当前位置:文档之家› 大学物理1-10章 答案

大学物理1-10章 答案

大学物理1-10章 答案
大学物理1-10章 答案

第一章

例题 1D ; 2D ; 3C

4答:(1)、(3)、(4)是不可能的 5 3/30Ct +v 4

0012

1Ct t x ++v 6 x = (y -3)2 7 17m/s 2 104o

练习

1 、16 R t 2

; 4 rad /s 2

2解:设质点在x 处的速度为v , 62d d d d d d 2x t

x

x t a +=?==

v v ()x x x

d 62d 0

2

??

+=

v v v

()

2

21

3 x x +=v 3解:(1) 5.0/-==??t x v m/s

(2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m 4解: =a d v /d t 4=t , d v 4=t d t

?

?=v

v 0

0d 4d t

t t

v 2=t 2

v d =x /d t 2=t 2

t t x t

x

x d 2d 020

??

=

x 2= t 3

/3+x 0 (SI) 5解:根据已知条件确定常量k ()2

2

2

/rad 4//s

Rt

t k ===v ω

2

4t =ω, 2

4Rt R ==ωv

s t 1=时, v = 4Rt 2 = 8 m/s 2

s /168/m Rt dt d a t ===v 22s /32/m R a n ==v

()

8.352

/12

2=+=n

t a a a m/s 2

6解:(1) 球相对地面的初速度 =+='v v v 030 m/s 1分

抛出后上升高度 9.4522

='=g

h v m/s 1分

离地面高度 H = (45.9+10) m =55.9 m 1分

(2) 球回到电梯上时电梯上升高度=球上升高度 2

02

1)(gt t t -+=v v v 1分 08.420

==

g

t v s 7如图所示,取沿地面方向的轴为ox 轴。人从路灯正下方点o 开始运动,经时间t 后其位

置为vt oA x ==,而人头顶影子的位置为x '。由相似三角形关系,有h

H H

vt x oA oC -='=,h

H Hvt x -=',故头顶影子的移动速度为h H Hv

dt x d v -=

'='。

第二章

例题

1、B

2、C

3、B

4、D

5、B

6、θcos /mg θθ

c o s

s i n gl

练习

1、证:小球受力如图,根据牛顿第二定律 t

m ma F k mg d d v

v ==-- 2分

t m

F k mg d /)(d =--v v

初始条件: t = 0, v = 0. 1分

??=-t

t F)/m k mg 00

d (d v

-v v

∴ k F mg m kt /)e 1)((/---=v 2分

2、解:(1)以A 、B 、绳为研究对象

F -mg -m A g -m B g =(m + m A + m B ) a ∴ g m m m F

m m m g )m m m (F a B

A B A B A -++=++++-= 2分

(2)以绳下段x 长和物体A 为研究对象

T (x )-(m A + m x / L )g =(m A + m x / L ) a 2分

∴ T (x ) = (m A +m x /L ) (g + a )

)2496()

/(x m m m L mx m F B

A A +=+++= N 1分

3、解:对物体A 应用牛顿第二定律

平行斜面方向: ma f mg F r =--αθsin cos 1分 垂直斜面方向: 0sin cos =--ααF mg N 1分 又 N f r μ= 1分 由上解得 2

m /s 91.0)sin cos (sin cos =+--=

m

F mg mg F a ααμαα

4、解:根据牛顿第二定律

x m t x x m t m x

k f d d d d d d d d 2

v v v v =?==-

= 3分 ∴ ??-=-=4

/202d d ,d d A A x mx

k

mx x k v v v v v k mA

A A m k 3

)14(212=

-=v 2分 ∴ )/(6mA k =v

5、解:球A 只受法向力N 和重力g m

,根据牛顿第二定律

法向: R m mg N /cos 2v =-θ ① 1分 切向: t ma mg =θsin ② 1分 由①式可得 )/cos (2R g m N v +=θ 1分 根据牛顿第三定律,球对槽压力大小同上,方向沿半径向外. 1分 由②式得 θsin g a t = 1分

6、解:质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f

和质量为m 的物

块对它的拉力F

的合力提供.当M 物块有离心趋势时,f 和F 的方向相同,而当M 物块

有向心运动趋势时,二者的方向相反.因M 物块相对于转台静止,故有

F + f max =M r max ω2 2分 F - f max =M r min ω2 2分

m 物块是静止的,因而

F = m g 1分 又 f max =μs M g 1分 故

2.372

max =+=

ωμM Mg

mg r s mm 2分

4.122

min

=-=ω

μM Mg mg r s mm 2分 第三章

例题 1、C 2、D 3、C 4、C 5、C 6、C

7、mgh 2

1

-

8、

k

mg F 2

)(2μ- 9、 211

2r r r r G M m - 2分 2

12

1r r r r GMm -

2分 10、 R GmM 32

2分

R

G m M 3-

练习

1、θ

α

μθμsin sin ctg Fh mgh +-

2、4000 J

3、解:由x =ct 3可求物体的速度: 23d d ct t

x

==

v 1分 物体受到的阻力大小为: 34

32

4

22

99x kc t kc k f ===v 2分 力对物体所作的功为:

?=W W d =?-l

x x kc 03

4

32

d 9 =

7

273

7

32l kc - 2分

4、

解: ??=?=t t r F A d 12d v

1分

而质点的速度与时间的关系为

200003d 2

12d 0d t t t t m F

t a t t

t

==+=+=???v v 2分 所以力F 所作的功为 ??==3

3

302d 36d )3(12t t t t t A =729 J 2分

5、解:以弹簧仅挂重物m 1时,物体静止(平衡)位置为坐标原点,竖直向下为y 轴正向,此时弹簧伸长为:

l 1=m 1 g / k ① 1分 再悬挂重物m 2后,弹簧再获得附加伸长为 l 2=m 2 g /k ② 1分

当突然剪断连线去掉m 2后,m 1将上升并开始作简谐振动,在平衡位置处速度最大.根据机械能守恒,有

21221)(21gl m l l k -+=21212

121kl m m +v ③ 2分 将①、②代入③得 )(v k m g m m 121= ≈0.014 m/s ④ 1分

6、

解:设弹簧的原长为l 0,弹簧的劲度系数为k ,根据胡克定律:

0.1g =k (0.07-l 0) , 0.2g =k (0.09-l 0) 解得: l 0=0.05 m ,k =49 N/m 2分 拉力所作的功等于弹性势能的增量:

W =E P 2-E P 1=

201202)(2

1

)(21l l k l l k ---=0.14 J 3分 7、解:弹簧长为AB 时,其伸长量为 l l l x =-=21 1分

弹簧长为AC 时,其伸长量为 l l l x )12(22-=-=

1分

弹性力的功等于弹性势能的减少 2

221212

121kx kx E E W P P -=-= 2分

[]

2

2)12(12

1--=kl 2)12(kl -= 1分

8、 解:两个粒子的相互作用力 3r k f =

已知f =0即r =∞处为势能零点, 则势能 1分

??

∞∞

∞=?=

=r r

P P r r

k

W E d d 3r f 2分

)2(2r k =

9、解:(1)位矢 j t b i t a r

ωωsin cos += (SI)

可写为 t a x ωcos = , t b y ωs i n

= t a t x x ωωsin d d -==

v , t b t

y ωωc o s d dy

-==v 在A 点(a ,0) ,1cos =t ω,0sin =t ω

E KA =2

2222

12121ωmb m m y x =+v v 2分

在B 点(0,b ) ,0cos =t ω,1sin =t ω

E KB =2

2222

12121ωma m m y x =+v v 2分

(2) j ma i ma F y x +==j t mb i t ma ωωωωsin cos 2

2-- 2分

由A →B ??-==

020

d c o s d a a x x x t a m x F W ωω=?=

-0

2222

1d a ma x x m ωω 2分 ??-==b b y y t b m y F W 02

0dy sin d ωω=?-=-b mb y y m 02222

1d ωω 2分

10 解:如图所示,设l 为弹簧的原长,O 处为弹性势能零点;x 0为挂上物体后的伸长量,O '为物体的平衡位置;取弹簧伸长时物体所达到的O "处为重力势能的零点.由题意得物体在O '处的机械能为:

αs i n

)(2102

001x x mg kx E E K -++= 2分 在O " 处,其机械能为: 2

222

121kx m E +=v 2分 由于只有保守力做功,系统机械能守恒,即:

2202002

121s i n )(21kx m x x mg kx E K +=-++

v α 2分

在平衡位置有: mg sin α =kx 0

∴k mg x αsin 0= 2分

代入上式整理得: k

mg kx mgx E m K 2)sin (21sin 212202

αα--+=v 2分

第四章

例题:

1. C

2. A

3. B

4. C

5. 0.89 m/s 3分 参考解:在0-1 s 内, F<μ0mg ,未拉动物体.

在1 s-2 s 内, ?

?=--+=2

1

12s N 89.0)(d )96.0(t t mg t t I μ

由 m v – 0=I , 可得 v = I/m=0.89 m/s

6. j i 5-

7. GMR m

8. 0.003 s 0.6 N·s 2 g

9. 取如图所示坐标,设绳长L ,质量M 。

设在时刻t 已有x 长的柔绳落到桌面上,随后的d t 时间内将有质量为x d ρ(即L x M /d )的柔绳以d x /d t 的速率碰到桌面而停止,它的动量变化率为:

t

t x

x d d d d ?

根据动量定理,桌面对柔绳的冲力为:

2d d d v ,

d x

x t F t

ρρ-'=

=-

其中 t

x d d =

v 由牛顿第三定律,柔绳对桌面的冲力为F=-F ′,

22)(d d d d v L M dt dx L M t t x

x

F ===

ρ 而 L Mgx F gx /2,22

=∴=v

已落桌上柔绳所受的重力 G =M·gx/L F 总=F+G=3G

10. (1) 设A ,B 间绳中张力为T ,分别对A 、B 列动力学方程

M A g –T =M A a T =M B a

解得 a =Mg / (M A +M B ) 由 M A = M B = M a =

21

g 设B 、C 之间绳长为l ,在时间t 内B 物体作匀加速运动,有 例题

4-9答案图

l =

2

1at 2

=gt 2/4 , t=g l /4=0.4 s (2) B 和C 之间绳子刚拉紧时,A 和B 所达到的速度为

v =at =

21gt =2

1

×10×0.4=2.0 m/s 令B 、C 间拉紧后,C 开始运动时A 、B 、C 三者的速度大小均变为V ,由动量定理(设

三者速度变化过程中T AB 为AB 间绳中平均张力,T BC 为BC 间绳中平均张力,τ为过程时间) M A V - M A v = –T AB ·τ (∵M A g<

M B V – M B v =T AB ·τ–T BC ·τ M C V – 0 = T BC ·τ

得 (M A + M B + M C )V = ( M A + M B ) v

V =

3313

2

)(.M M M M C B A B A ==+++v M v m/s

第五章

例题:

1. C

2. A

3. C

4. C

5. A

6. A

7. 3v 0 / (2l )

8. J

k 920

ω- 02ωk J

9-11(见书上)

第六章 狭义相对论基础

例6-1【解】三种说法都正确。 例6-2解:c ;c ;c 。

例6-3解:S 系球面方程为:2

2

2

22

x y z c t ++=;S '系球面方程为:2

2

2

2

2

''''x y z c t ++=。 解:L c t =?。

例6-4解:速度2v ,距离L ,时间间隔t ?,所以2/t L ?=v 。 例6-5:解:相对的,运动。 例6-6解:C 例6-7解:A 例6-8解:[C]

例6-9解:站台上测出的1m

是运动的长度。求静长,所以0L =

=

例6-10

解:6612.9510s τ--=

=

=?

