当前位置:文档之家› (模电)比例、求和、积分、微分电路

(模电)比例、求和、积分、微分电路

(模电)比例、求和、积分、微分电路
(模电)比例、求和、积分、微分电路

深圳大学实验报告

课程名称:模拟电路

实验名称:比例、求和、积分、微分电路

学院:信息工程学院

专业:班级: 07

组号:指导教师:吴迪

报告人:王逸晨学号: 2014130358 实验时间: 2015 年 10 月 2 日星期五

实验地点: N102

实验报告提交时间: 2015 年 10 月 16 日

一、实验目的

(1)掌握用集成运算放大电路组成的比例、求和电路的特点及性能;

(2)掌握用运算放大器组成积分微分电路的方法;

(3)学会上述电路的测试和分析方法。

二、实验仪器

(1)数字万用表;

(2)双踪示波器;

(3)信号发生器。

三、实验内容

1.电压跟随电路

实验电路图如下,按表1内容实验并测量记录。

表1

U i/V -2 -0.5 0 +0.5 1 U0/V R L=∞-2.005 -0.502 / 0.499 1.002 R L=5.1kΩ-2.003 -0.502 / 0.499 1.002

2.反相比例放大器

实验电路如图,U0=-RF*Ui/R1,按表2内容实验并测量记录。

表2

3.同相比例放大电路

实验电路如下所示,U0=(1+RF/R1)Ui,按表3实验测量并记录。

表3

直流输入电压U i /mV

30

100 300 1000 3000 输出电压 U 0

理论估算/V / -1.000 -3.000 -10 -30 实际值/V

/ -1.0211 -3.030 -9.916 -9.970 误差/mV

/

21.1

30

84

20030

直流输入电压U i/mV 30 100 300 1000

3000

输出电压U0理论估算/V / 1.1 3.3 11 33

实际值/V / 1.090 3.301 11.095 11.340 误差/mV / 10 1 95 21660

4.反相求和放大电路

实验电路如图,U0=-RF(Ui1/R1+Ui2/R2),按表4内容进行实验测量。

表4

Ui1/V 0.3 -0.3

Ui2/V 0.2 0.2

U0/V -5.032 0.951

U0估/V -5.000 1.000

5.积分电路

(1)Ui输入频率为100Hz、幅值为±1V(峰峰值为2V)的方波信号。同时观察和比较Ui与U0的幅值大小及相位关系,并记录波形。

四、实验结果与讨论

(1)总结本实验中的6种运算电路的特点及性能;

答:

一、电压跟随器具有输入电阻高、带负载能力强的特点。

二、反相比例放大电路的输出电压与输入电压保持反相关系。输入电阻不大,输出电阻R0=0。

三、同相比例放大电路的输出电压与输入电压保持同向关系。输入电压越大,输出电压也越大。电路具有输入电阻高、输出电阻低的优点,但同相端与反相端同处于高电位,实际应用时有其不利因素。

四、反相求和放大电路兼具反相比例放大电路和反相加法电路的特点。

五、积分电路结构简单,输出电压为输入电压对时间的积分。

(2)整理试验中的数据及波形;

(3)分析理论计算与实验结果之间出现误差的原因。

答:

1.电源内阻导致误差;

2.导线本身有电阻导致误差;

3.仪器本身测量有误差;

4.电阻值不恒等电路标出值;

5.环境温度对电阻有影响导致误差;

指导教师批阅意见:

成绩评定:

指导教师签字:

年月日备注:

注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。

2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。

积分、微分、比例运算电路

模拟电路课程设计报告 题目:积分、微分、比例运算电路 一、设计任务与要求 ①设计一个可以同时实现积分、微分和比例功能的运算电路。 ②用开关控制也可单独实现积分、微分或比例功能 ③用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证 用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V),为运算电路提供偏置电源。此电路设计要求同时实现比例、积分、微分运算等功能。即在一个电路中利用开关或其它方法实现这三个功能。

方案一: 用三个Ua741分别实现积分、微分和比例功能,在另外加一个Ua741构成比例求和运算电路,由于要单独实现这三个功能,因此在积分、微分和比例运算电路中再加入三个开关控制三个电路的导通与截止,从而达到实验要求。 缺点:开关线路太多,易产生接触电阻,增大误差。此运算电路结构复杂,所需元器件多,制作难度大,成本较高。并且由于用同一个信号源且所用频率不一样,因此难以调节。 流程图如下: 图1 方案二: 用一个Ua741和四个开关一起实现积分、微分和比例功能,并且能够单独实现积分、微分或比例功能。 优点:电路简单,所需成本较低。 电路图如下: 积分运算电路 微分运算电路 比例运算电路 比例求和运算电路

图2 三、单元电路设计与参数计算 1、桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V )。 其流程图为: 图3 直流电源电路图如下: 电源变 压器 整流电路 滤波电路 稳压电路

V1220 Vrms 50 Hz 0?? U11_AMP T1 7.32 1D21N4007 D3 1N4007D4 1N4007 C13.3mF C23.3mF C3220nF C4220nF C5470nF C6470nF C7220uF C8220uF U2LM7812CT LINE VREG COMMON VOLTAGE U3LM7912CT LINE VREG COMMON VOLTAGE D51N4007D61N4007 LED2 LED1 R11k|?R21k|?23 4 5 D1 1N400715 16 6 7 14 17 图4 原理分析: (1)电源变压器: 由于要产生±12V 的电压,所以在选择变压器时变压后副边电压应大于24V,由现有的器材可选变压后副边电压为30V 的变压器。 (2)整流电路: 其电路图如下: 图5 ①原理分析: 桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,

