:|k| 越大,越接近y 轴;|k| 越小,越接近x 轴 3、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y叫做x的一次函数.当b=0时, y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.

(完整版)基本初等函数图像及性质大全(初中高中)

一、一次函数与二次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与 x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2b x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =- 时,2 min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,) 2b a -+∞上递减,当2b x a =-时,2 max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 叫做幂函数,其中x 为自变量,α是常数. 过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).

(1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂 的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数指数幂 等于0. ②正数的负分数指数幂 的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈

高中常用函数的基本性质及图像

一次函数 (一)函数 1、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴

(完整版)高中数学常用函数图像及性质

1.指数函数 0(>=a a y x 且)1≠a 图像: 性质:恒过定点(0,1); 当0=x 时,1=y ; 当1>a 时,y 单调递增,当)0,(-∞∈x 时,)1,0(∈y ;当),0(+∞∈x 时,),1(+∞∈y . 当10<=a x y a 且)1≠a 对数运算法则: N M MN a a a log log log += N M N M a a a log log log -= M n M a n a log log =)(R n ∈ N N a a =log (对数恒等式) a N N b b a log log log = (换底公式) 图像 x ) 1>(=a y x

性质:恒过定点(1,0); 当1=x 时,0=y ; 当1>a 时,y 单调递增, 当)1,0(∈x 时,)0,(-∞∈y ;当),1(+∞∈x 时,),0(+∞∈y . 当10<a x ) 10(<

高中数学的所有重要函数图像及其性质 图像特点 单调性 定义域 值域等

高中数学的所有重要函数图像及其性质图像特点单调性定义域值域等 对数函数 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。 (2)对数函数的值域为全部实数集合。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 (5)显然对数函数无界。 指数函数 指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得 如图所示为a的不同大小影响函数图形的情况。 可以看到: (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。(2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性 注图:(1)为奇函数(2)为偶函数 1.定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(完整版)高中的常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换 常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势 2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 一次函数 f (x )=kx +b (k ≠0,b ∈R ) 1)、两种常用的一次函数形式:斜截式—— 点斜式—— 2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势: 3)、|k |越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R 单调性:当k 〉0时 ;当k<0时 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。 补充:反函数定义: 例题:定义在r y=f (x ); y=g (x )都有反函数,且f (x-1)和g —1 (x )函数的图像关于y=x 对称,若f (4)= 周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: x y b O f (x )=b x y O f (x )=kx +b R 2)点关于直线(点)对称,求点的坐标

2、与曲线函数的联合运用 反比例函数 f (x )= x k (k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k 〉0时,函数f (x )的图象分别在第一、 第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞ 单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身 补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)—-入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图) 1)、y=1/(x —2)和y=1/x —2的图像移动比较 2)、y=1/(—x)和y=—(1/x)图像移动比较 3)、f (x )= d cx b ax ++ (c ≠0且 d ≠0)(补充一下分离常数) (对比标准反比例函数,总结各项内容) 二次函数 一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f 图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为 ②当0>a 时,开口向上,有最低点 当0a 时,值域为( );当0a 时;当0

高中函数图像大全汇总

指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质: 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。 3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。 4. 指数函数既不是奇函数也不是偶函数。

比较幂式大小的方法: 1. 当底数相同时,则利用指数函数的单调性进行比较; 2. 当底数中含有字母时要注意分类讨论; 3. 当底数不同,指数也不同时,则需要引入中间量进行比较; 4. 对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。 对数函数 1.对数函数的概念 由于指数函数y=a x 在定义域(-∞,+∞)上是单调函数,所以它存在反函数, 我们把指数函数y=a x (a >0,a ≠1)的反函数称为对数函数,并记为y=log a x(a >0,a ≠1). 因为指数函数y=a x 的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞). 2.对数函数的图像与性质 对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x . 据此即可以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=log a x(a >0,a ≠1)的性质,我们在同一直角坐标系中作出函数 y=log 2x ,y=log 10x ,y=log 10x,y=log 2 1x,y=log 10 1x 的草图

基本初等函数图像及性质大全(初中 高中)

一、一次函数与二次函数 〔1〕二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ 〔2〕求二次函数解析式的方法 ①三个点坐标时,宜用一般式. ②抛物线的顶点坐标或与对称轴有关或与最大〔小〕值有关时,常使用顶点式. ③假设抛物线与x 轴有两个交点,且横线坐标时,选用两根式求()f x 更方便. 〔3

①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2b x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =- 时,2 min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2b x a =-时,2 max 4()4ac b f x a -=. 二、幂函数 〔1〕幂函数的定义 为自变量,α是常数. 过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).

