当前位置:文档之家› 智能热电偶测温系统设计

智能热电偶测温系统设计

智能热电偶测温系统设计
智能热电偶测温系统设计

摘要

温度是表征物体冷热程度的物理量。在工农业生产和日常生活中,对温度的测量控制始终占据着重要地位。温度传感器应用范围之广、使用数量之大,也高居各类传感器之首。

本文使用温度传感器设计了一个完整的测温系统。该系统所采用的温度传感器为热电偶,A/D转换器件为ADC0809,微型计算机采用的是MCS-51单片机。系统将温度变换、显示和控制集成于一体,用软件实现系统升、降温的调节,控制采用了模糊控制原理对系统进行控制。

设计的系统所满足的技术指标:测温范围为500—800℃,响应时间为小于等于1s,误差范围为-5℃—+5℃。

关键词:热电偶A/D转换模糊控制

ABSTRACT

Temperature is the physical quantity of symptom object cold hot level. In the daily life and production of industry and agriculture, occupy important position all along for the measure control of temperature. Temperature sensor application broad scope and use big quantity, also hold the head of each kind of sensor high.

This paper uses temperature sensor and has designed , is a and complete to measure warm system. The temperature sensor adopted by this system is thermocouple, the converter of A/D is ADC0809, what personal computer adopt is that MCS-51 only flat machine. System alternates temperature , shows and controls to be more integrated than one body , realizes system with software to rise , cool down regulation, control has adopted vague control principle as system controls.

The technical index of design satisfied by system: Measure warm scope is 500 —

800 ℃, respond time to be smaller than is equal to 1 s, scope is error - 5℃— + 5℃. Keyword: Thermocouple Conversion of A/D Vague to control

目录

第一章绪论 (1)

第二章系统设计 (2)

第三章硬件结构及分析 (4)

3.1温度检测元件—热电偶 (4)

3.1.1 热电偶的特性 (4)

3.1.2 热电偶的基本定律 (5)

3.1.3 热电偶测温 (6)

3.2电源电路 (9)

3.3测量电路 (10)

3.4滤波电路 (11)

3.5控制电路 (12)

3.6A/D采集部分原理 (13)

3.6.1 A/D转换器概述 (13)

3.6.2 逐次逼近式A/D转换原理 (13)

3.7显示部分原理 (15)

3.8键盘部分的应用 (16)

3.8.1 键盘的工作原理 (16)

3.8.2 矩阵式按键接口 (17)

3.8.3 键盘、显示器组合接口 (19)

第四章控制软件及流程 (22)

4.1键盘、显示及A/D转换 (22)

4.2控制程序 (24)

4.2.1 控制程序原理 (24)

4.2.2 模糊控制在该系统中的实现 (25)

总结 (29)

致谢 (30)

参考文献 (31)

第一章绪论

检测与传感是实现单片机控制的关键环节,它与信息系统的输入端相连,并将检测的信号输送到信息处理部分,是单片机控制系统的感受器官。

在科学实验和生产实际中,很多物体和现象具有明显和稳定的数量特征,我们可以通过测量和计算,确定该量的大小,并用数字给出结果,还有一些物体特征数量较少,或某些现象不十分明显,常常被很多其他量或现象所掩盖,能否检出这些被掩盖量的存在,进而得出这些量的大小数值,都需要传感和检测技术。在科学技术的研究、工业生产应用的过程中,对这些量不仅要进行测量,而且要对其进行控制、变换、传输、显示等。在实践的过程中,人们逐步认识到电量具有易测等许多优点,而且大多非电量可以精确的转化为电量,这就是所谓的非电量测量技术。在单片机控制系统中信号检测主要就是应用这种非电量测量技术。

本文就是采用了非电量测量技术,用热电偶将温度这一非电量转化为电量,在通过信号调理电路对输出信号进行放大、滤波,并送A/D转换,最后送单片机处理并实现对后续电路的控制。