实验七-比例求和运算及微分运算电路

实验七比例求和运算及微分运算电路 一.实验目的 1.掌握集成运算放大器的特点,性能及使用方法。 2.掌握比例求和电路,微积分电路的测试和分析方法。 3.掌握各电路的工作原理和理论计算方法。 二.实验仪器 1.GOS-620模拟示波器 2.GFG-8250A信号发生器 3.台式三位半数字万用表 4.指针式交流毫伏表 5.SPD3303C直流电源 三.实验内容及步骤 1.搭接电压跟随器并验证其跟随特性,测量2-3组数据进行验证。 Ui(V) 6.0mV 7.0mV 8.0mV Uo(V) 6.0mV 7.0mV 8.0mV 2.测量反向比例电路的比例系数,测量其计算值与理论值进行比较

理论值:Uo=-(R F/Ri)*Ui,ui=7mV,uo=-70mV 实际值: uo=7mV,ui=69mV 3.测量同相比例放大器的比例系数及上限截止频率 理论值:uo=-(1+RF/Ri)*ui,ui=6.9mV,uo=75.9mV 实际值:ui=6.9mV,uo=76mV 4.测量反相求和电路的求和特性,注意多路输入信号可通过电阻分压法获取 仿真值如下图所示, Ui1=3.185mV,Ui2=1.706mV,Uo=48.899mV, 满足输入与输出运算关系: Uo=-[(RF /R1)*Ui1+( RF /R2)*Ui2]

5.验证双端输入求和的运算关系

6.积分电路 如图所示连接积分运算电路,检查无误后接通±12V直流电源 ①取ui=-1V,用示波器观察波形uo,并测量运放输出电压值的正向饱和电压值 正向饱和电压值为11V ②取ui=1V,测量运放的负向饱和电压值。注意±1V的信号源可用1Hz交流信号代替 反向饱和电压值为-11V ③将电路中的积分电容改为0.1uF,ui分别输入1kHz幅值为2V的方波和正弦波信号, 观察ui和uo的大小及相位关系并记录波形,计算电路的有效积分时间。 Ui=1.414V,Uo=222.157mV

积分电路和微分电路

积分电路 这里介绍积分电路的一些常识。下面给出了积分电路的基本形式和波形图。 当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性可有下面的公式表达: i = (V/R)e-(t/CR) ?i--充电电流(A); ?V--输入信号电压(V); ?C--电阻值(欧姆); ?e--自然对数常数(2.71828);

?t--信号电压作用时间(秒); ?CR--R、C常数(R*C) 由此我们可以找输出部分即电容上的电压为V-i*R,结合上面的计算,我们可以得出输出电压曲线计算公式为(其曲线见下图): Vc = V[1-e-(t/CR)]

微分电路 微分电路是电子线路中最常见的电路之一,弄清它的原理对我们看懂电路图、理解微分电路的作用很有帮助,这里我们将对微分电路做一个简单介绍。图1给出了一个标准的微分电路形式。为表达方便,这里我们使输入为频率为50Hz的方波,经过微分电路后,输出为变化很陡峭的曲线。图2是用示波器显示的输入和输出的波形。 当第一个方波电压加在微分电路的两端(输入端)时,电容C上的电压开始因充电而增加。而流过电容C的电流则随着充电电压的上升而下降。电流经过微分电路(R、C)的规律可用下面的公式来表达(可参考右图): i = (V/R)e-(t/CR)

?i-充电电流(A); ?v-输入信号电压(V); ?R-电路电阻值(欧姆); ?C-电路电容值(F); ?e-自然对数常数(2.71828); ?t-信号电压作用时间(秒); ?CR-R、C常数(R*C) 由此我们可以看出输出部分即电阻上的电压为i*R,结合上面的计算,我们可以得出输出电压曲线计算公式为(其曲线见下图): iR = V[e-(t/CR)]

比例求和运算电路知识讲解

比例求和运算电路

实验八 比例求和运算电路 —、实验目的 1、掌握用集成运算放大器组成比例、求和电路的特点及性能。 2、学会上述电路的测试和分析方法。 二、实验原理 1、比例运算放大电路包括反相比例,同相比例运算电路,是其他各种运算电路的基础,我们在此把它们的公式列出: 反相比例放大器 10R R V V A F i f -== 1R r if = 同相比例放大器 1 01R R V V A F i f +== ()id Od r F A r +=1 式中Od A 为开环电压放大倍数F R R R F +=11 id r 为差模输入电阻 当0=F R 或∞=1R 时,0=f A 这种电路称为电压跟随器 2、求和电路的输出量反映多个模拟输入量相加的结果,用运算实现求和运算时,可以采用反相输入方式,也可以采用同相输入或双端输入的方式,下面列出他们的计算公式。 反相求和电路 22110i F i F V R R V R R V ?+?-= 若 21i i V V = ,则 ()210i i F V V R R V += 双端输入求和电路 ?? ? ??-'=∑∑21120i i F V R R V R R R R V 式中: F R R R //1=∑ 32//R R R ='∑ 三、实验仪器 l 、数字万用表 2、示波器 3、信号发生器 4、集成运算放大电路模块 四、预习要求 1、计算表8-l 中的V 0和A f 2、估算表8-3的理论值 3、估算表8- 4、表8-5中的理论值 4、计算表8-6中的V 0值 5、计算表8-7中的V 0值