〔1〕根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. 〔2〕分数指数幂的概念 ①正数的正分数指数幂 的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数指数幂等于0. ②正数的负分数指数幂 的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 〔3〕运算性质 ①(0,,)r s r s a a a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈

高中阶段常见函数性质及图像

高中阶段常见函数性质汇总 函 数 名 称:常数函数 解析式 形 式:f (x )=b (b ∈R) 图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于 y 轴)的直线 定 义 域:R 值 域:{b} 单 调 性:没有单调性 奇 偶 性:均为偶函数[当b =0时,函数既是奇函数又是偶函数] 反 函 数:无反函数 周 期 性:无周期性 函 数 名 称:一次函数 解析式 形 式:f (x )=kx +b (k ≠0,b ∈R) 图象及其性质: 定 义 域:R 值 域:R 单 调 性:当k>0时,函数f (x )为R 上的增函数; 当k<0时,函数f (x )为R 上的减函数; 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数。[特殊地,当k =-1或b =0且k =1时,函数f (x )的反函数为原函 数f (x )本身] 周 期 性:无 函 数 名 称:反比例函数 解析式 形 式:f (x )= x k (k ≠0) x y b O f (x )=b

图象及其性质: 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞ 单 调 性:当k>0时,函数f (x )为)0,(-∞和),0(+∞上的减函数; 当k<0时,函数f (x )为)0,(-∞和),0(+∞上的增函数; 奇 偶 性:奇函数 反 函 数:原函数本身 周 期 性:无 函 数 名 称:二次函数 解析式 形 式:一般式:)0()(2 ≠++=a c bx ax x f 顶点式:)0()()(2 ≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f 图象及其性质 ()()20f x ax bx c a =++≠ 0a > 0a < 图像 2b x a =- 2b x a =-

高中阶段常见函数性质及图像

高中阶段常见函数性质汇总 函数 名称:常数函数 解析式 形 式: f ( x )= b ( b ∈ R) 图象及其性质:函数 f ( x ) 的图象是平行于 x 轴或与 x 轴重合(垂直于 y 轴)的直线 y b f(x)=b 定 义 域: R O x 值 域: {b} 单 调 性:没有单调性 奇 偶 性:均为偶函数 [ 当 b =0 时,函数既是奇函数又是偶函数 ] 反 函 数:无反函数 周 期 性:无周期性 函数 名称:一次函数 解析式 形 式: f ( x )= kx +b ( k ≠ 0, b ∈R) 图象及其性质: 定 义 域: R 值 域: R 单 调 性:当 0 时,函数 f ( x ) 为 R 上的增函数; k> 当 k<0 时,函数 f ( x ) 为 R 上的减函数; 奇 偶 性:当 b =0 时,函数 f ( x ) 为奇函数;当 b ≠ 0 时,函数 f ( x ) 没有奇偶性; 反 函 数:有反函数。 [ 特殊地,当 k =-1 或 b =0 且 k =1 时,函数 f ( x ) 的反函数为原函 数 f ( x ) 本身 ] 周期性:无 函 数 名 称: 反比例函数 解析式 形 式: f ( x )= k ( k ≠ 0) x

图象及其性质: 定义域: (,0)(0,) 值域: (,0)(0,) 单调性:当 k>0时,函数 f ( x)为(,0) 和 (0,) 上的减函数; 当 k<0时,函数 f ( x)为(,0) 和 (0,) 上的增函数; 奇偶性:奇函数 反函数:原函数本身 周期性:无 函数名称:二次函数 解析式形式:一般式: f ( x)ax 2bx c(a0) 顶点式: f ( x)a( x k ) 2h(a0) 两根式: f ( x)a( x x1 )( x x2 )(a 0) 图象及其性质 f x ax2bx c a 0 a 0 a0 图像 x b x b 2a2a