在加热过程中,我们采用了可控硅调压控制的方案,因为可控硅控制方法简单,元件的性能可靠,使用时不易损坏,且成本较低,故在设计中采用了可控硅元件进行调压。加热对象为电阻性元件(如碳棒等)。

由于被控对象是温度,且恒温箱体的热容量大,热惯性大,在加热过程中容易产生超调和震荡现象,控制精度难以实现。本设计采用模糊控制的方法,不仅控制程序较为简单,而且能达到较好的控制效果。

第二章系统设计

该系统的基本组成如图2.1所示。

图2.1 系统原理框图

如上图所示,本系统由传感器、放大器、滤波器、A/D转换电路、单片机及键盘和显示电路组成。

温度参数是不能直接测量的,一般只能根据物质的某些特性值与温度之间的函数关系,通过对这些特性参数的测量间接的获得。温度传感器的基本工作原理正是利用了这一性质。随着科学技术的发展,现已开发出种类繁多的温度传感器。常用的温度传感器由P-N结温度传感器、热敏电阻温度传感器、集成温度传感器、热电阻及热电偶温度传感器等。

其中,P-N结温度传感器有较好的线性度,热时间常数约0.2s~2s,灵敏度高,其测温范围为-50℃~+50℃。其温度与压降的关系如图(2.2)所示。这种温度传感器的缺点是,同一型号的二极管或三极管的特性不一致。

热敏电阻是电阻式传感器。它利用阻值随温度变化的特性来测量温度。一般把由金属氧化物陶瓷半导体材料经成型、烧结等工艺制成的测温元件叫做热敏电阻。热敏电阻的非线性严重,稳定性差,不可用于精确测量,主要用于电路温度补偿和保护。

集成温度传感器实质上是一种集成电路。它的线性好、灵敏度高、体积小、使用

方便,但其测温范围窄,只可测180℃以下的温度。

图2.2 二极管的V-T特性

热电阻的基本材料有铂、铜和镍,其阻值随温度的升高而增大。其中铂电阻有很好的稳定性和测量精度,测温范围宽,为-200~600℃,但价格高。铜电阻测温范围窄,为-50~+150℃。

热电偶测温范围宽,一般为-50~+1600℃,最高的可达2800℃,并且有较好的测量精度。另外,热电偶已标准化,系列化,易于选用,可以方便的用计算机做非线性补偿,因此应用很广泛。因为该系统测温范围为500~800℃,所以经比较采用热电偶作为温度传感器。

热电偶使用时用二极管构成温度补偿电路,二极管的线性度好,且用这种方法构成的补偿电路与以往电路比较,性价比高。热电偶的输出信号较小,所以放大器选用低失调低漂移运放OP-07,组成增益可调的差动结构。该差动结构一方面用于放大热电偶的输出信号,另一方面用于与二极管构成的温度补偿电路的输出值相减。

因为热电偶的输出信号小,所以有一点干扰也会对输出产生很大影响。该系统的干扰主要以50HZ及其以上的频率的干扰为主,所以采用两级低通滤波器滤除干扰。滤波器用的是有源低通滤波,其转折频率为10HZ。

系统的设计指标要求测量精度在-5V~+5V范围内,响应速度为小于等于1mS。ADC0809为逐次逼近式A/D转换器,转换精度约为1/256,转换速度约为120uS,所以选用ADC0809完全可以满足系统要求。

通过单片机完成键盘控制、显示及对加热系统的控制。键盘采用4*4矩阵式键盘,用四个数码管显示温度值,采用动态显示。

对加热装置的控制通过单片机控制可控硅的导通角来完成。因为可控硅控制方法简单、性能可靠、不易损坏且成本较低,故在设计中采用了可控硅元件进行调压来控制加热,加热对象为电阻性元件(如碳棒等)。

