当前位置:文档之家› 智能检测系统 热电偶数字温度表

智能检测系统 热电偶数字温度表

智能检测系统 热电偶数字温度表
智能检测系统 热电偶数字温度表

北京信息科技大学

自动化学院

实验报告

课程名称智能检测系统

实验名称热电偶数字温度表

实验仪器

专业自动化

班级/学号自控0902/20090108 学生姓名

实验日期

实验地点

成绩

指导教师

E AB (T ) 图2-2 接触电势 μ 一、实验名称:热电偶数字温度表

二、实验设备

热电偶、热电偶、PC 机、剥线钳、面包板、镊子、导线、电源、万用表、外围电路所需元器件、电源。

三、实验原理

1、

热电偶数字温度表原理框图:

2、 热电偶

1823年塞贝克(Seebeck )发现,在两

种不同的金属所组成的闭合回路中,当两接触处的温度不同时,回路中就要产生热电势,

称为塞贝克电势。这个物理现象称为热电效

应。

如图2-1:两种不同材料的导体A 和B ,

两端联接在一起,一端温度为T0,另一端为T (设T > T0),这时在这个回路中将产生一个与温度T ,T0以及导体材料性质有关的电势EAB (T ,T0),显然可以利用这个热电效应来测量温度。在测量技术中,把由两种不同材料构成的上述 热电交换元件称为热电偶,称A ,B 导体为热电极。两个接点,一个为热端(T ),又称工作端,另一个为冷端(T0),又称为自由端或参考端。

热电势EAB (T ,T0)的产生,是由两种效应引起的:

(1)、珀尔帖(Peltier )效应:

将同温度的两种不同的金属相互接触,如图2-2所示。 由于不同金属内自由电子的密度不同,在两

金属A 和B

的接触处会发生自由电子的扩散现象。自由电子将从密度大的金属A 扩散到密度小的金

属B ,使A 使去电子带正电,B 得到电子带负电,直至在接点处建立了强度充分的电场,能够阻止

电子扩散达到平衡为止,两种不同金属的接点处

产生的电动势称珀尔帖电势,又称接触电势。此

电势EAB(T)由两个金属的特性和接触点处的温度所决定。

根据电子理论: A 图2-1 热电效应 B

B A AB n n e T K T E ln )(?=

' 或:()B A o o AB n n e T K T E ln ?='

式中: K :波尔兹曼常数,其值为1.38×10-23J/K ;

T ﹑T0: 接触处的绝对温度(K);

e:电子电荷量,等于1.6×10-19C ;

A n 、

B n 分别为电极A 、B 的自由电子密度。

由于()T E AB '

与)(o AB T E '的方向相反,故回路的接触电势为: B

A o

B A o AB AB n n e T K n n e T K T E T E ln ln )()(?-?='-' B A

o n n T T e K ln )(-=

(2)、汤姆逊(Thomson )效应:

假设在一匀质棒状导体的一端加热如图2-3所示,则沿此棒状导体有温度梯度。导体内自由电子将从温度高的一端向温度低的一端扩散,并在温度

较低的一端积聚起来,使棒内建立起一电场,当这电场对电子的作用力与扩散力相平衡时,扩散

作用即停止,电场产生的电势称为汤姆逊电势或温差电势。当匀质导体两端的温度分别是T 、T 0时,温差电势为:

()dT T T E T T A A ?-=0

0,σ 或:()dT T T E T T B B ?-=0

0,σ 式中σ称为汤姆逊系数,它表示温差为一度时所产生的电势

值。σ的大小与材料性质和导体两端的平均温度有关。是金

属本身所具有的热电能。它是以铂等标准电极为基准进行测

量的相对值。例如:铜和康铜的热电能在0~100℃温度范围

内的平均值分别为7.6μV/℃和-3.5μV/℃。

通常规定:当电流方向与导体温度降低的方向一致时,

则σ为正值,当电流方向与导体温度升高方向一致时,则σ

取负值。对于导体A 、B 组成的热电偶回路,当接触点温度

T ﹥T 0时,回路的温差电势等于导体温差电势的代数和,即:

()()()dT dT dT T T E T T E T T B A T T B T T A B A ???--=-=-00000,,σσσσ 上式表明,热电偶回路的温差电势只与热电极材料A 、B 和两接点的温度T ﹑T 0有关,而与热电极的几何尺寸和沿热电极的温度分布无关。如果两接点温度相同,则温差电势为零。

T

T 0 + - E A (T ,T 0)

图2-3 温差电势 μ 图2-4 总热电势

综上所述,热电极A 、B 组成的热电偶回路,当接点温度T ﹥T 0时,其总热

电势为(如图2-4)

()()()()()

()()()()[]()()()()()()()()()()()??

????-+--+=-+-+-=??????-+-=---=-'-+'=?????0000''0''

0''000''0000,,,,,T T B A AB T T B A AB T T B A T

T B A AB AB T T B A AB AB

B A AB AB

A A

B B AB AB n n n n dT T E dT T E dT

dT T E T E dT T E T E T T E T T E T E T E T T E T E T T E T E T T E σσσσσσσσσσ ()()0T E T E AB AB -=

式中:E AB (T):热端的分热电势;E AB (T 0):冷端的分热电势。

从上面的讨论可知:当两接点的温度相同时,则无汤姆逊电势,即:()()O T T E T T E B A ==0000,,;而珀尔帖电势大小相等方向相反,所以()O T T E AB =00,。当两种相同金属组成热电偶时,两接点温度虽不同,但二个汤姆逊电势大小相等、方向相反,而两接点处的珀尔帖电势皆为零,所以回路总电势仍为零。因此:

(1)如果热电偶二个电极的材料相同,二个接点温度虽不同,不会产生电势;

(2)如果二个电极的材料不同,但两接点温度相同,也不会产生电势;

(3)当热电偶二个电极的材料不同,且A 、B 固定后,热电势()0,T T E AB 便为二接点温度T 和T 0的函数,即

()()()00,T E T E T T E AB AB AB -=

当T 0保持不变,即E(T 0)为常数时,则热电势()0,T T E AB 便为热电偶热端温度T 的函数:

()()()T f C T E T T E AB AB =-=0,

由此可知,()0,T T E AB 和T 有单值对应关系,这是热电偶测温的基本公式。

热电偶的分度表就是根据这个原理在热电偶冷端温度等于0℃的条件下测得的。

热电极的极性:测量端失去电子的热电极为正极,得到电子的热电极为负极。在热电势符号()0,T T E AB ,规定写在前面的A 、T 分别为正极和高温,写在后面的

B 、To 分别为负极和低温。如果它们的前后位置互换,则热电势极性相反,如()()T T E T T E AB AB ,,00-=,()()T T E T T E BA BA ,,00-=等。判断热电势极性最可靠的方法是将热端稍加热,在冷端用直流电表辨别。