高中数学常用函数图像及性质

1.指数函数0(>=a a y x 且)1≠a 图像: 性质:恒过定点(0,1); 当0=x 时,1=y ; 当1>a 时,y 单调递增,当)0,(-∞∈x 时,)1,0(∈y ;当) ,0(+∞∈x 时,),1(+∞∈y . 当10<=a x y a 且)1≠a 对数运算法则: N M MN a a a log log log +=N M N M a a a log log log -= M n M a n a log log =)(R n ∈N N a a =log (对数恒等式) a N N b b a log log log = (换底公式) 图像 x ) 1>(=a y x

性质:恒过定点(1,0); 当1=x 时,0=y ; 当1>a 时,y 单调递增,当)1,0(∈x 时,)0,(-∞∈y ;当),1(+∞∈x 时, ),0(+∞∈y . 当10<a x ) 10(<

高中各种函数图像画法与函数性质

一次函数 二次函数

反比例函数 1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线 反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。 2、性质: 1、当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。 2、k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。 定义域为x≠0;值域为y≠0。 3、因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。 4、在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K| 5、反比例函数的图象既就是轴对称图形,又就是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心就是坐标原点。

指数函数y=a x (a>0,a≠1) 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅就是形式定义。 指数函数的图像与性质 规律:1、当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。 2、当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y 轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y 轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

五大类函数图像及性质总结

五大类函数图像及性质总结 一次函数的图像是一条直线,写作形式为y=ax+b(a≠0),它的性质有以下几点: (1)任意两点确定一条直线,当给定任意两个点(x1,y1), (x2,y2),则直线的斜率为: 【m= (y1-y2)/(x1-x2)】 (2)当x=0时,y=b,可以得出结论,一次函数图像通过原点。 (3)此外,一次函数图像也具有一定的对称性,当x=x时,y=b,则y=-(x-x)+b,图像对称轴为y=x。 二、二次函数图像及性质 二次函数的图像为抛物线,写作形式为y=ax+bx+c(a≠0),它 的性质有以下几点: (1)当x=0,y=c,可以得出结论,二次函数图像通过原点。 (2)当x=x,y=0时,判断抛物线是向上还是向下凹,只需判断 系数a的正负性即可:若a>0,则抛物线向上凹;若a<0,则抛物线 向下凹。 (3)此外,当y=0时,可得出二次函数的两个根:【x = [-b ± (b-4ac)]/(2a)】。 三、单调函数图像及性质 单调函数的图像为一次或多次函数的图像,它的性质有以下几点:(1)单调函数图像在任意一点上发生的变化方向是确定的,不 管是向上还是向下,它只能沿着一个方向变化;

(2)单调函数图像满足单调性; (3)单调函数图像是连续变化图像,就是说图像在每到一个点处,图像均无折现现象。 四、指数函数图像及性质 指数函数的图像为一条曲线,写作形式为y=ax(a≠0),它的性质有以下几点: (1)当x=0,y=a,可以得出结论,指数函数图像通过原点。 (2)指数函数图像具有一定的对称性,当x=x时,y=a,则y=a/x,图像对称轴为y=x。 (3)此外,指数函数与有理函数具有相同的极限性质,当x趋于正无穷时,y趋于正无穷;当x趋于负无穷时,y趋于零。 五、对数函数图像及性质 对数函数的图像为一条曲线,写作形式为y=loga(x)(a>0,a≠1),它的性质有以下几点: (1)当x=1,y=loga(1),可以得出结论,对数函数图像通过原点。 (2)对数函数和指数函数的关系为:【y=loga(x) x=a^y】 (3)此外,由于底数a和参数y的关系满足交换性,因此,对数函数也具有对称性,即【loga(x)=y loga(y)=x】,图像对称轴为y=x。 综上所述,五大类函数图像的性质分别有:一次函数图像为一条直线,任意两点确定一条直线,通过原点,具有一定的对称性;二次

相关主题
文本预览
相关文档 最新文档