控制原理采用模糊控制,因为被控对象是温度,且恒温箱体的热容量大,热惯性大,在加热过程中容易产生超调和震荡现象,控制精度难以实现。本设计采用模糊控制的方法,不仅控制程序较为简单,而且能达到较好的控制效果。

. . . . . 第三章 硬件结构及分析 3.1 温度检测元件—热电偶 3.1.1 热电偶的特性 基于热电效应原理工作的传感器称为热电偶传感器,简称热电偶。热电偶的测温范围宽,一般为-50℃~+1600℃,最高的可达2800℃。并且有较好的测量精度。另外,热电偶已标准化,产品系列化,易于选用,可以用模拟法调整电路或仪表,也可以方便地用计算机作非线性补偿,因此它是目前接触式测温中应用最广的热电式传感

器。 如图3.1所示,两种导体(或半导体)A 或B 的两端分别焊接或绞接在一起,形成一个闭合回路。若两个接点处于不同的温度,导体A 和B 的电子的逸出电位不同(即逸出功不同),电子密度不同,因而在他们的接触面处电子向对面流出的量不同,一面有多余电子,另一面缺少电子,便产生接触电动势(称为热电势),在回路中产生电流。图中导体(或半导体)A 和B 称为热电极,它们组成热电偶AB 。测温时接点(1)置于被测温度场中,称测温端(或工作端,热端);接点(2)一般处于某一恒定温度,称参考端(或自由端,冷端)。

B T

T0(1)(2)

热电阻电路测温计设计

燕山大学 传感器原理及应用课程设计题目:热电阻温度传感器器 学院(系)电气工程学院 年级专业: 12级自动化仪表 学号: 120103020133 学生姓名:马冰卿 指导教师:童凯 教师职称:教授

一、概述 1.1 热电阻温度传感器简介 热电阻温度传感器是利用导体或半导体的电阻值随温度变化而变化的原理进行测温的一种传感器温度计。 热电阻温度传感器分为金属热电阻和半导体热敏电阻两大类。热电阻广泛用于测量-200~+850°C范围内的温度,少数情况下,低温可测至1K,高温达1000°C。 热电阻传感器由热电阻、连接导线及显示仪表组成,热电阻也可以与温度变送器连接,将温度转换为标准电流信号输出。 用于制造热电阻的材料应具有尽可能大和稳定的电阻温度系数和电阻率,输出最好呈线性,物理化学性能稳定,复线性好等。目前最常用的热电阻有铂热电阻和铜热电阻。 1.2 pt100热电阻简介 pt100是铂热电阻,它的阻值跟温度的变化成正比。PT100的阻值与温度变化关系为:当PT100温度为0℃时它的阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。它的工业原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成匀速增长的。

二、工作原理 2.1 热电阻工作原理 与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。下面以铂电阻温度传感器为例:Pt100 是电阻式温度传感器,测温的本质其实是测量传感器的电阻,通常是将电阻的变化转换成电压或电流等模拟信号,然后再将模拟信号转换成数字信号,再由处理器换算出相应温度。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 ()[]010t t Rt Rt -+=α (1) 式中,Rt 为温度t 时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值α为温度系数。 半导体热敏电阻的阻值和温度关系为: t e Rt B A = (2) 式中Rt 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测 量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机控制装置或者其它一次仪表上。 2.2 接线方式 采用pt100测温一般有三种接线方式:二线制、三线制、四线制。 ① 二线制接法:这种接法不考虑PT100电缆的导线电阻,将A/D 采样端与电流源的正极输出端接在一起,这种接法由于没有考虑测温电缆的电阻,因此只能适用于测温距离较近的场合。

(完整word版)热电偶温度计的测温原理、选型及其应用

《自动检测技术及仪表》课程设计报告 热电偶温度计的测温原理、选型及其应用 学院: 班级: 姓名: 学号:

目录 一摘要 (3) 二热电偶温度计的测温原理 (3) 2.1 热电偶的测温原理 (3) 2.2 接触电势 (4) 2.3 温差电势 (4) 2.4 热电偶温度计闭合回路的总热电势 (4) 三热电偶温度计的组成结构及其作用和特 (5) 3.1 热电偶温度计的组成结构 (5) 3.2 热电偶温度计的作用及特点 (6) 四热电偶温度计测温技术中涉及到的定则 (7) 4.1 均质导体定则 (7) 4.2 中间导体定则 (7) 4.3 连接导体和中间温度定则 (8) 五热电偶温度计的误差分析及选型 (8) 5.1 影响测量误差的主要因素 (8) 5.1.1插入深度 (8) 5.1.2响应时间 (9) 5.1.3热辐射 (10) 5.1.4冷端温度 (11) 5.2 热电偶温度计的选型 (11) 六现场安装及其注意事项 (13) 七总结 (13) 八参考文献 (15)

一、摘要 热电偶温度计是一种最简单﹑最普通,测温范围最广的温度传感器,是科研﹑生产最常用的温度传感器。在使用时不注意,也会引起较大测量误差。针对当前存在的问题,详细探讨影响测量误差的主要因素:热电偶插入深度﹑响应时间﹑热辐射及冷端温度等因素对测量的影响;在使用时应该怎样选择热电偶温度计,以及使用时的一些安装注意事项,这对提高测量精度,延长热电偶寿命,都有一定的意义。 二、热电偶温度计的测温原理 热电偶温度计是一种感温元件 , 把温度信号转换成热电动势信号 , 通过电气仪表转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的均质导体组成闭合回路 , 当两端温度不同时 , 回路中就会产生电势,这种现象称为热电效应(或者塞贝克效应)。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系 , 制成热电偶分度表;分度表是自由端温度在 0°C 时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时 , 只要该材料两个接点的温度相同 , 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此 , 在热电偶测温时 , 可接入测量仪表 , 测得热电动势后 , 即可知道被测介质的温度。 热电偶温度计测温原理图如图所示: 其中,T是热端、工作端或者测量端, T

热电偶测温的使用原理

热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线

热电偶测温不准解决方案总结

热电偶测温不准解决方案总结 热电偶作为工业测温中最广泛使用的温度传感器之一,在水泥厂和钢铁厂使用的很多,主要用在链篦机和回转窑上等设备上。这次在现场就用到了三种型号的热电阻,分别是K,N和S型的。经过一段时间的使用,发现并不是很理想。经检测,链篦机的一些风箱现场实际温度比中控显示低50℃左右,由此可见热电偶出现测温不准问题还是很常见的。 造成热电偶失准的常见原因: ◆的补偿导线接反。这主要是安装时出现的问题,负责接线的人员一 时的粗心造成,属人为因数。当出现热电偶的接反情况时,中控画 面的显示通常比实际值偏大或偏小。 ◆补偿电阻故障。此类故障表现为热电偶接上后温度显示值缓慢上升 或下降。 ◆的补偿导线绝缘层被磨破,造成信号回路接地。这主要是因为补偿 导线较硬,而且在接线盒内又未被安放平整,处理故障时多次旋拧 接线盒盖碰到补偿导线而将其磨破。此类故障反映在中控画面上其 温度示值一般偏小。 ◆接线盒内接线端子接触不良。因补偿导线和热电偶的导线都比较 硬,所以现场检修时紧固接线比较困难,有时候开始把导线拧紧了 但过段时间随着导线的变形又松了。此类故障反映在操作员控制站 上的温度示值为无显示或显示值超量程。 ◆热电偶的头部严重磨损。由于链篦机和回转窑内的粉尘和烟气对热 电偶的头部包括护套管冲刷后严重磨损,将护套管改由耐磨钢材料 制成后,才消除了此类故障隐患。 ◆信号屏蔽系统DCS柜内接地不良。由于热电偶出来的信号时mv级 信号,因此很容易在传到中控时受到干扰,此类故障极容易造成电 荷在信号线上积累,引起信号漂移或晃动。 这次这边的问题主要出现在补偿导线上。 下面对热电偶补偿导线作一个详细的解释:

基于热电偶的温度测量电路设计

燕山大学 课程设计说明书题目:基于热电偶的温度测量电路设计 学院(系):电气工程学院 年级专业: 学号: 学生姓名: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位: 学号学生姓名专业(班级)设计题目基于热电偶的温度测量电路设计 设 计技术参数 设计基于运算放大器的热电偶传感器输出信号调理电路以及冷端补偿电路。自选一款热电偶,对其在500到1200度测温范围内的输出信号进行放大。输出信号为直流0到2.5V 设计要求1:完成题目的理论设计模型;2完成电路的multisim仿真; 工 作 量1:完成一份设计说明书(其中包括理论设计的相关参数以及仿真结果); 2:提交一份电路原理图;

工作计划周一,查阅资料; 周二到周四,理论设计及计算机仿真;周五,撰写设计说明书; 参考资料1:基于运算放大器和模拟集成电路的设计;2:模拟电子技术; 3:电路理论; 4:数字电子技术; 指导教师签字基层教学单位主任签字 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2011年6 月26 日燕山大学课程设计评审意见表

指导教师评语: 成绩: 指导教师: 年月日答辩小组评语:

成绩: 组长: 年月日课程设计总成绩: 答辩小组成员签字: 年月日

目录 第1章摘要 (2) 第2章引言 (2) 第3章电路结构设计 (2) 3.1 热电偶的工作原理 (2) 3.2 冷端补偿电路设计 (5) 3.3 运算放大器的设计 (6) 第4章参数设计及运算 (8) 4.1 补偿电路的计算 (8) 4.2 运算放大器的计算 (9) 4.3 仿真器仿真图示 (10) 心得体会 (12) 参考文献 (13)

基于热电偶传感器的电炉温度检测系统

传感器与检测技术 大作业

基于热电偶传感器的电炉温度检测系统 一、测温传感器的选择 目前,市场上温度传感器的种类有许多,按照用途分可分为基准温度计和工业温度计;按照测量方法可分为接触的与非接触的等。根据成本、准确度及测温范围不同,选择不同的传感器。下面是一些温度传感器的比较: 种类热电偶传感器热敏电阻传感器PN结电压传感器传感器材质两种不同的金属一种热敏金属硅半导体二极管测量温度0~2400℃-200~900℃-50~150℃ 信号类型热电偶则是随着 温度的不同,其产 生感应电压也不 同。热敏电阻本身是 电阻,阻值随着温 度的变化而产生 变化 半导体集成温度 传感器,根据电压 变化,来确定温度 特点热电势比较小,测 量精度低,而且使 用过程中需要冷 端补偿标准化程度高,但 需要接入桥路才 能得到输出 体积小,线性好, 但是测量温度范 围小 在工业化中电炉的温度一般在1000℃以上,而且长时间高温,温度测量的相应程度与准确度要好,因此这对温度传感器提出很高的要求。热电偶传感器具有装配简单,抗震性好,精确度高,相应时间快,使用寿命长,最重要的是耐高温。故择热电偶测量电炉温度的原因有以下4点: 1)属于自发电型传感器,因此测量时可以不需要外加电源,可直接驱动动圈式 仪表。 2)结构简单,使用方便,热电偶的电极不受大小和形状的限制,可按照需求选 择。