例6-11解:方法一,固有长度020L m =,'0.6c ==v v ,'O 认为距

'2

1/2

2

0(1)

2)/16L L m β=-

=,'

'

88.8910L t s -?==?v'

方法二,'O 测得的时间为固有时间,由0

L t τ?==

v

得'21/280(1)8.8910t s ττβ-?==-=?。

6-12

222220000078k E E m c m c m c m c m c γ=+=+==,即8γ=。由时间延缓关系式,实验室

寿命008τγττ=

=

==,即0/8ττ=。

例6-13

解:初动能00k E =,末动能2200(1)k E mc m c m c

γ=-=-,

221/2(1/)1/0.8 1.25c γ-=-==v ,即2200(1)0.25k E m c m c γ=-=,需做的功为

2000.25k k k W E E E m c =-==。

例6-14解:已知200.511m c =,220()0.25k E m m c mc =-=?=,所以00.25

0.50.511

m m ?=≈。

解:20

(1)k E m c γ=-,当1c

→v 时,k E →∞,选D 。

例6-16解:(1)棒相对于甲静止,他测得其质量为m ,体积为V= s ,所以密度m

ls

ρ=。 (2)棒相对于乙运动,他测得其质量为'm m γ=,

长度为'l

l γ

==

,截面积不变仍

为S ,所以测得体积为'

'

ls

V l s γ

==,所以密度2'25''9m m m V ls ls γρ===。

【例题精选】

例6-15

例7—1 0.37 cm )2

1

c o s (1037.02

π±π?=-t x (SI)

例7—2 B

例7—3 k m /22π k m 2/2π

例7—4 C

例7—5 解:由旋转矢量图和 |v A | = |v B | 可知 T /2 = 4秒,

∴ T = 8 s , ν = (1/8) s -1

ω =2πν = (π /4) s -1

(1) 以AB 的中点为坐标原点,x 轴指向右方. t = 0时, 5-=x cm φcos

A =

t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+=

由上二式解得 tg φ = 1

因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图)

25cos /==φx A cm

∴ 振动方程 )4

34c o s (10252π-π?=-t x (SI)

(2) 速率 )4

34sin(41025d d 2

π-π?π-==-t t x v (SI) 当t = 0 时,质点在A 点

221093.3)4

3sin(104

25d d --?=π-?π-=

=t

x v m/s

例7—6 解:旋转矢量如图所示.

由振动方程可得:π2

1

=

ω,π=?31φ

667.0/=?=?ωφt s

例7—7 C

例7—8 0.84 0.84 例7—9 B

例7—10 振动系统本身性质 初始条件 例7—11 B 【例题精选】 例8—1 C 例8—2 D

例8—3 )2

3

cos(2.02

x t a π+ππ-= (SI) 例8—4

}]/)1([cos{φω+++=u x t A y (SI)

例8—5

解:(1) 如图A ,取波线上任一点P ,其坐标设为x ,由波的传播特性,P 点的振动落后于λ /4处质点的振动.

该波的表达式为

例题7-5答案图

例题7-6答案图

O

x P

x

λ/4 u

图A

)]4(22cos[

x ut

A y -π-

π=λ

λλ

)222cos(x ut A λ

λπ

+π-π= (SI) (2) t = T 时的波形和 t = 0时波形一样. t = 0时

)22c o s (x A y λπ+π-

=)2

2c o s (π-π=x A λ 按上述方程画的波形图见图B .

例8—6 ]2)2(2cos[π

-+-π

=u x t u

A y λ ]2

)2(2cos[π

+-π=t u A y P λ

例8—7 解:这是一个向x 轴负方向传播的波.

(1) 由波数 k = 2π / λ 得波长 λ = 2π / k = 1 m 由 ω = 2πν 得频率 ν = ω / 2π = 2 Hz 波速 u = νλ = 2 m/s (2) 波峰的位置,即y = A 的位置.

由 1)24(cos =+πx t

有 π=+πk x t 2)24( ( k = 0,±1,±2,…)

解上式,有 t k x 2-=.

当 t = 4.2 s 时, )4.8(-=k x m . 所谓离坐标原点最近,即| x |最小的波峰.在上式中取k = 8, 可得 x = -0.4的波峰离坐标原点最近. (3) 设该波峰由原点传播到x = -0.4 m 处所需的时间为?t ,

则 ?t = | ?x | /u = | ?x | / (ν λ ) = 0.2 s ∴ 该波峰经过原点的时刻 t = 4 s

例8—8 解:设平面简谐波的波长为λ,坐标原点处质点振动初相为φ,则该列平面简谐波的表达式可写成 )/27cos(1.0φλ+π-π=x t y (SI) t = 1 s 时 0])/1.0(27cos[1.0=+π-π=φλy 因此时a 质点向y 轴负方向运动,故