3、 放大器

热电偶输出的热电势信号,其大小只有毫伏级,不能做为后续电路的输入信号,必须进入前置放大器进行信号放大。因此选用ICL7650作为放大器,它具有

极低的输入失调电压(典型值为±1uV),失调电压的温漂和时漂也极低,分别为0.01μV/?C和3.33nV/d。也可选用OP-07超低失调运算放大器作为前置放大器,但是失调电压比ICL7650要大,因此,本方案采用ICL7650作为放大器。

ICL7650的使用方法比较简单,它和其他的运算放大器的使用方法类似,为了更好得起到放大的作用,需要对该芯片有一个电容补偿元件,电容的型号为104即可,ICL7650的芯片资料如下面所示:

Cextb:外接电容1

Cexta:外接电容2

-Input:反向输入端

+Input:同向输入端

V-:负电源端

Cretn:外接电容的公共端

Output:输出端

V+:正电源端

Int/clk:时钟输出端

Ext/clk:时钟输入

图4-1 ICL7650

为了更好的抑制共模输入,在运放的输入方式上选择同向输入,放大倍数是这样考虑的,K型热电偶的测温范围定在0到1299℃,E型热电偶的测温范围定在0到799℃,然后将微弱的毫伏电压放大到0到1伏的范围,用于后面的A/D转换环节。那么运放的放大倍数如下:

A=1+R

2/R

1

选用镍铬—镍硅(分度号为K)的热电偶,要求测量范围为0~1299℃,满

度1299℃时的热电势值为51.612mV,前置放大器的放大倍数A应为

A

1

=A-1=1000/51.612-1=18.4

若选用镍铬—铜镍(分度号为E)的热电偶,要求测量范围为0~799℃,

满度799℃时的热电势值为59.825mV,放大器的放大倍数A

1

应为

A

1

=A-1=1000/59.825-1=15.7

本数字仪表选用两种型号的热电偶测温,则可通过切换开关改变放大器的放大倍数,使之满度时的放大器输出为1V。

4、A/D转换器

考虑到本设计属于是一定范围内的温度测量系统,温度变化过程比较平稳,不需要高速的A/D变换器,所以采用3.5位的双积分型的A/D转换器MC14433。MC14433是美国Motorola公司推出的单片3.5位A/D转换器,其中集成了双积分式A/D转换器所有的CMOS模拟电路和数字电路。具有外接元件少,输入阻抗高,功耗低,电源电压范围宽,精度高等特点,并且具有自动校零和自动极性转换功能,只要外接少量的阻容元件即可构成一个完整的A/D转换器,其主要功能特性如下:

(1) 精度:读数的±0.05%±1字

(2) 模拟电压输入量程:1.999V和199.9mV两档

(3) 转换速率:2-25次/S

(4) 输入阻抗:大于1000MΩ

(5) 电源电压:± 4.8V~± 8V

(6) 功耗:8mW(± 5V电源电压时,典型值)

(7) 采用字位动态扫描BCD码输出方式,即千、百、十、个位BCD码分时在

Q0—Q3轮流输出,同时在DS1—DS4端输出同步字位选通脉冲,很方便

实现LED的动态显示。

(8) MC14433最主要的用途是数字电压表,数字温度计等各类数字化仪表及

计算机数据采集系统的A/D转换接口。

图4-2 MC14433

Pin1(VAG)—模拟地,为高阻输入端,被测电压和基准电压的接入地。

Pin2( V

R

)—基准电压,此引脚为外接基准电压的输入端。MC14433只要一个正

基准电压即可测量正、负极性的电压。此外,V

R

端只要加上一个大于5个时钟周

期的负脉冲(V

R

),就能够复为至转换周期的起始点。

Pin3( Vx)—被测电压的输入端,MC14433属于双积分型A/D转换器,因而被测

电压与基准电压有以下关系:输出读数=Vx/VR*1999因此,满量程的Vx=V

R

。当

满量程选为1.999V。V

R 可取2.000V,而当满量程为199.9mV时,V

R

取200.0mV,

在实际的应用电路中,根据需要,V

R

值可在200mV—2.000V之间选取。

Pin4-Pin6(R1/C1,C1)—外接积分元件端,次三个引脚外接积分电阻和电容,积分

电容一般选0.1uF聚脂薄膜电容,如果需每秒转换4次,时钟频率选为66kHz,在

2.000V满量程时,电阻R1约为470kΩ,而满量程为200mV时,R1取27kΩ。

Pin7-Pin8( C

01 C

02

)—外接失调补偿电容端,电容一般也选0.1uF聚脂薄模电

容。

Pin9(DU)—更新显示控制端,此引脚用来控制转换结果的输出。如果在积分器反向积分周期之前,DU端输入一个正跳变脉冲,该转换周期所得到的结果将被送入输出锁存器,经多路开关选择后输出。否则继续输出上一个转换周期所测量的数据。这个作用可用于保存测量数据,若不需要保存数据而是直接输出测量数据,将DU端与EOC引脚直接短接即可。

Pin10、Pin11(CLK1、CLK0)—时钟外接元件端,MC14433内置了时钟振荡电路,对时钟频率要求不高的场合,可选择一个电阻即可设定时钟频率,时钟频率为66kHz时,外接电阻取300kΩ即可。

Pin12(Vee)—负电源端Vee,是整个电路的电压最低点,此引脚的电流约为0.8mA,驱动电流并不流经此引脚,故对提供此负电压的电源供给电流要求不高。

Pin13(Vss)—数字电路的负电源引脚。Vss工作电压范围为V

DD -5V≥Vss≥V

EE

除CLK0外,所有输出端均以Vss为低电平基准。

Pin14(EOC)—转换周期结束标志位。每个转换周期结束时,EOC将输出一个正脉冲信号。

Pin15(OR)—过量程标志位,当|Vx|>V

REF

时,OR输出为低电平。

Pin16、17、18、19(DS4、DS3、DS2、DS1)—多路选通脉冲输出端。DS1、DS2、DS3和DS4分别对应千位、百位、十位、个位选通信号。当某一位信号有效(高电平)时,所对应的数据从Q0、Q1、Q2和Q3输出,两个选通脉冲之间的间隔为2个时钟周期,以保证数据有充分的稳定时间。

Pin20、21、22、23(Q0、Q1、Q2、Q3)—BCD码数据输出端。该A/D转换器以BCD 码的方式输出,通过多路开关分时选通输出个位、十位、百位和千位的BCD数据。同时在DS1期间输出的千位BCD码,还包含过量程、欠量程和极性标志信息。