五、实验内容 1、电压跟随器 实验电路如图8-l所示. 图8-l电压跟随器 按表8-l内容实验并测量记录。 V i (V)-2 -0.5 0 0.5 0.98 V (V) R L =∞ R L = 5K1 4,96 2、反相比例放大器 实验电路如图8-2所示。 图8-2反相比例放大器 (l) 按表8-2内容实验并测量记录. 直流输入电压U i (mV)30 100 300 9803000 输出电压U 理论估算 (mV) 实测值(mV)10800 误差 (2) 按表8-3要求实验并测量记录. 测试条件理论估算值实测值 ΔU R L 开路,直流输入信号

实验九 积分与微分电路

实验九积分与微分电路 学院:信息科学与技术学院专业:电子信息工程 姓名:刘晓旭 学号:2011117147

一.实验目的 1.掌握集成运算放大器的特点、性能及使用方法。 2.掌握比例求和电路、微积分电路的测试和分析方法。 3.掌握各电路的工作原理和理论计算方法。 二.实验仪器 1.数字万用表2.直流稳压电源3.双踪示波器4.信号发生器5.交流毫伏表。三.预习要求 1.分析图7-8 实验电路,若输入正弦波,u o 与u i 的相位差是多少?当输入信号为100Hz、有 效值为2V时,u o =? 2.图7-8 电路中,若输入方波,u o 与u i 的相位差?当输入信号为160Hz幅值为1V时,输出 u o =? 3.拟定实验步骤,做好记录表格。 四.实验原理 集成运放可以构成积分及微分运算电路,如下图所示: 微积分电路的运算关系为: 五.实验内容: 1.积分电路 按照上图连接积分电路,检查无误后接通+12,-12V直流电源。 (1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值。

(2)取U i=1V,测量运放的负向饱和电压值。 (3)将电路中的积分电容改为改为0.1uF,u i分别输入1KHz幅值为2v的方波和正弦信号,观察u i和u o的大小及相位关系,并记录波形,计算电路的有效积分时间。 (4)改变电路的输入信号的频率,观察u i和u o的相位,幅值关系。 2.微分电路 实验电路如上图所示。 (1)输入正弦波信号,f=500Hz,有效值为1v,用示波器观察u i和u o的波形并测量输出电压值。 (2)改变正弦波频率(20Hz-40Hz),观察u i和u o的相位,幅值变化情况并记录。 (3)输入方波,f=200Hz,U=5V,用示波器观察u0波形,并重复上述实验。 (4)输入三角波,f=200Hz,U=2V,用示波器观察u0波形,并重复上述实验 3.积分-微分电路 实验电路如图所示 (1)输入f=200Hz,u=6V的方波信号,用示波器观察u i和u o的波形并记录。 (2)将f改为500Hz,重复上述实验。 解答: 1.(1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值 电路仿真图如下图所示:

1比例求和运算电路

实验报告(1) 学院: 课程名称: 实验项目:比例、求和运算电路专业班级: 小组成员: 姓名: 学号: 指导老师:

学生实验报告 一、实验目的 1.掌握运算放大器组成比例求和电路的特点性能及输出电压与输入电压的函数关系。 2.学会上述电路的测试和分析方法。 二、实验仪器及设备 示波器、TB型模拟电路实验仪和⑤号实验板等。 三、实验电路原理 集成运算放大器是具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元件组成输入和负反馈电路时,可以实现各种特定的函数关系。 四、实验内容及步骤 每个比例、求和运算电路实验,都应先进行以下两项: 1.按电路图接好线后,仔细检查,确保正确无误。 将各输入端接地,接通电源,用示波器观察是否出现自激振荡。若有自激振荡,则需更换集成运算放大电路。

2. 调零:各输入端仍接地,调节调零电位器,使输出电压为零(用示波器测量) ⑴ 反相比例放大器 实验电路如图J5-1所示 图J5-1 反相比例放大器 预习要求: 分析图J5-1反相比例放大器的主要特点(包括反馈类型),求出表J5-1的理论估算值。 表J5-1 实验内容: 在5号实验模板上按图J5-1“反相比例放大器”连好线,并接上电源线,做表J5-1中的内容。 将反相比例放大器的输入端接DC 信号源的输出,将DC 信号源的转换开关置于合适位置,调节电位器,使i V 分别为表J5-1中所列各值,分别测出o V 的值,填在该表中。 ⑵ 同相比例放大器

实验电路如图J5-2所示。 预习要求: ①分析图J5-2同相比例放大器的主要特点(包括反馈类型),求出表J5-2各理论估算值。 ②熟悉实验任务,自拟实验步骤,并做好实验记录准备工作。 图J5-2同相比例放大器 表J5-2 ⑶电压跟随器 实验电路如图J5-3所示 预习要求: ①分析图J5-3电路的特点,求出表J5-3中各理论估算值。 ②熟悉实验任务,自拟实验步骤,并做好实验记录准备工作。

最新实验六比例求和运算及其微积分电路

实验六比例求和运算及其微积分电路

实验六 比例求和运算及微积分电路 实验内容及步骤 1 .搭接电压跟随器并验证其跟随特性。 U1 UA741CP 3 2 4 76 5 112V VEE -12V VCC VEE XFG1 XSC1 A B Ext Trig + + _ _ +_ R15.1kΩ2 1 仿真图如上 输出输入波形重合,其跟随特性得以验证. 实测数据显示Uo=Ui,验证运放性能良好。 2 .测量反相比例电路的比例系数。

由图:为反相比例放大,输入电压为10mv,输出电压为100mv,且输出波形与输入波形反相,放大倍数10。 理论值:Uo=-Rf/Ri*Ui=-10Ui,反相比例系数为-10. 实测数据如下: Uo/mv 10 15 20 Ui/v 0.11 0.165 0.22