π=

+π-π2

1

)/1.0(27φλ ① 而此时,b 质点正通过y = 0.05 m 处向y 轴正方向运动,应有

05.0])/2.0(27cos[1.0=+π-π=φλy 且 π-=+π-π3

1)/2.0(27φλ ② 由①、②两式联立得 λ = 0.24 m 3/17π-=φ ∴ 该平面简谐波的表达式为 ]3

17

12.07cos[1.0π-π-

π=x t y (SI) 或 ]3

1

12.07cos[1.0π+π-

π=x t y (SI) 例8—9 D 例8—10 4

例8—11 )(

2cos λ

x

T t A -π A 例8—12 t A y ωcos 21-= 或 )c o s (21π±=t A y ω t A ωs i n

2=v 例8—13 解:选O 点为坐标原点,设入射波表达式为

])/(2c o s [1φλν+-π=x t A y 则反射波的表达式是 ])(2cos[2π++-+-

π=φλ

νx

DP OP t A y

合成波表达式(驻波)为 )2cos()/2cos(2φνλ+ππ=t x A y 在t = 0时,x = 0处的质点y 0 = 0, 0)/(0

2

1

φ 因此,D 点处的合成振动方程是 )2

2cos()6

/4/32cos(2π

+π-π=t A y νλ

λλt A νπ=2sin 3

例题 9-1(D ) 9-2 1:1:1 9-3 (A) 9-4(C ) 9-7 (C )

9-8 4000m/s, 1000m/s 9-912/M M

9-10答:(1) 表示分子的平均速率;

(2) 表示分子速率在v p →∞区间的分子数占总分子数的百分比; (3) 表示分子速率在v p →∞区间的分子数. 9-11 (A) 例题

10-1 (D ) 10-2 (B )

10-3 在等压升温过程中,气体要膨胀而对外作功,所以要比气体等体升温过程多吸收一部

分热量. 10-4 (B) 10-5 (A) 10-8 (D)

10-9 33.3% 8.31×103 J 10-11.(C ) 10-12(D ) 10-13(A)

大学物理第十章原子核物理答案

第16章 原子核物理 一、选择题 1. C 2. B 3. D 4. C 5. C 6. D 7. A 8. D 二、填空题 1. 171076.1?,13 1098.1? 2. 2321)(c m m m -+ 3. 1.35放能 4. 9102.4? 5. 117.8 6. 2321`c h m m m -+ 7 . 67.5MeV ,67.5MeV/c ,22 1036.1?Hz 8. 121042.2-? 9. 1.49MeV 10. 115kg 三、填空题 1. 解:设从t =0开始做实验,总核子数为N 0,到刻核子数为N 由于实验1.5年只有3个铁核衰变,所以 1<<τt ,)1(0τ t N N -≈ t =0时,铁核总数为 31274 0106.310 66.1104.6?=??=-N t =1.5年时,铁核总数为 )1(300τ t N N N -≈-=由此解得 3131 00108.15.13 106.3?=??=-=t N N N τ年

设半衰期为T ,则当t =T 时有2/0N N =,由τ/0e t N N =得τ/e 2 1T = 所以, 31 311025.1693.0108.12ln ?=??==τT 年 2. 解:设氢核和氮核的质量分别为N H m m 、,被未知粒子碰撞后速度分别为v H 和v N ; 未知粒子的质量为m , 碰撞前速度为v ,与氢核碰撞后为v 1,与氮核碰撞后为v 2 未知粒子与氢核完全弹性碰撞过程满足关系 H H 1v m mv mv += 2H H 2122 12121v m mv mv += 未知粒子与氮核完全弹性碰撞过程满足关系 N N 2v m mv mv += ● 2N N 2122 12121v m mv mv += ? 联立 ~?得 2 N N 2 H H N H )()(m m m m m m E E ++= 带入数据,可解得 03.1H =m m 由其质量比值可知,未知粒子的质量与氢核的质量十分接近,另由于它在任意方向的磁场中都不偏转,说明它不带电.由此判断该新粒子是中子. 3. 解:与第一组α粒子相对应的衰变能为 α1α12264.793MeV 4.879MeV 4222 A E K A ==?=- 与第二组α粒子相对应的衰变能为 α2α2 2264.612MeV 4.695MeV 4222A E K A ==?=- 226 86Rn 的两能级差为 ()α1α2 4.879 4.695MeV 0.184MeV E E E ?=-=-= 光子的能量与此两能级差相对应,所以光子的频率为 619 19340.18410 1.60218910Hz 4.4510Hz 6.62610 E h ν--????===??

大学物理答案(第三版)汇总

大学物理答案(第三版)汇总

习题七 气体在平衡态时有何特征?气体的平衡态与力学中的平衡态有何不同? 答:气体在平衡态时,系统与外界在宏观上无能量和物质的交换;系统的宏观性质不随时间变化. 力学平衡态与热力学平衡态不同.当系统处于热平衡态时,组成系统的大量粒子仍在不停地、无规则地运动着,大量粒子运动的平均效果不变,这是一种动态平衡.而个别粒子所受合外力可以不为零.而力学平衡态时,物体保持静止或匀速直线运动,所受合外力为零. 气体动理论的研究对象是什么?理想气体的宏观模型和微观模型各如何? 答:气体动理论的研究对象是大量微观粒子组成的系统.是从物质的微观结构和分子运动论出发,运用力学规律,通过统计平均的办法,求出热运动的宏观结果,再由实验确认的方法.从宏观看,在温度不太低,压强不大时,实际气体都可近似地当作理想气体来处理,压强越低,温度越高,这种近似的准确度越高.理想气体的微观模型是把分子看成弹性的自由运动的质点. 何谓微观量?何谓宏观量?它们之间有什么联系? 答:用来描述个别微观粒子特征的物理量称为微