Pin24(VDD)—正电源电压端。

MC14433最主要的用途是数字电压表,数字温度计等各类数字化仪表及计算机数据采集系统的A/D转换接口。至此,已经将温度信号放大并转换成数字信号。

5、锁存器

MC14433 A/D转换结果采用BCD码动态扫描输出,因此每位数字要增加一个四位的锁存器74LS373,把经过多路组合的数据分离出来,并寄存在相应的锁存器内,由MC14433的多路调制选通脉冲DS4,DS3,DS2控制Q0,Q1,Q2,Q3BCD码三位数据的输出,经个位,十位和百位锁存器锁存,输出个,十,百三位BCD码,在下一步中,以这十二位BCD码作为EEPROM的地址线,对其进行寻址。在最初设计中,EEPROM的寻址应该使用二进制码进行,但是由于BCD码

到二进制码的转换芯片已经停产,所以直接用BCD 码做为EEPROM 的地址线,所以,就要在相应的存储单元存储相应的温度值。控制线转换的频率是由A/D 转换芯片的频率决定的,通过选定外围电路的电阻值来控制频率的高低,在地址锁存的时候本应该在控制信号到来时传输数据的,由于我将A/D 转换的频率设置在70赫兹,这样在后续电路显示的时候,人眼是分辨不出来的。

6、 EEPROM 线性化器

A /D 转换器的输出作为地址码访问EEPROM

时,EEPROM 存放的表格内容将被取出,送入显

示器以显示被测的温度。表格的编制方法如下:

首先根据热电偶的E ~t 特性曲线,在E 坐标上

进行有限等分。K 型的镍铬—镍硅热电偶用于测

量0~1299℃。设量化单位为q 。E ~t 的量化

曲线如图所示。

这种线性化的精度取决于划分的程度,划分得越细,越多,则精度越高,不过还取决于

实际电路所能达到的程度,也就是芯片的分辨率,A/D 转换的分辨率越高,就可以分的越高,这样也就跟热电偶分度表的真实性越接近。线性化的结果是在一定程度上模拟热电偶的分度表曲线,但不是完全符合,而是允许在一定的误差范围之内。这样做,可以在不搭建复杂模拟电路系统的情况下,实现对热电偶的非线性特性补偿。此种做法的不足之处是,在计算新的分度表时,过程较繁琐,但相对于复杂的模拟电路来说,还是有很大改进的。

显然,A /D 转换器的量化误差 是与量化单位q 、输入函数x (t )有关。以K 分度号热电偶表格编制方法为例加以说明,温度测量范围0至1299℃,1299℃时的热电势查表为51.612mV 。0~1299℃内平均热电势为0.0516mV /℃,即量化单位q =0.0516mV 。当温度为0℃时,热电势为0.000mV ,A /D 转换器输出地址(16进制,下同)为0000,EEPROM 内写入000.0数。经过这种线性化的补偿方法,可以把热电偶的温度特性曲线进行拟合,拟合的结果如图4-4所示:

K 型热电偶的温度特性曲线是非线性的,为了在数字转换部分使电路简化,就应当在这里对非线性进行补偿,从它的温度特性曲线可以看出,采用通常的折线法

图9 E ~t 的量化曲线图

蓝色:热电偶温度特性曲线 红色:拟合温度特性曲线 绿色:线性化辅助曲线

图10 K 型热电偶温度曲线拟合图

或是最小二乘法都可以,不过就加大了计算的复杂程度,而且在后续的A/D转换时就要采用高性能,多通道的器件,也就增加了整个设计的经济成本,为此,采用了这种借助线性化辅助曲线的方法,详述如下:

首先将K型热电偶在1299℃时其转换电压是51.612mv,将其分成一千份,其最小分度就是q=0.0561mv,分得越小其精度越高,不过要受后续器件的精度影响。

其次,在热电偶的温度特性表上每隔10℃找一个参考点,它的作用在于使线性化补偿之后的拟合曲线始终在原温度曲线附近,不会偏差太多,也可以选择20℃,或更高,参考点相距越近,测量精度就越高。

最后,在测量的时候,将实际测量的转换电压与特性表中的参考点比较,这里以向下寻找为标准,找到一个和实际电压最接近的一个参考点,这时,就以改参考点为基准温度值,然后计算出二者的电压差,在将该电压差除以最小分度q,得出一个在10℃之内的温度值,最终显示温度为:

最终显示温度=参考点基准温度+附加温度值

按照这种方法制作EPPROM内的温度表格,这样把主要的精力用在寻找非线性补偿的方法上,简化了电路的设计,只需把计算出的温度表格输入到存储器中即可,而且这种利用线性化辅助曲线进行非线性补偿的方法,计算简单,易行,精度高(根据参考点和最小分度值的选取),分辨率高,不仅适用于温度补偿系统还可以在近似的情况中应用。只要后续转化器件的精度高,就允许将参考点选取的更近,将最小分度值选取的更小。测量结果就更接近实际温度值。

7、LED

从EEPROM线性化器读出的数分别送到四个七段码的译码器之中,从里面送出的数码是BCD码,然后把BCD数码通过4511转换为七段码,若采用的是共阴极的数码管,可以直接把4511的输出接到数码管的限流电阻上,然后接到七段码上,但通常使用的是共阳极的数码管,这时就需要把4511输出的七段码经过非门74HC04做一下反向,然后再通过限流电阻接到七段码上,限流电阻一般可以根据具体情况来选择,这里选择240欧姆的阻值。在此采用的是静态显示方法,没有采用动态显示,所以将所有的数码管的选通管脚都接到高电平,虽然比较耗费电源,但是没有加入动态显示部分,节省了一部分成本。

四、实验内容

一.按所设计的电路图在面包板上连接线路。

1、合理布局,恰当的规划每个芯片在面包板上的位置。

2、注意电源线(主要有+5v和-5v和一个+2v)和地线在面包板上的分配,

充分利用好面包板上的横条和竖条。

3、注意导线长度和颜色的选择,以便以后检查时方便。

4、耐心并且细心的插线。

二.连线结束后进行基本调试。

1、用稳压电源调出+5v,-5v,+2v和地,把电源接入电路。注意一定不要把+5v和-5v接反了。

2、接入电源后可以先接入热电偶,看看是否能一次性通过。如果LED有稳定的显示,通过调节放大器ICL7650的反馈电阻(电位器),来使温度显示和实验台所示温度一致,然后再通过降低或升高实验台温度,检验温度计是否也随之变化。若变化,基本成功。

3、如果第2步没有通过,即没有一次性成功。

可尝试如下调试。

(1)用万用表测量面包板上的电源线路是否供电正常,有没有非正常的断点,可以先从驱动电路的电源线(即+5v,-5v和地线)查起。发现断点,即用导线自行连接好。

(2),用万用表测量ICL7650是否有输出,即看该芯片是否工作正常――起了放大作用。如果工作不正常,可尝试替换该芯片。

(3)用万用表测量AD转换芯片(mc14433p)的相应输入输出拐脚是否有电压,即检测该芯片是否正常工作。

(4)同样的方法,分别用万用表检测其他的芯片是否正常工作。

(5)若各个芯片正常工作,而显示很不稳定。可以检查是不是稳压电源没有接好,EEPROM芯片是否是坏的

五、实验结果

改变热电偶热端温度变化如图所示:

六、实验总结

本实验是把所学电路知识和检测仪表理论用于实际的例子。

实验原理是:用线性化辅助曲线进行非线性补偿。用查询固化在EEPROM里的校正值的非线性补偿方法,提供了一种新的非线性补偿用的电路设计途径。这种校正方法的最大特点是对测温传感器的全量程实现线性化校正,因而具有较高的校正精确度。被测变量与传感器输出电压之间没有确定的关系式,而只能利用实测数据,此时,这种查表法就更显示其优越性。EEPROM校正方法不仅适合于热电偶、热电阻等测温传感器的非线性补偿,也适用于其他方面的非线性补偿。该法不仅实现了全量程的非线性补偿,而且标度变换也通过查表一起完成,故简化了电路设计。

这种测试温度的方法,采用的是数字式补偿,不用加冷端补偿器,只需根据冷端环境的温度,构造不同冷端温度下的热电偶分度表,在不同的温度下选择不同的分度表。在实验室内非常适用。

实验中发现的问题:

1、仔细对照电路图连线,避免出现错接短接等现象,善用万用表测量各点间电压,查找错误。

2、烧制芯片程序时,注意摆放是否正确

3、放大器环节必须得选择合适的电阻,保证两个电阻之比为10:1左右。

4、在使用工作台上的电压源前,应先用万用表测量电压源的电压是否准确,保证输入电压准确性。

(完整word版)热电偶温度计的测温原理、选型及其应用

《自动检测技术及仪表》课程设计报告 热电偶温度计的测温原理、选型及其应用 学院: 班级: 姓名: 学号:

目录 一摘要 (3) 二热电偶温度计的测温原理 (3) 2.1 热电偶的测温原理 (3) 2.2 接触电势 (4) 2.3 温差电势 (4) 2.4 热电偶温度计闭合回路的总热电势 (4) 三热电偶温度计的组成结构及其作用和特 (5) 3.1 热电偶温度计的组成结构 (5) 3.2 热电偶温度计的作用及特点 (6) 四热电偶温度计测温技术中涉及到的定则 (7) 4.1 均质导体定则 (7) 4.2 中间导体定则 (7) 4.3 连接导体和中间温度定则 (8) 五热电偶温度计的误差分析及选型 (8) 5.1 影响测量误差的主要因素 (8) 5.1.1插入深度 (8) 5.1.2响应时间 (9) 5.1.3热辐射 (10) 5.1.4冷端温度 (11) 5.2 热电偶温度计的选型 (11) 六现场安装及其注意事项 (13) 七总结 (13) 八参考文献 (15)

一、摘要 热电偶温度计是一种最简单﹑最普通,测温范围最广的温度传感器,是科研﹑生产最常用的温度传感器。在使用时不注意,也会引起较大测量误差。针对当前存在的问题,详细探讨影响测量误差的主要因素:热电偶插入深度﹑响应时间﹑热辐射及冷端温度等因素对测量的影响;在使用时应该怎样选择热电偶温度计,以及使用时的一些安装注意事项,这对提高测量精度,延长热电偶寿命,都有一定的意义。 二、热电偶温度计的测温原理 热电偶温度计是一种感温元件 , 把温度信号转换成热电动势信号 , 通过电气仪表转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的均质导体组成闭合回路 , 当两端温度不同时 , 回路中就会产生电势,这种现象称为热电效应(或者塞贝克效应)。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系 , 制成热电偶分度表;分度表是自由端温度在 0°C 时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时 , 只要该材料两个接点的温度相同 , 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此 , 在热电偶测温时 , 可接入测量仪表 , 测得热电动势后 , 即可知道被测介质的温度。 热电偶温度计测温原理图如图所示: 其中,T是热端、工作端或者测量端, T

热电偶测温系统实验报告材料书

热电偶测温系统 实验报告书 班级:铁道自动化091班 小组成员:何俊峰、严云钧、王鹏远、倪森 瑜、康宁

目录 一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 2热电偶的补偿方法 3热电偶的实际应用 二热电偶测温系统的相关介绍 1线路原理图 2主要原件及其作用 3调试方法及其注意事项 三实验收尾及总结报告 1处理实验数据 2 实验总结

一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 (1)概况:热电偶是一种感温元件,热电偶的工作原理这就要从热电偶测温原理说起。一次仪表,直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势—热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到不同的热电偶具有不同的分度表。热电偶回路中接入第三种金属资料时,只要该资料两个接点的温度相同,热电偶所产生的热电势将坚持不变,即不受第三种金属接入回路中的影响。因此,热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 B热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,回路中就会发生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度丈量的其中,直接用作丈量介质温度的一端叫做工作端(也称为丈量端)另一端叫做冷端(也称为弥补端)冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,将热能转换为电能,用所产生的热电势测量温度 (2)分类:(S型热电偶)铂铑10-铂热电偶 铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。 S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。 S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。 (R型热电偶)铂铑13-铂热电偶 铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。 R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于R型热电偶的综合性能与S

热电偶测温基本原理

1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1)

在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定 律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补偿导线的原因, 2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

最新5温度测量仪表汇总

5温度测量仪表

第五章 温度测量仪表 第一节 概述 在化工生产中温度是个最常见和非常重要的物理参数。由于物体的很多物理及化学性质都与温度有关,很多生产过程都必须在适当的温度下才能进行,因此,对温度进行精确的测量和控制十分重要。 一、 概念 1、 什么是温度? 温度是反映物体冷热程度的一个状态参数,也可以说是对物体冷 热程度的一种度量。 2、 温标:是温度的数值表示方法,是温度的标尺。常用温标有摄氏温 标(℃)、华氏度(℉)和凯氏温标(K )三种,且℃=5/9 (℉- 32);℉=9/5 ℃+32;℃=K-273.15。 二、测温仪表的分类 测温仪表根据其在使用时感温元件是否与被测介质直接接触,可分为接触式和非接触式两大类: 第二节 热电阻 热电阻温度计的测温原理是根据导体(或半导体)的电阻值随温度变化而变化的性质,再用显示仪表把电阻值的变化显示出来。 测温仪 接触非接触式 膨胀压力表热电阻热电偶Pt10、B 、S 、K 、液体膨胀固体膨胀水银温度计 双金属温度光学高温辐射高温比色高温