分析,Uo与Ui反相,反相比例电路的比例系数为-10. 3 .测量同相比例放大器的比例系数及上限截止频率。 仿真图如下: 输入输出波形如下 由图:Ui=10mv,Uo=100mv,且输入输出同相,放大系数约为10倍。实测数据如下: Ui/mv 10 20 30 40 50 60 Uo/v 0.11 0.22 0.33 0.43 0.545 0.66

Au 11 11 11 10.5 10.9 11 所以实际放大倍数约为11,与理论值接近。 测量截止频率:首先将函数发生器的输入电压幅值调为20mv,此时观察示波器输出约为0.22v,然后调节函数发生器的调频旋钮,随着频率增大,当 Uo=0.22*0.707=0.15554v时,对应电压即为上限截止频率,fh=94.78khz. 4 .测量反相求和电路的求和特性。

比例求和运算电路

实验八 比例求和运算电路 —、实验目的 1、掌握用集成运算放大器组成比例、求和电路的特点及性能。 2、学会上述电路的测试和分析方法。 二、实验原理 1、比例运算放大电路包括反相比例,同相比例运算电路,是其他各种运算电路的基础,我们在此把它们的公式列出: 反相比例放大器 10R R V V A F i f -== 1R r if = 同相比例放大器 1 01R R V V A F i f +== ()id Od r F A r +=1 式中Od A 为开环电压放大倍数F R R R F +=11 id r 为差模输入电阻 当0=F R 或∞=1R 时,0=f A 这种电路称为电压跟随器 2、求和电路的输出量反映多个模拟输入量相加的结果,用运算实现求和运算时,可以采用反相输入方式,也可以采用同相输入或双端输入的方式,下面列出他们的计算公式。 反相求和电路 22 110i F i F V R R V R R V ?+?-= 若 21i i V V = ,则 ()210i i F V V R R V += 双端输入求和电路 ??? ??-'=∑∑21120i i F V R R V R R R R V 式中: F R R R //1=∑ 32//R R R ='∑ 三、实验仪器 l 、数字万用表 2、示波器 3、信号发生器 4、集成运算放大电路模块

四、预习要求 1、计算表8-l中的V0和A f 2、估算表8-3的理论值 3、估算表8- 4、表8-5中的理论值 4、计算表8-6中的V0值 5、计算表8-7中的V0值 五、实验内容 1、电压跟随器 实验电路如图8-l所示. 图8-l电压跟随器按表8-l内容实验并测量记录。 表 8-1 V i(V)-2 -0.5 0 0.5 0.98 V0(V)R L=∞ R L= 5K1 4,96 2、反相比例放大器 实验电路如图8-2所示。 图8-2反相比例放大器(l) 按表8-2内容实验并测量记录. 表8-2

比例求和运算电路

比例求和运算电路 一、实验目的 1.掌握用集成运算放大器组成比例,求和电路的特点和性能。 2.学会上述电路的测试和分析方法。 二、实验仪器 1.数字万用表 DM-441B 2.双踪示波器 OS-5040A 3.信号发生器 FG-7002C 三、预习要求 1.计算表6.1中的V o 和A f 。 2.估算表6.3的理论值。 3.估算表6.4、表6.5中的理论值。 4.计算表6.6中的V o值。 5.计算表6.7中的V o值。 6. 预习有关集成运放上限频率的概念,并写出测量运放上限频率的实验方法和步骤(可参考实验三的实验内容3)。 四、实验内容

1.电压跟随器,实验电路如图6.1所示 按表6.1内容实验并测量记录 表6.1 V i(V)-2-0.50+0.51 V o(V)R L= ∞R L=5K1 2.反相比例放大器 实验电路如图6.2所示 (1) 按表6.2内容实验并测量记录 表6.2 直流输入电压V i(mV)3010030010003000 输出电压Vo 理论估算(mV)实际值(mV) 误差

(2)按表6.3要求实验并测量记录(3) 测量图6.2电路的上限截止频率。表6.3 测试条件理论估算值实测值 ΔV O R L=∞,直流输入信号 Vi由0变为800mV ΔV AB ΔV R2 ΔV R1 V OL R L由开路变为5K1,V i =800mV 3.同相比例放大器,电路如图6.3所示 (1)按表6.4和6.5实验测量并记录: (2)测出电路的上限截止频率 表6.4 直流输入电压V i(mV)3010030010003000输出电压V O 理论估算(mV) 实测值(mV) 误差

实验六 比例求和运算及其微积分电路

实验六 比例求和运算及微积分电路 实验内容及步骤 1 .搭接电压跟随器并验证其跟随特性。 仿真图如上 输出输入波形重合,其跟随特性得以验证. 实测数据显示Uo=Ui,验证运放性能良好。 2 .测量反相比例电路的比例系数。

由图:为反相比例放大,输入电压为10mv,输出电压为100mv,且输出波形与输入波形反相,放大倍数10。 理论值:Uo=-Rf/Ri*Ui=-10Ui,反相比例系数为-10. 实测数据如下: 分析,Uo与Ui反相,反相比例电路的比例系数为-10. 3 .测量同相比例放大器的比例系数及上限截止频率。 仿真图如下:

输入输出波形如下 由图:Ui=10mv,Uo=100mv,且输入输出同相,放大系数约为10倍。 实测数据如下: 所以实际放大倍数约为11,与理论值接近。 测量截止频率:首先将函数发生器的输入电压幅值调为20mv,此时观察示波器输出约为0.22v,然后调节函数发生器的调频旋钮,随着频率增大,当Uo=0.22*0.707=0.15554v时,对应电压即为上限截止频率,fh=94.78khz. 4 .测量反相求和电路的求和特性。