观量.如微观粒子(原子、分子等)的大小、质量、速度、能量等.描述大量微观粒子(分子或原子)的集体的物理量叫宏观量,如实验中观测得到的气体体积、压强、温度、热容量等都是宏观量. 气体宏观量是微观量统计平均的结果. 7.6 计算下列一组粒子平均速率和方均根速率? 解:平均速率 2 8642150 24083062041021++++?+?+?+?+?= = ∑∑i i i N V N V 7.2141 890== 1 s m -? 方均根速率 2 8642150240810620410212 23222 2 ++++?+?+?+?+?= =∑∑i i i N V N V 6 .25= 1 s m -? 7.7 速率分布函数)(v f 的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度,N 为系统总分子数). (1)v v f d )( (2)v v nf d )( (3)v v Nf d )( (4)?v v v f 0 d )( (5)?∞ d )(v v f (6)?2 1 d )(v v v v Nf 解:)(v f :表示一定质量的气体,在温度为T 的平

大学物理课后习题答案第八章教学提纲

第八章 光的偏振 8.1 两偏振片组装成起偏和检偏器,当两偏振片的偏振化方向夹角成30o时观察一普通光源,夹角成60o时观察另一普通光源,两次观察所得的光强相等,求两光源光强之比. [解答]第一个普通光源的光强用I 1表示,通过第一个偏振片之后,光强为I 0 = I 1/2. 当偏振光通过第二个偏振片后,根据马吕斯定律,光强为I = I 0cos 2θ1 = I 1cos 2θ1/2. 同理,对于第二个普通光源可得光强为I = I 2cos 2θ2/2. 因此光源的光强之比I 2/I 1 = cos 2θ1/cos 2θ2 = cos 230o/cos 260o = 1/3. 8.2 一束线偏振光和自然光的混合光,当它通过一偏振片后,发现随偏振片的取向不同,透射光的强度可变化四倍,求入射光束中两种光的强度各占入射光强度的百分之几? [解答]设自然光强为I 1,线偏振光强为I 2,则总光强为I 0 = I 1 + I 2. 当光线通过偏振片时,最小光强为自然光强的一半,即I min = I 1/2; 最大光强是线偏振光强与自然光强的一半之和,即I max = I 2 + I 1/2. 由题意得I max /I min = 4,因此2I 2/I 1 + 1 = 4, 解得I 2 = 3I 1/2.此式代入总光强公式得 I 0 = I 1 + 3I 1/2. 因此入射光中自然光强的比例为I 1/I 0 = 2/5 = 40%. 由此可得线偏振光的光强的比例为I 2/I 0 = 3/5 = 60%. [讨论]如果I max /I min = n ,根据上面的步骤可得 I 1/I 0 = 2/(n + 1), I 2/I 0 = (n - 1)/(n + 1), 可见:n 的值越大,入射光中自然光强的比例越小,线偏振光的光强的比例越大. 8.3 水的折射率为1.33,玻璃的折射率为1.50,当光由水射向玻璃时,起偏角为多少?若光由玻璃射向水时,起偏角又是多少?这两个角度数值上的关系如何? [解答]当光由水射向玻璃时,水的折射率为n 1,玻璃的折射率为n 2,根据布儒斯特定律 tan i 0 = n 2/n 1 = 1.1278, 得起偏角为i 0 = 48.44o. 当光由玻璃射向水时,玻璃的折射率为n 1,水的折射率为n 2,根据布儒斯特定律 tan i 0 = n 2/n 1 = 0.8867, 得起偏角为i 0 = 41.56o. 可见:两个角度互为余角. 8.4 根据布儒斯特定律可测量不透明介质的折射率,今测得某釉质的起偏角为58o,则该釉质的折射率为多少? [解答]空气的折射率取为1,根据布儒斯特定律可得釉质的折射率为n = tan i 0 = 1.6003. 8.5 三个偏振片堆叠在一起,第一块与第三块偏振化方 向互相垂直,第二块与第一块的偏振化方向互相平行,现令第二块偏振片以恒定的角速度ω0绕光传播方向旋转,如图所 示.设入射自然光的光强为I 0,试证明:此自然光通过这一系 统后出射光强度为I = I 0(1 – cos4ωt )/16. [证明]自然光通过偏振片P 1之后,形成偏振光,光强为 I 1 = I 0/2. 经过时间t ,P 3的偏振化方向转过的角度为θ = ωt , 根据马吕斯定律,通过P 3的光强为I 3 = I 1cos 2θ. 由于P 1与P 2的偏振化方向垂直,所以P 2与P 3的偏振化方向的夹角为φ = π/2 – θ, 再根据马吕斯定律,通过P 2的光强为 I = I 3cos 2φ = I 3sin 2θ= I 0(cos 2θsin 2θ)/2 = I 0(sin 22θ)/8= I 0(1 – cos4θ)/16, 1P 3 2图8.5

大学物理标准答案第10章

第十章 静电场中的导体与电介质 10-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A )升高 (B )降低(C )不会发生变化 (D )无法确定 分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A )N 上的负电荷入地 (B )N 上的正电荷入地 (C )N 上的所有电荷入地(D )N 上所有的感应电荷入地 题 10-2 图 分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= =(B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4== 题 10-3 图

分析与解达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C )若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D )介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E )介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5对于各向同性的均匀电介质,下列概念正确的是( ) (A )电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B )电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C )在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D )电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