工业使用热电阻可检测-200~+500℃范围的温度,其使用特点是:测量精度高,尤其适用于低温测量;常用热电阻有铂、铜热电阻。 一、热电阻的材料 用作热电阻的材料必须具有以下性质: ①具有较大的电阻温度系数;②电阻率要大;③电阻与温度近于线性关系;④热容量 小;⑤物理化学性质稳定;⑥易加工、复制性强,价格便宜。 二、铂热电阻。 1、铂的纯度:是用电阻比R100/R0来表示;R100是铂在标准大气压下, 水的沸点时阻值;R0是铂在水三相点的电阻值。 2、连接方式:采用三线制连接,目的是在与电桥构成测温仪表时,可 从减小一、二次仪表间连接导线因环境温度变化而引起的测量误 差。 三、热电阻的测温原理。 热电阻阻值随温度的变化关系式:R t=R0〔1+∝0(t-t0)〕; R0—温度为t0时的电阻值;∝0—温度为t0时的电阻温度系数。 热电阻测量的温度的变化,通过测量电路(平衡电桥)转换成相应的电压信号,经放大器放大后,指示或记录被测介质的温度。 第三节热电偶 热电偶温度计使用范围广,可以完成-100~1600℃范围内的温度测量,且便于远距离传送与集中检测。 一、测温原理: E AB(T,T0)=E AB(T,0)-E AB(T0,0)

基于热电偶的温度测量电路设计

燕山大学 课程设计说明书题目:基于热电偶的温度测量电路设计 学院(系):电气工程学院 年级专业: 学号: 学生姓名: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位: 学号学生姓名专业(班级)设计题目基于热电偶的温度测量电路设计 设 计技术参数 设计基于运算放大器的热电偶传感器输出信号调理电路以及冷端补偿电路。自选一款热电偶,对其在500到1200度测温范围内的输出信号进行放大。输出信号为直流0到2.5V 设计要求1:完成题目的理论设计模型;2完成电路的multisim仿真; 工 作 量1:完成一份设计说明书(其中包括理论设计的相关参数以及仿真结果); 2:提交一份电路原理图;

工作计划周一,查阅资料; 周二到周四,理论设计及计算机仿真;周五,撰写设计说明书; 参考资料1:基于运算放大器和模拟集成电路的设计;2:模拟电子技术; 3:电路理论; 4:数字电子技术; 指导教师签字基层教学单位主任签字 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2011年6 月26 日燕山大学课程设计评审意见表

指导教师评语: 成绩: 指导教师: 年月日答辩小组评语:

成绩: 组长: 年月日课程设计总成绩: 答辩小组成员签字: 年月日

目录 第1章摘要 (2) 第2章引言 (2) 第3章电路结构设计 (2) 3.1 热电偶的工作原理 (2) 3.2 冷端补偿电路设计 (5) 3.3 运算放大器的设计 (6) 第4章参数设计及运算 (8) 4.1 补偿电路的计算 (8) 4.2 运算放大器的计算 (9) 4.3 仿真器仿真图示 (10) 心得体会 (12) 参考文献 (13)

基于单片机的热电阻温度检测

温度是一个非常重要的物理量,因为它直接影响燃烧、化学反应、发酵、烘烤、蒸馏、浓度、挤压成形、结晶以及空气流动等物理和化学过程。温度控制失误就可能引起生产安全、产品产量等一系列问题。因此对温度的检测的意义就越来越大。温度采集控制系统在工业生产、科学研究和人们的生化领域中,得到了广泛应用。在工业生产过程中,很多时候都需要对温度进行严格的监控,以使得生产能够顺利的进行,产品的质量才能够得到充分的保证。使用自动温度控制系统可以对生产环境的温度进行自动控制,保证生产的自动化、智能化能够顺利、安全进行,从而提高企业的生产效率。本课程设计采用金属热电阻温度计进行测温,工业中常采用三线制接法,尤其是在测温范围窄,导线长,架设铜导线途中温度发生变化等情况。并通过ADC0809模数转换后经单片机送显示。 关键词:热电阻 ADC0809 AT89C52 显示

引言 (1) 一.系统原理及原理图 (1) 1.系统原理 (1) (1)温度检测与处理 (1) (2)模数转换 (2) (3)温度显示 (2) 2.系统原理图 (2) 二.温度检测模块的设计 (2) 1.电阻温度计简介 (2) 2.温度检测及信号处理 (3) 三.模数转换 (3) 1.模数转换简介 (3) 2.ADC0809简介…………………………………………4. 3.单片机与ADC0809的连接 (4) 四.显示及声光报警电路 (5) 五.系统总电路图 (6) 六.总结 (8) 体会 (9) 参考文献 (10)

引言 自动控制系统在各个领域尤其是工业领域中有着极其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行监测和控制。采用MCS-51单片机对温度进行控制,不仅具有控制方便、组太简单和灵活性大等优点,而且可以把幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业中经常会遇到的问题。温度控制在我们的日常生活中是非常有用的,我们利用温度控制来更好的为我们的生活工作所服务,随着单片机行业的迅速发展,将会有更好的温度控制仪的出现。一.系统原理及原理图 1.系统原理 该电阻温度检测系统由三部分组成:温度检测与处理,模数转换,温度显示。(1)温度检测与处理 电阻式温度计是利用物质在温度变化时本身电阻也随着发生变化的特性来测量温度的。当被测介质中有温度阶梯存在时,所所测得温度是感温元件所在范围介质中的平均温度。尽管导体或半导体材料的电阻值对温度的变化都有一定的依赖关系,但适用于制作温度检测元件的并不多,作为热电阻必须满足以下要求: ①要有尽可能大而且稳定的电阻温度系数 ②电阻率要大,以便在同样灵敏度下减小元件的尺寸 ③电阻随温度变化要有单值函数关系,最好呈线性关系 ④在电阻的使用温度范围内,其化学和物理性能稳定,在加工时要有较好的工艺性 ⑤材料要易于提纯,要能分批复制而不改变其性能,要有良好的相互互换性

基于单片机和K型热电偶的温度测量仪表设计

1.概述 1.1题目名 基于单片机和K 型热电偶的温度测量仪表设计 1.2功能和技术指标要求 (1)温度测量范围:室温~200℃; (2)温度检测元件:K 型分度号热电偶; (3)具有热电偶冷端温度自动补偿功能; (4)温度测量精度:1℃±FS*2%; (5)温度显示:LED 或LCD 数字显示,显示分辨率0.1℃ (6)具有温度上限、下线设置功能,当温度测量值越限时,进行声光报警; (7)电源:电网AC220V , 要求在电网电压变化±15%范围内能够正常工作。 1.3国内外相关情况概述 温度的测量的历史:第一个温度传感器是伽利略做出来的。而温度测量的里程碑是由法勒海 特设计的水银温度计。1740年瑞典人摄氏提出在标准大气压下,把冰水混合物的温度规定 为0度,而水的沸腾度为100度。温度测量在保证产品的质量,节约能源,安全生产起到至 关重要的作用。技术现状有点到线,线到面温度分布的测温技术;由表面到内部的测温技术。 发展趋势是由于环境的多样化,复杂化,测温对象的多样化,智能检测成为现在温度测试的 趋势。所以要加强新工艺的开发;向着智能化发展。 2.技术方案 2.1温度测量的基本方法与原理 常见的温度测量方法和测温原理有:接触式,原理是热胀冷缩,这种方法测温方便。液体式 (如毛细管,水银温度计),原理是受热,液体膨胀系数变大,从而液体上升。这种方法测 温比较准确。 2.2总技术方案 温度测量仪表功能结构 热电偶 放大器 ADC 单 片 机 环境温度测量 直流稳压电源 数字显示 声光报警 上下限设置