分析:输入Ui1=20mv,Ui2=10mv,输出Uo=2.5v,且输出与输入反相。理论值:Uo=-(R3/R2*Ui1+R3/R1*Ui2)=-(10*Ui1+10*Ui2) 5 .验证双端输入求和电路的运算关系。

输入输出波形: 输入电压Ui2为20mv,Ui1为10mv,输出Uo为100mv。 理论值:Uo=Rf/R1(Ui2-Ui1)=10(Ui2-Ui1) ∵实验值Uo与理论值Uo接近,∴双端输入求和电路的运算关系为Uo=Rf/R1(Ui2-Ui1) 6 .积分电路 按照图7-8(a )连接积分电路,检查无误后接通±12V 直流电源。

比例求和积分微分电路

比例求和积分微分电路 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

报告 课程名称:模拟电路 实验名称:比例、求和、积分、微分电路 学院:信息工程学院 专业:班级: 3 组号:指导教师:吴迪 报告人:李子茜学号: 16 实验时间: 2015 年 10 月 9 日星期五 实验地点 N102 实验报告提交时间: 2015 年 10 月 21 日 一、实验目的 1、掌握用集成运算放大电路组成比例、求和电路的特点及性能; 2、掌握用运算放大器组成积分微分电路; 3、学会上述电路的测试和分析方法

二、实验仪器 1、数字万用表 2、双踪示波器 3、信号发生器 三、预习要求 (1)复习比例、求和、积分微分电路的基本工作原理; (2)估算所有要填入表格的理论值; (3)拟定实验步骤,做好记录表格。 对于理想运放,当其工作在线性状态时,若U+≈U-,则这一特性称为理想运放输入端的“虚短路”特性;若I+=I-≈0,则这一特性称为理想运放输入端的“虚开路”特性。 四、实验内容 1.熟悉电压跟随电路 运算放大器UA741上的引脚排列如图5-5所示。1和5为偏置(调零端),2为反向输入端,3为正向输入端,4为-Vcc,6为输出端,7接+Vcc,8为空脚。 电压跟随实验电路如图5-6所示。按表5-18内容实验并测量记录。注意:集成运放实验板上的+12V、-12V和GND孔必须与实验箱上电源部分的+12V、-12V和GND 孔连接,以保证集成运放的正常供电。 图5-5 UA741引脚排列图 图5-6 电压跟随电路 2.熟悉反相比例放大器 反相比例放大电路的实验电路如图5-7,已知Uo=-RF*Ui/R1,按表5-19的实验内容测量并测量记录。 表5-7 反相比例放大电路 3.熟悉同相比例放大电路 同相比例放大电路的实验电路如图5-8所示。U0=(1+R F/R1)U i,按表5-20的实验内容测量并记录。 图5-8 同相比例放大电路 表5-20 同相比例放大电路测试表

实验四比例求和运算电路实验报告

实验四 比例求和运算电路 一、实验目的 1.掌握用集成运算放大器组成比例、求和电路的特点及性能。 2.学会上述电路的测试和分析方法。 二、实验仪器 1.数字万用表 2.信号发生器 3.双踪示波器 其中,模拟电子线路实验箱用到直流稳压电源模块,元器件模组以及“比例求和运算电路”模板。 三、实验原理 (一)、比例运算电路 1.工作原理 a .反相比例运算,最小输入信号min i U 等条件来选择运算放大器和确定外围电路元件参数。 如下图所示。 A V i V o R 100k Ω R 1 10k Ω R 2 10k Ω A B 输入电压i U 经电阻R 1加到集成运放的反相输入端,其同相输入端经电阻R 2接地。输出电压O U 经R F 接回到反相输入端。通常有: R 2=R 1F o 1i u u u u -=---???????==-==1i i if 1F i o uf R i u R R R u u A A V i V o 100k Ω R 1 10k Ω R 210k ΩA B i U O U o F u R R R u ?+=-11i o F u u R R R =?+111F i o uf R R 1u u A +==∞==i i if i u R 1212i i o F u u u R R R +=- 1212()F F o i i R R u u u R R =-+12()F o i i R u u u R =-+压跟随电路 实验电路如图1所示。按表1内容进行实验测量并记录。 理论计算: 得到电压放大倍数:

即:Ui=U+=U-=U 图1 电压跟随器 直流输入电压Vi(v)-201 输出电 压Vo(v) Rl=∽ Rl= 从实验结果看出基本满足输入等于输出。 2、反相比例电路 理论值:(Ui-U-)/10K=(U--UO)/100K且U+=U-=0故UO=-10Ui。 实验电路如图2所示: 图2:反向比例放大电路 (1)、按表2内容进行实验测量并记录. 表2:反相比例放大电路(1) (2)、按表3进行实验测量并记录。 测试条件被测量理论估算实直流输入电压输入 Vi(mv)3010 30 10 00 30 00输出电 压 Vo(v) 理论值 实测值 误差