中国石油大学华东大学物理2-2第十六章课后习题答案

习题16 16-6在均匀密绕的螺绕环导线内通有电流20A ,环上线圈 400匝,细环的平均周长是40cm ,测得环内磁感应强度是1.0T 。求: (1)磁场强度; (2)磁化强度; (3)磁化率; (4)磁化面电流的大小和相对磁导率。 [解] (1) 螺绕环内磁场强度 由nI d L =??l H 得 1 -42 m 100.2104020400??=??== -A L nI H (2) 螺绕环内介质的磁化强度 由M B H -= μ得 1-547 m 1076.710210 40 .1??=?-?= -= --A H B M πμ (3) 磁介质的磁化率 由H M m χ=得 8.381021076.74 5 m =??==H M χ (4)环状磁介质表面磁化面电流密度 -15m 1076.7??==A M j 总磁化面电流 A L j dL M I L 55101.34.01076.7?=??=?=?='? 相对磁导率 8.398.3811m 0r =+=+== χμμH B

16-7.一绝对磁导率为μ1的无限长圆柱形直导线,半径为R 1,其中均匀地通有电流I 。导线外包一层绝对磁导率为μ2的圆筒形不导电磁介质,外半径为R 2,如习题16-7图所示。试求磁场强度和磁感应强度的分布,并画出H -r ,B-r 曲线。 [解] 将安培环路定理∑?=?I d L l H 应用于半径为r 的同心圆周 当0≤r ≤1R 时,有 2 2 1 12r R I r H πππ?= ? 所以 2 112R Ir H π= 2111 112R Ir H B πμμ== 当r ≥1R 时,有I r H =?π22 所以r I H π22= 在磁介质内部1R ≤r ≤2R 时,r I H B πμμ22222== 在磁介质外部r ≥2R 时,r I H B πμμ20202 ==' 各区域中磁场强度与磁感应强度的方向均与导体圆柱中电流的方向成右手螺旋关系。 H -r 曲线 B-r 曲线 习题16-7图 R 1 R 2 本图中假设 B 2 12 1μμ>r r 1

大学物理答案第10章

第十章 静电场中的导体与电介质 10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 题 10-2 图 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4= = 题 10-3 图

分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理第八章习题及答案

V 第八章 热力学基础 8-1如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是:(B ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功 (B) b1a 过程吸热,作负功;b2a 过程放热,作负功 (C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功 8-2 如图,一定量的理想气体由平衡态A 变到平衡态B ,且它们的压强相等,则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( B ) (A)对外作正功 (B)内能增加 (C)从外界吸热 (D)向外界放热 8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强温度都相同,现将3J 热量传给氦气,使之升高到一定温度,若使氢气也升高同样温度,则应向氢气传递热量为( C ) (A) 6 J (B) 3 J (C) 5J (D) 10 J 8-4 有人想象了如题图四个理想气体的循环过程,则在理论上可以实现的为 ( ) (A) (B)

(C) (D) 8-5一台工作于温度分别为327o C和27o C的高温热源和低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( B ) (A) 2 000 J (B) 1 000 J (C) 4 000 J (D) 500 J 8-6 根据热力学第二定律( A ) (A) 自然界中的一切自发过程都是不可逆的 (B) 不可逆过程就是不能向相反方向进行的过程 (C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体 (D)任何过程总是沿着熵增加的方向进行 8-7 一定质量的气体,在被压缩的过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收或放出的热量是多少? 解:由于外界对气体做功,所以:300J = W - 由于气体的内能减少,所以:J ?E = 300 - 根据热力学第一定律,得:J ? + =W = E Q 300- 600 300 = - -

大学物理学-习题解答-习题10

第十章 10-1 无限长直线电流的磁感应强度公式为B =μ0I 2πa ,当场点无限接近于导线时(即 a →0),磁感应强度B →∞,这个结论正确吗?如何解释? 答:结论不正确。公式a I B πμ20=只对理想线电流适用,忽略了导线粗细,当a →0, 导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。 10-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理 ∑?=?i i I l d B 0μρ ρ 得 0=??l d B ρ ρ,说明圆形环路L 内的电流代数和为零, 并不是说圆形环路L 上B 一定为零。 10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论: (1)在各条闭合曲线上,各点的磁感应强度B ? 的大小是否相等? (2)在闭合曲线c 上各点的B ? 是否为零?为什么? 解: ?μ=?a l B 08d ? ? ? μ=?ba l B 08d ? ? ?=?c l B 0d ?? (1)在各条闭合曲线上,各点B ? 的大小不相等. (2)在闭合曲线C 上各点B ?不为零.只是B ? 的环路积分为零而非每点0=B ?. 习题10-2图

题10-3图 10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论? 答:两个垂直的电流元之间相互作用力不是等值、反向的。 B l Id F d ρρρ ?= 2 0?4r r l Id B d ?=? ?πμ 2 21 2122110221212201112)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ 2 12 12112 20212121102212)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ ))?()?((42 12 121221************r r l d l d r r l d l d I I F d F d ??+??-=+? ρ?ρρρπμ 2 122112 210212112221212102112) (?4))?()?((4r l d l d r I I r l d r l d l d r l d I I F d F d ?ρ? ρ?ρρρ??=?-?=+πμπμ 一般情况下 02112≠+F d F d ρ ρ 由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。 10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释? 答:弹簧会作机械振动。 当弹簧通电后,弹簧内的线圈电流可看成是同向平行 的,而同向平行电流会互相吸引,因此弹簧被压缩,下端 会离开水银而电流被断开,磁力消失,而弹簧会伸长,于是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。 10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强 度;(2)x 为何值时,B 值最大,并给出最大值B max . 习题10-4图 r 12 r 21 习题10-5图 y