先读取环境温度,热电偶测得温度经过ADC转换器变成数字,测得冷端温度,用补偿法再计算出温度值,送到显示器显示。如果温度超过上限设置,下限设置则蜂鸣器报警,且LED 灯变红。 3.硬件设计 3.1热电偶放大器设计 冷端补偿专用芯片MAX6675的温度读取 芯片MAX6675采用标准SPI串行外设总线与MCU接口,MAX6675只能作为从设备。 温度值与数字对应关系为:温度值=1023.75×转换后的数字量/4095 3.2热电偶冷端温度补偿方法及电路 冷端补偿法:测冷端温度补偿法再计算出温度值送到显示器 (循环) LCD显示(循环)ASC码 电路: 3.3ADC电路 由MAX6675完成AD转换。 3.4稳压电源电路 学生电源。 3.5微处理器 STC52单片机,芯片MAX7765;按键;显示系统采用四位共阳极数码管7SEG-MPX4-CA,报警电路由PNP型三极管Q1和蜂鸣器构成。 3.6总体电路原理图

基于热电偶传感器的电炉温度检测系统

传感器与检测技术 大作业

基于热电偶传感器的电炉温度检测系统 一、测温传感器的选择 目前,市场上温度传感器的种类有许多,按照用途分可分为基准温度计和工业温度计;按照测量方法可分为接触的与非接触的等。根据成本、准确度及测温范围不同,选择不同的传感器。下面是一些温度传感器的比较: 种类热电偶传感器热敏电阻传感器PN结电压传感器传感器材质两种不同的金属一种热敏金属硅半导体二极管测量温度0~2400℃-200~900℃-50~150℃ 信号类型热电偶则是随着 温度的不同,其产 生感应电压也不 同。热敏电阻本身是 电阻,阻值随着温 度的变化而产生 变化 半导体集成温度 传感器,根据电压 变化,来确定温度 特点热电势比较小,测 量精度低,而且使 用过程中需要冷 端补偿标准化程度高,但 需要接入桥路才 能得到输出 体积小,线性好, 但是测量温度范 围小 在工业化中电炉的温度一般在1000℃以上,而且长时间高温,温度测量的相应程度与准确度要好,因此这对温度传感器提出很高的要求。热电偶传感器具有装配简单,抗震性好,精确度高,相应时间快,使用寿命长,最重要的是耐高温。故择热电偶测量电炉温度的原因有以下4点: 1)属于自发电型传感器,因此测量时可以不需要外加电源,可直接驱动动圈式 仪表。 2)结构简单,使用方便,热电偶的电极不受大小和形状的限制,可按照需求选 择。

3)测量范围广,高温热电偶可达1800摄氏度以上,低温热电偶可达-260摄氏 度 4)测量准确度较高,各温区中的误差均符合国际计量委员会的标准。 热电偶的工作原理的热电效应,两种不同成份的导体两端接合成回路时,当两接合点温度不同时,就会在回路内产生热电势。如果热电偶的测量端与补偿端端存有温差时,显示仪表将会显示出热电偶产生的热电势所对应的温度值。 热电偶的特性: 1)中间导体定律:在热电偶回路中插入第三种(或多种)均质材料,只要所插 入的材料两端连接点温度相同,则所插入的第三种材料不影响原回路的热电势。这条定律表明在热电偶回路中可拉入测量热电势的仪表,只要仪表处于稳定的环境温度即可。同时还表明热电偶的接点不仅可经焊接而成,也可以借用均质等温的导体加以连接。 2)热电偶的热电势将随着测量端温度的升高而增加,热电势的大小只和热电偶 导体材质和两端的温度有关,与热电极的长度、直径无关。 二、电炉测温方案论证 你本测温系统根据单片机为微控制器,对系统有2种设计方案: 方案一:系统由热电偶和集成温度传感器AD590测量热端和冷端温度,采用数据采集卡实现信号采集并传输给计算机。根据热电偶中间温度定律,利用计算机采用查表和曲线拟合进行非线性校正及冷端补偿。本系统将滤波、非线性和冷端补偿等功能由软件实现,简化了电路设计,提高了系统的