微分和积分电路的异同

电子知识 微分电路(13)积分电路(20) 输出电压与输入电压成微分关系的电路为微分电路,通常由电容和电阻组成;输出电压与输入电压成积分关系的电路为积分电路,通常由电阻和电容组成。微分电路、积分电路可以分别产生尖脉冲和三角波形的响应。积分运算和微分运算互为逆运算,在自控系统中,常用积分电路和微分电路作为调节环节;此外,他们还广泛应用于波形的产生和变换以及仪器仪表之中。以集成运放作为放大电路,利用电阻和电容作为反馈网络,可以实现这两种运算电路。 (一)积分电路和微分电路的特点 1:积分电路可以使输入方波转换成三角波或者斜波 微分电路可以使使输入方波转换成尖脉冲波 2:积分电路电阻串联在主电路中,电容在干路中 微分则相反 3:积分电路的时间常数t要大于或者等于10倍输入脉冲宽度 微分电路的时间常数t要小于或者等于1/10倍的输入脉冲宽度 (二)他们被广泛的用于自控系统中的调节环节中,此外还广泛应用于波形的产生和变换以及仪表之中。 (三)验证:你比如说产生三角波的方法,有这样两个简单的办法,第一就是在方波发生电路中,当滞回比较器的阈值电压数值比较小时,咱们就可以把电容两端的电压看成三角波,第二呢直接把方波电压作为积分运算电路的发生电路的输出电压uo1=+Uz,时积分电路的输出电压uo将线性下降;而当

uo1=-Uz时,uo将线性上升;从而产生三角波,这时你就会发现两种方法产生的三角波的效果还是第二种的好,因为第一种方法产生的三角波线性度太差,而且如果带负载后将会使电路的性能发生变化。你可以用我说的这两种方法分别试试就知道差别优势了。 积分电路和微分电路当然是对信号求积分与求微分的电路了,它最简单的构成是一个运算放大器,一个电阻R和一个电容C,运放的负极接地,正极接电容,输出端Uo再与正极接接一个电阻就是微分电路,设正极输入Ui,则Uo=-RC(dUi/dt)。 当电容位置和电阻互换一下就是积分电路,Uo=-1/RC*(Ui 对时间t的积分),这两种电路就是用来求积分与微分的。方波输入积分电路积分出来就是三角波,而输入微分电路出来就是尖脉冲。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准

(模电)比例求和积分微分电路

深圳大学实验报告 课程名称:模拟电路 实验名称:比例、求和、积分、微分电路 学院:信息工程学院 专业:班级: 07 组号:指导教师:吴迪 报告人:王逸晨学号: 2014130358 实验时间: 2015 年 10 月 2 日星期五 实验地点: N102 实验报告提交时间: 2015 年 10 月 16 日

一、实验目的 (1)掌握用集成运算放大电路组成的比例、求和电路的特点及性能; (2)掌握用运算放大器组成积分微分电路的方法; (3)学会上述电路的测试和分析方法。 二、实验仪器 (1)数字万用表; (2)双踪示波器; (3)信号发生器。 三、实验内容 1.电压跟随电路 实验电路图如下,按表1内容实验并测量记录。 表1 U i/V -2 -0.5 0 +0.5 1 U0/V R L=∞-2.005 -0.502 / 0.499 1.002 R L=5.1kΩ-2.003 -0.502 / 0.499 1.002

2.反相比例放大器 实验电路如图,U0=-RF*Ui/R1,按表2内容实验并测量记录。 表2 3.同相比例放大电路 实验电路如下所示,U0=(1+RF/R1)Ui,按表3实验测量并记录。 表3 直流输入电压U i /mV 30 100 300 1000 3000 输出电压 U 0 理论估算/V / -1.000 -3.000 -10 -30 实际值/V / -1.0211 -3.030 -9.916 -9.970 误差/mV / 21.1 30 84 20030

直流输入电压U i/mV 30 100 300 1000 3000 输出电压U0理论估算/V / 1.1 3.3 11 33 实际值/V / 1.090 3.301 11.095 11.340 误差/mV / 10 1 95 21660 4.反相求和放大电路 实验电路如图,U0=-RF(Ui1/R1+Ui2/R2),按表4内容进行实验测量。 表4 Ui1/V 0.3 -0.3 Ui2/V 0.2 0.2 U0/V -5.032 0.951 U0估/V -5.000 1.000

积分电路和微分电路

什么是积分电路 输出信号与输入信号的积分成正比的电路,称为积分电路。 基本积分电路: 积分电路如下图所示,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。 原理:从图得,Uo=Uc=(1/C)/icdt,因Ui=UR+Uo当t=to 时,Uc=Oo随后C 充电,由于ROTk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故 Uo=(1/c) / icdt=(1/RC) / Uidt 这就是输出Uo正比于输入Ui的积分(/ Uidt ) RC电路的积分条件:RO Tk 积分电路的作用: 积分电路能将方波转换成三角波,积分电路具有延迟作用,积分电路还有移相作用。积分电路的应用很广,它是模拟电子计算机的基本组成单元,在控制和测量系统中也常常用到积分电路。此外,积分电路还可用于延时和定时。在各种波形(矩形波、锯齿波等)发生电路中,积分电路也是重要的组成部分。 微分电路 可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换

的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10 就可以了。 积分电路 这里介绍积分电路的一些常识。下面给出了积分电路的基本形式和波形图 R=10K o輸出 匚=0-3 F=5OHZ o ---- 当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性可有下面的公式表达:

比例求和运算电路实验报告(同名12083)

比例求和运算电路实验报告--- 一、实验目的 ①掌握用集成运算放大器组成比例\求和电路的特点和性能; ②学会用集成运算放大电路的测试和分析方法。 二、实验仪器 ①数字万用表;②示波器;③信号发生器。 三、实验内容 Ⅰ.电压跟随器 实验电路如图6-1所示: 理论值:U i=U+=U-=U

图6-1 电压跟随器按表6-1内容实验并记录。 V i(V)-2-0.50+0.51 V O(V) R L=∞-2.18 -0.67 1 -0.1 7 +0.3 3 0.8 3 R L=5K1-2.18 -0.67 1 -0.1 7 +0.3 3 0.8 3 表6-1 Ⅱ.反相比例放大电路 实验电路如图6-2所示: 理论值:(U i-U-)/10K=(U--U O)/100K且U+=U-=0故U O=-10U i 图6-2 反相比例放大器 1)按表6-2内容实验并测量记录:

表6-2 发现当U i =3000 mV 时误差较大。 2)按表6-3要求实验并测量记录: 表6-3 其中R L 接于V O 与地之间。表中各项测量值均为U i =0及U i =800mV 时所得该项测量值之差。 Ⅲ.同相比例放大器 电路如图6-3所示。理论值:U i /10K=(U i -U O )/100K 故U O =11U i

图6-3 同相比例放大电路 1)按表6-4和6-5实验测量并记录。 直流输入电压U i(mV)301003001000 输出电压U O 理论估算(mV)3301100330011000实测值(mV)6091710241010300误差94.3%40.52%25.4%0.667% 测试条件 理论估算值 (mV) 实测值 (mV) ΔU O R L开路,直流输入信号U i 由0变为800mV 88008820 ΔU AB00ΔU R2800790ΔU R1-800-800ΔU OL U=800mV, R L由开路变为5K1 88008880 表6-5

积分电路与微分电路

积分电路与微分电路 积分电路和微分电路实验的目的和要求 1: (1)进一步掌握微分电路和积分电路的相关知识(2)学会使用运算放大器形成积分微分电路 (3)设计了一个RC差分电路,将方波转换成锐脉冲波(4)设计了一个RC积分电路,将方波转换成三角波(5)进一步学习和熟悉Multisim软件的使用(6)得出分析结论,写出模拟经验 工作原理: 积分电路: 积分是一种常见的数学运算,同时积分电路是一种常见的波形转换电路,它是一种将矩形脉冲(或方波)转换成三角波的电路最简单的集成电路(一阶RC电路)在 实验中,增加了一个运算放大器。原理图如下: 使用虚拟接地和虚拟断路的概念:n?0,i1?i2?I,电流为i1的电容器c?充电V1/电阻假设电容器c的初始电压为vc(o)?0,输出电压为 1 V0=?钢筋混凝土?vdt 1的上述公式表明,输出电压V0是输入电压Vi随时间的积分,负号表示它们相位相反。

当输入信号Vi为阶跃电压(方波)时,电容将在其作用下以近似恒定的电流模式充电,输出电压V0与时间t近似线性,因此 viviv??t。?到 RC?其中τ=R C是 中的时间常数由此可以推断,运算放大器的输出电压的最大V om受到DC调节电源的限制,这导致运算放大器进入饱和状态,V o保持不变,并且积分停止 差分电路: 替换积分电路中的电阻和电容元件,并选择较小的时间常数RC,以获得如图4所示的差分电路该电路还具有虚拟接地和虚拟断路 图4差分电路与运算放大器 设置t=0,电容的初始电压Vc(0)=0,当信号卡电压Vi连接时,dvii??c有1个dtdv??RC odt 的公式显示,输出电压V o与输入电压Vi相对于时间的微分成比例,负号表示它们的相位相反。当输入信号是方波时,电路可以将方波转换成尖峰脉冲波。 实验内容 我们先画出差分和积分电路图,然后进行实验,观察输出波形 差分电路图:

比例、求和、积分、微分电路讲解

深圳大学实验报告课程名称:模拟电路 实验名称:比例、求和、积分、微分电路 学院:信息工程学院 专业:班级: 3 组号:指导教师:吴迪 报告人:李子茜学号:2014130116 实验时间:2015 年10 月9 日星期五实验地点N102 实验报告提交时间:2015 年10 月21 日

一、实验目的 1、掌握用集成运算放大电路组成比例、求和电路的特点及性能; 2、掌握用运算放大器组成积分微分电路; 3、学会上述电路的测试和分析方法 二、实验仪器 1、数字万用表 2、双踪示波器 3、信号发生器 三、预习要求 (1)复习比例、求和、积分微分电路的基本工作原理; (2)估算所有要填入表格的理论值; (3)拟定实验步骤,做好记录表格。 对于理想运放,当其工作在线性状态时,若U+≈U-,则这一特性称为理想运放输入端的“虚短路”特性;若I+=I-≈0,则这一特性称为理想运放输入端的“虚开路”特性。 四、实验内容 1.熟悉电压跟随电路 运算放大器UA741上的引脚排列如图5-5所示。1和5为偏置(调零端),2为反向输入端,3为正向输入端,4为-Vcc,6为输出端,7接+Vcc,8为空脚。 电压跟随实验电路如图5-6所示。按表5-18内容实验并测量记录。注意:集成运放实验板上的+12V、-12V和GND孔必须与实验箱上电源部分的+12V、-12V和GND孔连接,以保证集成运放的正常供电。 图5-5 UA741引脚排列图

图5-6 电压跟随电路 表5-18 电压跟随电路测试表 2.熟悉反相比例放大器 反相比例放大电路的实验电路如图5-7,已知Uo=-RF*Ui/R1,按表5-19的实验内容测量并测量记录。 表5-7 反相比例放大电路 U i(V) -2 -0.5 0 +0.5 1 U0(V) R L=∞ R L=5.1KΩ

积分电路和微分电路 实验报告书

积分电路和微分电路实验报告书学号:姓名:学习中心:

(1)按如图连接电路 (2)设置信号发生器的输出频率为1HZ,幅值为5V的方波,如图 (3)激活仿真电路 双击示波器图标弹出示波器面板,观察并分析示波器波形

(4)按表1给出的电路参数依次设置R和C的取值,分别激活仿真运行,双击示波器图标,弹出示波器面板,给出输入/输出信号的波形图,并说明R和C的取值对输出信号的影响表1 实验电路参数 序号输入为方波信号电路参数 频率/HZ幅值/V R/KO C/uF 1 1 5 100 1 2 1 5 100 2 3 1 5 100 4.7 2.微分电路实验 (1)按图连接电路 (2)设置R和C (3)激活电路仿真运行, (4)双击示波器的面板,给出输入/输出信号的波形图 (5)说明R和C的取值对输出信号的影响

表2 实验电路参数 序号输入为方波信号电路参数 频率/HZ幅值/V R/KO C/uF 1 1 5 100 1 2 1 5 100 2 3 1 5 100 4.7

三、实验过程原始数据(数据、图表、计算等) 1.积分电路实验 R=100KO,C=1uF R=100 KO C=2UF R=100KO C=4.7uF 2.微分电路实验 R=100KO,C=1uF

R=100 KO C=2UF R=100KO C=4.7uF 四、实验结果及分析 积分电路实验 由积分电路的特点:时间常数t远大于输入信号的周期T,在此条件下Uc(t)<

比例求和运算电路实验报告

比例求和运算电路实验报告 实验四 比例求和运算电路 一、实验目的 ①掌握用集成运算放大器组成比例/求和电路的特点和性能; ②学会用集成运算放大电路的测试和分析方法。 二、实验仪器 ①数字万用表;②示波器;③信号发生器。 三、实验内容 Ⅰ.电压跟随器 实验电路如图1所示: 图1 电压跟随器 按表1内容实验并记录。 Vi(V) -2 -0.5 +0.5 1 VO(V)

-2.001 -0.505 0.003 0.507 1.002 RL=5K1 -2.001 -0.505 0.003 0.507 1.002 表1 Ⅱ.反相比例放大电路 实验电路如图2所示: ? 图2 反相比例放大?器 1)按表2内容实验并测量记录:直流输入电压Ui(mV) 30 100

1000 3000 输出电压UO 理论估算(mV)-300 -1000 -3000 -10000 -30000 实测值(mV)-320 -1046 -3004 -9850 -9940 误差(mV) 20 46 4 -150 -20xx0

发现当Ui=3000 mV时误差较大。 2)按表3要求实验并测量记录: 测试条 理论估算值(mV) 实测值(mV) ΔUO RL开路,直流输入信号Ui由0变为800mV -8000 -8030 ΔUAB ΔUR2 800 ΔUR1 ΔUOL U=800mV,

RL由开路变为5K1 0.02 表3 其中RL接于VO与地之间。表中各项测量值均为Ui=0及Ui=800mV时所得该项测量值之差。 Ⅲ.同相比例放大器 电路如图3所示。理论值:Ui/10K=(Ui-UO)/100K故UO=11U?i ? 图3 同相比例放大?电路 1)按表4和5实验测量并记录。 直流输入电压Ui(mV) 30 100 300 1000 3000 输出电压UO 理论估算(mV) 300

实验四比例求和运算电路实验报告.doc

精品文档 实验四 比例求和运算电路 一、实验目的 1.掌握用集成运算放大器组成比例、求和电路的特点及性能。 2.学会上述电路的测试和分析方法。 二、实验仪器 1. 数字万用表 2. 信号发生器 3. 双踪示波器 其中,模拟电子线路实验箱用到直流稳压电源模块,元器件模组以及“比例求和运算电路”模板。 三、实验原理 (一)、比例运算电路 1.工作原理 a .反相比例运算, 最小输入信号U i min 等条件来选择运算放大器和确定外围电路元件参数。 如下图所示。 R F R 1 100k Ω 10k ΩA V i V o B A R 2 10k Ω 输入电压 1 加到集成运放的反相输入端,其同相输入端经电阻R 2 U i 经电阻 R 接地。输出电压 U O F 接回到反相输入端。通常有: R 2=R 1//R F 经 R 由于虚断,有 I =0 ,则 u =-I R=0。又因虚短,可得: u =u =0 + + + 2 -+ 由于 I - =0,则有 i 1 =i f ,可得: u i u u u o R 1 R F A uf u o R F 由此可求得反相比例运算电路的电压放大倍数为: u i R 1 R if u i R 1 i i

反相比例运算电路的输出电阻为: R of =0 输入电阻为: R if =R 1 b .同相比例运算 R F R 1 100k Ω 10k Ω A V o B A V i R 2 10k Ω 输入电压 U i 接至同相输入端,输出电压 U O 通过电阻 R F 仍接到反相输入端。 R 2 的阻值应为 R 2=R 1//R F 。 根据虚短和虚断的特点,可知 - + 则有 u R 1 u I =I =0, R 1 R F o R 1 且 u - =u +=u i ,可得: u o u i R 1 R F A uf u o R F u i 1 R 1 同相比例运算电路输入电阻为: R if u i i i 输出电阻: R of =0 以上比例运算电路可以是交流运算, 也可以是直流运算。输入信号如果是直流,则需加调零电路。如果是交流信号输入,则输入、输出端要加隔直电容,而调零电路可省略。 (二)求和运算电路 1.反相求和 根据“虚短”、“虚断”的概念 u i1 u i 2 u o u o ( R F u i1 R F u i 2 ) R 1 R 2 R F R 1 R 2 当 R =R=R ,则 u o R F (u i 1 u i 2 ) 1 2 R 四、实验内容及步骤 1、.电压跟随电路 实验电路如图 1 所示。按表 1 内容进行实验测量并记录。

相关主题
文本预览
相关文档 最新文档