大学物理学-第1章习题解答

大学物理简明教程(上册)习题选解 第1章 质点运动学 1-1 一质点在平面上运动,其坐标由下式给出)m 0.40.3(2 t t x -=,m )0.6(3 2 t t y +-=。求:(1)在s 0.3=t 时质点的位置矢量; (2)从0=t 到s 0.3=t 时质点的位移;(3)前3s 内质点的平均速度;(4)在s 0.3=t 时质点的瞬时速度; (5)前3s 内质点的平均加速度;(6)在s 0.3=t 时质点的瞬时加速度。 解:(1)m )0.6()0.40.3(322j i r t t t t +-+-= 将s 0.3=t 代入,即可得到 )m (273j i r +-= (2)03r r r -=?,代入数据即可。 (3)注意:0 30 3--=r r v =)m/s 99(j i +- (4)dt d r =v =)m/s 921(j i +-。 (5)注意:0 30 3--=v v a =2)m/s 38(j i +- (6)dt d v a ==2)m/s 68(j -i -,代入数据而得。 1-2 某物体的速度为)25125(0j i +=v m/s ,3.0s 以后它的速度为)5100(j 7-i =v m/s 。 在这段时间内它的平均加速度是多少? 解:0 30 3--= v v a =2)m/s 3.3333.8(j i +- 1-3 质点的运动方程为) 4(2k j i r t t ++=m 。(1)写出其速度作为时间的函数;(2)加速度作为时间的函数; (3)质点的轨道参数方程。 解:(1)dt d r =v =)m/s 8(k j +t (2)dt d v a = =2m/s 8j ; (3)1=x ;2 4z y =。 1-4 质点的运动方程为t x 2=,22t y -=(所有物理量均采用国际单位制)。求:(1)质点的运动轨迹;(2)从0=t 到2=t s 时间间隔内质点的位移r ?及位矢的径向增量。 解:(1)由t x 2=,得2 x t = ,代入22t y -=,得质点的运动轨道方程为 225.00.2x y -=; (2)位移 02r r r -=?=)m (4j i - 位矢的径向增量 02r r r -=?=2.47m 。 (3)删除。 1-6 一质点做平面运动,已知其运动学方程为t πcos 3=x ,t πsin =y 。试求: (1)运动方程的矢量表示式;(2)运动轨道方程;(3)质点的速度与加速度。 解:(1)j i r t t πsin πcos 3+=; (2)19 2 =+y x (3)j i t t πcos πsin 3π+-=v ; )πsin πcos 3(π2j i t t a +-= *1-6 质点A 以恒 定的速率m/s 0.3=v 沿 直线m 0.30=y 朝x +方 向运动。在质点A 通过y 轴的瞬间,质点B 以恒 定的加速度从坐标原点 出发,已知加速度2m/s 400.a =,其初速度为零。试求:欲使这两个质点相遇,a 与y 轴的夹角θ应为多大? 解:提示:两质点相遇时有,B A x x =,B A y y =。因此只要求出质点A 、B 的运动学方程即可。或根据 222)2 1 (at y =+2(vt)可解得: 60=θ。 1-77 质点做半径为R 的圆周运动,运动方程为 2021 bt t s -=v ,其中,s 为弧长,0v 为初速度,b 为正 的常数。求:(1)任意时刻质点的法向加速度、切向加速度和总加速度;(2)当t 为何值时,质点的总加速度在数值上等于b ?这时质点已沿圆周运行了多少圈? 题1-6图

大学物理 上海交通大学 16章 课后习题答案

习题16 16-1.如图所示,金属圆环半径为R,位于磁感应强度为B 的均匀磁场中,圆环平面与磁场方向垂直。当圆环以恒定速度v 在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端 a、b间的电势差。 解:(1)由法拉第电磁感应定律 i d dt ε Φ =- ,考虑到圆环内的磁通量不变,所以,环中的感应电动势 i ε=; (2)利用: () a ab b v B dl ε=?? ? ,有: 22 ab Bv R Bv R ε=?= 。 【注:相同电动势的两个电源并联,并联后等效电源电动势不变】 16-2.如图所示,长直导线中通有电流A I0.5 =,在与其相距cm 5.0 = d 处放有一矩形线圈,共1000匝,设线圈长cm 0.4 = l,宽cm 0.2 = a。 不计线圈自感,若线圈以速度cm/s 0.3 = v沿垂直于长导线的方向向右运动,线圈中的感生电动势多大? 解法一:利用法拉第电磁感应定律解决。 首先用0 l B dl I μ ?=∑ ? 求出电场分布,易得:02 I B r μ π = , 则矩形线圈内的磁通量为: 00ln 22 x a x I I l x a l dr r x μμ ππ ++ Φ=?= ? , 由 i d N d t ε Φ =- ,有: 11 () 2 i N I l d x x a x dt μ ε π =--? + ∴当x d =时,有: 04 1.9210 2() i N I l a v V d a μ ε π - ==? +。 解法二:利用动生电动势公式解决。 由0 l B dl I μ ?=∑ ? 求出电场分布,易得:02 I B r μ π = , 考虑线圈框架的两个平行长直导线部分产生动生电动势, 近端部分:11 NB l v ε= , 远端部分:22 NB lv ε= , 则:12 εεε =-= 004 11 () 1.9210 22() N I N I al v l v V d d a d d a μμ ππ- -==? ++。 16-3.如图所示,长直导线中通有电流强度为I的电流,长为l的金属棒ab与长直导线共面且垂直于导线放置,其a端离导线为d,并以速度v 平行于长直导线作匀速运动,求金属棒中的感应电动势ε并比较U a、U b的电势大小。 解法一:利用动生电动势公式解决: () d v B dl ε=?? 2 I v d r r μ π =? ,