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

热电阻温度计和热电偶温度计的比较与使用_许小华

热电阻温度计和热电偶温度计的比较与使用Ξ 许小华 (江苏省盐城技师学院,江苏盐城 224002) 摘 要:温度的测量是保证工业生产正常进行、确保产品质量和安全生产的关键环节。热电偶温度计及热电阻温度计在工业生产中应用广泛。本文主要对这两种温度计的工作原理、特点、选择及安装故障排除等作比较,以便于人们熟悉两种温度计的使用。 关键词:热电偶温度计;基本原理;选择;安装;注意事项 温度是表示物体冷热程度的物理量,温度的测量是保证化工生产实现稳产、高产、安全、优质、低消耗的关键之一。温度不能直接测量,只能借助于冷热不同的物体之间的热变换,以及物体的某些物理性质随冷热程度不同而变化的特征间接测量。 利用热平衡原理,我们可以选择某一物体同被测物体相接触来测量它的温度,当两者达到热平衡状态,选择物体与被测物体的温度相同,通过对选择物体的物理量的测量,便可得到被测物体的温度数值。其中,热电阻温度计和热电偶温度计在化工产业中广泛应用,但它们有各自的使用特点,下面从几个方面进行比较。 1 基本原理比较 两种温度计都属于接触式温度测量仪表。 1.1 热电偶温度计 热电偶温度计是根据热电效应来测量温度的。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电势后,即可知道被测介质的温度。 1.2 热电阻温度计 热电阻温度计是利用导体或半导体的电阻值随温度变化的性质来测量温度的。大家知道,金属导体的电阻值是随温度的变化而变化的。实际证明,大多数金属在温度每升高1℃时,其阻值要增加0.4%~0.6%,热电阻温度计就是把温度变化所引起的导体电阻的变化,通过测量电路(电桥)转换成电压(毫伏)信号,然后送至显示仪表以指示或记录被测温度的。 由上可知,两种温度计的测量原理是不同的。热电偶温度计是把温度的变化通过测温元件—热电偶转化为热电势的变化来测量温度的;而热电阻温度计则是把温度的变化通过测温元件—热电阻转换为电阻值的来测量温度的。 2 结构、特点比较 2.1 结构比较 热电偶温度计外形很多,但各种热电偶的基本结构通常均由热电极、绝缘套管、保护套管和接线盒等主要部分构成。热电偶温度计测量精度高,测量范围广,常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。需冷端温度补偿。在低温段测量精度较低,一般适用于测量500℃以上的温度。 2.2 使用特点比较 对于500℃以下的中、低温利用热电偶进行测量,有时就不一定适合。例如在100℃时,热电偶的热电势仅为0.645m v,如此小的热电势,对电位差计的放大器和抗干扰措施要求很高,仪表维修也困难。另外,在较低的温度范围内,由于冷端温度变化和环境温度所引起的相对误差就显得很突出,且不易得到全补偿。所以在中、低温区,采用热电阻温度计测量是很适宜的。目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。热电阻温度计的主要特点是测量精度高,性能稳定,其中铂热电阻的测量精度最高。热电阻通常和显示仪表、记录仪和变送器配套使用。它可以直接测量各种生产过程中从-200至+600范围内的液体、蒸汽和气体及固体表面的温度。 这两种温度计的共同特点是都构造简单,使用方便。都便于远传、自动记录和集中控制,因而在化工生产中应用极为普遍。下面是我国已定型生产的几种温度计。 工业常用热电偶 热电阻类型测温范围℃分度号 铂铑30-铂铑6300~1600B 铂铑10-铂-20~1300S 镍铬-镍硅-50~1000K 镍铬-铜镍-40~800E 铁-铜镍-40~700J 铜-铜镍-40~300T w zp型铂电阻-200~420P t100 w zc型铜电阻-150~100Cu50 65内蒙古石油化工 2009年第23期 Ξ收稿日期:2009-07-14 作者简介:许小华(1970-),女,江苏盐城人。讲师,学士,主要从事化学技术应用的研究。

基于单片机的数码管显示的K型热电偶温度计的设计与仿真

武汉理工大学毕业设计(论文) 基于单片机的数码管显示的K型热电偶温度 计的设计与仿真 学院(系): 信息工程学院 专业班级: 信息工程xxxx班 学生姓名: xx 指导教师: xx

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包括任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名: 年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士论文评选机构将本学位论文的全部或部分内容编入有关数据进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于1、保密囗,在年解密后适用本授权书 2、不保密囗。 作者签名:年月日 导师签名:年月日

摘要 本文主要介绍了基于热电偶温度传感器的测温系统的设计。利用转换芯片MAX6675和k型热电偶,将温度信号转换成数字信号,通过模拟SPI的串行通信方式输送数据,在通过单片机处理数据,最后由数码管显示数据。 本文采用了带有冷端补偿的温度转换芯片MAX6675、K型热电偶、89C51单片机、数码管等元器件设计了相应温度采集电路、温度转换电路、温度数码管显示电路。结合硬件电路给出了相应的软件设计,测温精度可达到0.25℃。本系统的工作流程是:首先热电偶采集温度,数据经过MAX6675内部电路的处理后送给单片机进行算法处理,最后通过数码管电路显示出测量温度。本设计最后对系统进行了proteus的调试和仿真,实现了设计的要求。 关键词温度传感器热电偶热时间常数冷端补偿

基于单片机的热电偶测温系统

基于单片机的热电偶测温系统 一设计简述 本文设计了基于单片机的热电偶测温系统,介绍了热电偶的测温原理,热电偶冷端补偿方法,简单设计了硬件电路,信号放大电路采用放大器LTC2053将热电偶的输出mv型号放大,再经过ICL7109转换器转换为12位的数字信号,输入给单片机,驱动数码管显示电路显示4位温度值。扩展部分有键盘电路和报警电路。软件部分设计了转换器和键盘及显示电路。 关键字:热电偶;LTC2053放大器;ICL7109转换器;数码管 二设计内容 随着人们生活水平的提高,人们对家用电子产品的智能化、多功能化提出了更高的要求,而电子技术的飞速发展使得单片机在各种家用电子产品领域中的应用越来越广泛。 把以单片机为核心,开发出来的各种测量及控制系统作为家用电子产品的一个组成部分嵌入其中,使其更具智能化、拥有更多功能、便于人们操作和使用,更具时代感,这是家用电子产品的发展方向和趋势所在。有的家用电器领域要求增加显示、报警和自动诊断等功能。这就要求我们的生产具有自动控制系统,自动控制主要是由计算机的离线控制和在线控制来实现的,离线应用包括利用计算机实现对控制系统总体的分析、设计、仿真及建模等工作;在线应用就是以计算机代替常规的模拟或数字控制电路使控制系统“软化”,使计算机位于其中,并成为控制系统、测试系统及信号处理系统的一个组成部分,这类控制由于计算机要身处其中,因此对计算机有体积小、功耗低、价格廉以及控制功能强有很高的要求,为满足这些要求,应当使用单片机。 2热电偶测温原理 1.1热电效应 将两种不同成分的导体组成一闭合回路,如图1所示。

图1 当闭合回路的两个接点分别置于不同的温度场中时,回路中将产生一个电势,该电势的方向和大小与导体的材料及两接点的温度有关,这种现象称为“热电效应”。 1.2接触电势 A和B两种不同材料的导体接触时,由于电子的扩散运动,A与B两导体的接触处产生了电位差,称为接触电势。接触电势的大小与导体材料、接点的温度有关,与导体的直径、长度及几何形状无关。 对于温度分别为t和t0的两接点,可得下列接触电势公式:(温度为t时的接触电势,温度为t0时的接触电势) e AB(T0)=U At0 - U Bt0 1.3温差电动势 将某一导体两端分别置于不同的温度场t、t0中,在导体内部,热端自由电子具有较大的动能,向冷端移动,这样,导体两端便产生了电势,这个电势称为温差电势。 导体A、B在两端温度分别为t和t0时形成的电势 e A(t,t0)=U At–U At0 e B(t,t0)=U Bt–U Bt0 1.4热电偶的电势 将由A和B组成的热电偶的两接点分别放在t和t0中,热电耦的电势为: E AB(t,t0)=e AB(t)-e AB(t0)-e A(t,t0)- e B(t,t0) 由于接触电势比温差电势大的多,可将温差电势忽略掉,则热电偶的电势为 E AB(t,t0)= e AB(T)- e AB(T0) (AB的顺序表示电势的方向;当改变脚注的顺序时,电势前面的符号(正、负号)也应随之改变) 综上所述,可以得出以下结论: 热电偶热电势的大小,只与组成热电偶的材料和两接点的温度有关,而与热电偶的形状尺寸无关,当热电偶两电极材料固定后,热电势便是两接点电势差。 1.5热电偶的基本定律

热电偶的测温原理

热电偶的测温原理 摘要:通过对金属的接触电动势和温差电动势来进行简化的数学推导,从根源来阐述热电偶的工作原理,并通过实验来简化。从而系统地解释了热电偶的输入量(温度)和输出量(电流,电压)的线性关系。以及热电偶的选型要求,和材料性能。 关键词:热电效应、电动势、选型、材料; 0 引言 温度测量是通过某些测温物质的各种物理性能变化,例如固体的尺寸,密度,硬度 粘度,电导率,热辐射等的变化来判断被测物体的温度。在许多测量方法中,热电偶测温的应用为最广泛之一。主要优点:①接触式测温,准确度较高;②结构简单,体积小,安装方便;③测量范围广:-150oC----1600oC,采用特殊材料时可达2800oC。④热容量小,响应速度快,热电极不受形状限制 1热电偶传感器的工作原理 1.1 热电效应 如图1所示,由两种导体A,B 构成一个闭合回路,使两端结点处于不同温度下。回路中便产生热电势和电流。这种物理现象称为热电效应。 图 1 定义:导体A,B为热电极;测温结点处在T温度场下为测量端,或工作端,热端。结点处在To温度场下为参考端,或自由端,冷端。 1.2 热电偶中的电势 1.2.1接触电势(伯尔帖电势) 互相接触的两种金属导体内部因自由电子密度不同,当接触时两种导体在接触界面上会发生电子扩散。电子扩散的速率与自由电子的密度及金属所

处的温度呈正比。假定,金属A 的自由电子的密度为NA,金属B 的自由电子的密度为NB. 自由电子的密度大的向自由电子的密度小的方向扩散。 失去电子一方带正电,得到电子一方带负电。 这种扩散运动逐渐在界面上建立电势,类似于势垒,它又阻碍自由电子进一步扩散,产生了一个动态平衡。 图 2 接触电势的关系式: 图 3 K:波尔兹曼常数 J/K T:接触界面处的温度 e:电子电荷量 C NA,NB 分别为金属A,B 的自由电子密度. 对于To 结点有: 回路总接触电势: B A AB N N e kT T e ln )( =

热电阻测温原理及常见故障

热电阻及其测温原理 在工业应用中,热电偶一般适用于测量500℃以上的较高温度。对于500℃以下的中、低温度,热电偶的输出的热电势很小,这对二次仪表的放大器、抗干扰措施等的要求就很高,否则难以实现精确测量;而且,在较低温区域,冷端温度的变化所引起的相对误差也非常突出。所以测量中、低温度一般使用热电阻温度测量仪表较为合适。 1、热电阻的测温原理 与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 R t=R t0[1+α(t-t0)] 式中,R t为温度t时的阻值;R t0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。半导体热敏电阻的阻值和温度关系为 R t=Ae B/t 式中R t为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。 2、工业上常用金属热电阻 从电阻随温度的变化来看,大部分金属导体都有这个性质,但并不是都能用作测温热电阻,作为热电阻的金属材料一般要求:尽可能大而且稳定的温度系数、电阻率要大(在同样灵敏度下减小传感器的尺寸)、在使用的温度范围内具有稳定的化学物理性能、材料的复制性好、电阻值随温度变化要有间值函数关系(最好呈线性关系)。 目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150易被氧化。中国最常用的有R0=10Ω、R0=100Ω和R0=1000Ω等几种,它们的分度号分别为Pt10、Pt100、Pt1000;铜电阻有R0=50Ω和R0=100Ω两种,它们的分度号为Cu50和Cu100。其中Pt100和Cu 50的应用最为广泛。 3、热电阻的信号连接方式 热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机控制装置或者其它一次仪表上。工业用热电阻安装在生产现场,与控制室之间存在一定的距离,因此热电阻的引线对测量结果会有较大的影响。

大学物理实验 热电偶温度计设计

热电偶温度计的设计探讨 吉林建筑大学城建学院 土木工程系 交通工程12级-1班 1205000123 屈少伟 【内容摘要】 用温差电偶测温就是把非电学量转化为电学量测量,即把温度转化为温差电动势来测量温度。将两种不同金属导体的两端分别连接起来,构成一个闭合回路,一端加热,另一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生(温差效应)。这种温度计测温范围很大。本次实验选用铜-康铜两种金属形成闭合回路作为温差电偶装置,设计热电偶温度计。并通过恒温水浴锅、数字电压表、电热杯等设备为所设计的热电偶温度计定标。 【关键词】 温差效应铜-康铜温差电偶温差固定点法定标 一、引言 传统温度计测量范围相对较小,而热电偶温度计测量范围很大,本实验探究热电偶温度计的实验原理,并尝试制作热电偶温度计。 二、实验目的: (1)了解热电偶温度计的测温原理 (2)学会热电偶温度计的设计方法 (3)学会数字电压表(或电位差计)的原理和使用方 三、实验仪器: 铜-康铜温差电偶数字电压表(或电位差计)保温杯电热杯恒温水浴锅(含温度显示)等。 四、实验原理: 1、热电效应:两种不同成份的导体(本实验中选用铜-康铜)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。 2、测温原理:热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。 【注意问题】 1、热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数 2 、热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关 3、当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。 五、测量方法: 理论和实验均表明,接触电势差的大小和相接处的两种金属的性质及接触处的温度有关。

智能热电偶测温系统设计

摘要 温度是表征物体冷热程度的物理量。在工农业生产和日常生活中,对温度的测量控制始终占据着重要地位。温度传感器应用范围之广、使用数量之大,也高居各类传感器之首。 本文使用温度传感器设计了一个完整的测温系统。该系统所采用的温度传感器为热电偶,A/D转换器件为ADC0809,微型计算机采用的是MCS-51单片机。系统将温度变换、显示和控制集成于一体,用软件实现系统升、降温的调节,控制采用了模糊控制原理对系统进行控制。 设计的系统所满足的技术指标:测温范围为500—800℃,响应时间为小于等于1s,误差范围为-5℃—+5℃。 关键词:热电偶A/D转换模糊控制 ABSTRACT Temperature is the physical quantity of symptom object cold hot level. In the daily life and production of industry and agriculture, occupy important position all along for the measure control of temperature. Temperature sensor application broad scope and use big quantity, also hold the head of each kind of sensor high. This paper uses temperature sensor and has designed , is a and complete to measure warm system. The temperature sensor adopted by this system is thermocouple, the converter of A/D is ADC0809, what personal computer adopt is that MCS-51 only flat machine. System alternates temperature , shows and controls to be more integrated than one body , realizes system with software to rise , cool down regulation, control has adopted vague control principle as system controls. The technical index of design satisfied by system: Measure warm scope is 500 —

相关主题
文本预览
相关文档 最新文档