《大学物理》 第二版 第八章课后习题答案解析

习题精解 8-1 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图8.3所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。 解 建立如图8.3所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为 02m i d B dS ldx x μφπ=?= 通过矩形面积CDEF 的总磁通量为 00ln 22b m a i il b ldx x a μμφππ==? 由法拉第电磁感应定律有 0ln cos 2m d il b t dt a φμωεωπ=- =- 8-2 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt ,球小 线圈中感应的电动势。 解 无限长直螺线管内部的磁场为 0B nI μ= 通过N 匝圆形小线圈的磁通量为 20m NBS N nI r φμπ== 由法拉第电磁感应定律有 20m d dI N n r dt dt φεμπ=- =- 8-3 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。 解 通过小线圈的磁通量为 0m BS niS φμ== 由法拉第电磁感应定律有 000cos m d di nS nSi t dt dt φεμμωω=- =-=- 8-4 如图8.4所示,矩形线圈ABCD 放在1 6.010B T -=?的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=?,长为0.20m 的AB 边可左右滑动。若令AB 边以速率1 5.0v m s -=?向右运动,试求线圈中感应电动势的大小及感应电流的方向。 解 利用动生电动势公式

大学物理第一章答案

1.5一质点沿半径为 0.10m的圆周运动,其角位置(以弧度表示)可用公式表示:θ= 2 +4t 3.求: (1)t = 2s时,它的法向加速度和切向加速度; (2)当切向加速度恰为总加速度大小的一半时,θ为何值?(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?[解答] (1)角速度为 ω= dθ/dt = 12t2 = 48(rad2s-1), 法向加速度为 an = rω2 = 230.4(m2s-2); 角加速度为 β= dω/dt = 24t = 48(rad2s-2), 切向加速度为 at = rβ= 4.8(m2s-2). (2)总加速度为, 当at = a/2时,有4at2 = at2 + an2,即.由此得, 即,

解得. 所以=3.154(rad). (3)当at = an时,可得rβ= rω2, 即24t = (12t2)2, 解得. 1.7一个半径为R = 1.0m的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体 A.在重力作用下,物体A从静止开始匀加速地下降,在Δt = 2.0s内下降的距离h= 0.4m.求物体开始下降后3s末,圆盘边缘上任一点的切向加速度与法向加速度. [解答]圆盘边缘的切向加速度大小等于物体A下落加速度. 由于,所以 at = 2h/Δt2 = 0.2(m2s-2). 物体下降3s末的速度为 v = att = 0.6(m2s-1), 这也是边缘的线速度,因此法向加速度为 =

0.36(m2s-2). 1.8一升降机以加速度 1.22m2s-2上升,当上升速度为 2.44m2s-1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m.计算: (1)螺帽从天花板落到底面所需的时间; (2)螺帽相对于升降机外固定柱子的下降距离. [解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为.由题意得h = h1 - h2,所以,解得时间为 = 0.705(s). 算得h2 = - 0.716m,即螺帽相对于升降机外固定柱子的下降距离为 0.716m. [注意]以升降机为参考系,钉子下落时相对加速度为a + g,而初速度为零,可列方程, 由此可计算钉子落下的时间,进而计算下降距离. 第一章质点运动学 1.1一质点沿直线运动,运动方程为x(t) = 6t2 - 2t 3.试求: (1)第2s内的位移和平均速度;

大学物理II练习册答案16

大学物理练习 十六 一、选择题 1.一束波长为λ的平行单色光垂直入射到一单缝 AB 上,装置如图,在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则 BC 的长度为 [A ] (A) λ (B)λ/2 (C) 3λ/2 (D) 2λ 解: P 是中央亮纹一侧第一个暗纹所在的位置,λθk a C B ==sin (k=1) 2.单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射在宽度为a=4λ的单缝 上,对应于衍射角为300的方向,单缝处波阵面可分成的半波带数目为 (A) 2个 (B) 4个 (C) 6个 (D) 8个 [ B ] 解: 0 304sin ===θλλ θa k a 可得k=2, 可分成的半波带数目为4个. 3.根据惠更斯—菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某 点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的 (A ) 振动振幅之和。 (B )光强之和。 (B ) 振动振幅之和的平方。 (D )振动的相干叠加。 [D ] 解: 所有面积元发出的子波各自传到P 点的振动的相干叠加. 4.在如图所示的单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小。若 使单缝宽度a 变为原来的23 ,同时使入射的单色光的波长λ变为原来的3/4,则 屏幕C 上单缝衍射条纹中央明纹的宽度x ?将变 为原来的 (A) 3/4倍。 (B) 2/3倍。 (C) 9/8倍。 (D) 1/2倍。 (E )2倍。 [ D ] 解:a f x λ 2=? C 屏 f D L A B λ

5.在如图所示的单缝夫琅和费衍射装置中,将单缝宽度a 稍稍变宽,同时使单缝沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将 [ C ] (A) 变窄,同时向上移; (B) 变窄,同时向下移; (C) 变窄,不移动; (D) 变宽,同时向上移; (E) 变宽,不移动。 解: ↑a ↓?x 6.某元素的特征光谱中含有波长分别为λ1=450nm 和λ2=750nm (1nm=10-9m )的光谱线。在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是 [ D ] (A) 2,3,4,5……… (B) 2,5,8,11…….. (C) 2,4,6,8……… (D) 3,6,9,12…….. 解: 2211sin λλθk k d == 6,103 ,52121====k k k k 当.....)3,2,1( 32==n n k 7.设星光的有效波长为55000A ,用一台物镜直径为1.20m 的望远镜观察双星时, 能分辨的双星的最小角间隔δθ是 [ D ] (A) rad 3102.3-? (B) rad 5104.5-? (C) rad 5108.1-? (D) rad 7106.5-? 解:

相关主题
文本预览
相关文档 最新文档