3)测量范围广,高温热电偶可达1800摄氏度以上,低温热电偶可达-260摄氏 度 4)测量准确度较高,各温区中的误差均符合国际计量委员会的标准。 热电偶的工作原理的热电效应,两种不同成份的导体两端接合成回路时,当两接合点温度不同时,就会在回路内产生热电势。如果热电偶的测量端与补偿端端存有温差时,显示仪表将会显示出热电偶产生的热电势所对应的温度值。 热电偶的特性: 1)中间导体定律:在热电偶回路中插入第三种(或多种)均质材料,只要所插 入的材料两端连接点温度相同,则所插入的第三种材料不影响原回路的热电势。这条定律表明在热电偶回路中可拉入测量热电势的仪表,只要仪表处于稳定的环境温度即可。同时还表明热电偶的接点不仅可经焊接而成,也可以借用均质等温的导体加以连接。 2)热电偶的热电势将随着测量端温度的升高而增加,热电势的大小只和热电偶 导体材质和两端的温度有关,与热电极的长度、直径无关。 二、电炉测温方案论证 你本测温系统根据单片机为微控制器,对系统有2种设计方案: 方案一:系统由热电偶和集成温度传感器AD590测量热端和冷端温度,采用数据采集卡实现信号采集并传输给计算机。根据热电偶中间温度定律,利用计算机采用查表和曲线拟合进行非线性校正及冷端补偿。本系统将滤波、非线性和冷端补偿等功能由软件实现,简化了电路设计,提高了系统的

实验二十一__热电偶的原理及现象实验

热电偶的原理及现象 一、实验目的:了解热电偶测温原理。 二、基本原理:1821年德国物理学家赛贝克(T?J?Seebeck)发现和证明了两种不同材料的导体A和B组成的闭合回路,当两个结点温度不相同时,回路中将产生电动势。这种物理现象称为热电效应(塞贝克效应)。 热电偶测温原理是利用热电效应。如图21—1所示,热电偶就是将A和B二种不同金属材料的一端焊接而成。A和B称为热电极,焊接 的一端是接触热场的T端称为工作端或测量端, 也称热端;未焊接的一端处在温度T0称为自由端 或参考端,也称冷端(接引线用来连接测量仪表的图21—1热电偶 两根导线C是同样的材料,可以与A和B不同种材料)。T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,并且有相应的分度表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。热电偶一般用来测量较高的温度,应用在冶金、化工和炼油行业,用于测量、控制较高的温度。 本实验只是定性了解热电偶的热电势现象,实验仪所配的热电偶是由铜—康铜组成的简易热电偶,分度号为T。实验仪有二个热电偶,它们封装在悬臂双平行梁上、下梁的上、下表面中,二个热电偶串联在一起,产生热电势为二者之和。 三、需用器件与单元:机头平行梁中的热电偶、加热器;显示面板中的F/V表(或电压表)、-15V电源;调理电路面板中传感器输出单元中的热电偶、加热器;调理电路单元中的差动放大器;室温温度计(自备)。 四、实验步骤: 1、热电偶无温差时差动放大器调零:将电压表量程切换到2V档,按图21—2示意接线,检查接线无误后合上主、副电源开关。将差动放大器的增益电位器顺时针方向缓慢转到底(增益为101倍),再逆时针回转一点点(防电位器的可调触点在极限端点位置接触不良);再调节差动放大器的调零旋钮,使电压表显示0V左右,再将电压表量程切换到200mV档继续调零,使电压表显示0V。并记录下自备温度计所测的室温tn。

基于单片机的热电偶测温系统

基于单片机的热电偶测温系统 一设计简述 本文设计了基于单片机的热电偶测温系统,介绍了热电偶的测温原理,热电偶冷端补偿方法,简单设计了硬件电路,信号放大电路采用放大器LTC2053将热电偶的输出mv型号放大,再经过ICL7109转换器转换为12位的数字信号,输入给单片机,驱动数码管显示电路显示4位温度值。扩展部分有键盘电路和报警电路。软件部分设计了转换器和键盘及显示电路。 关键字:热电偶;LTC2053放大器;ICL7109转换器;数码管 二设计内容 随着人们生活水平的提高,人们对家用电子产品的智能化、多功能化提出了更高的要求,而电子技术的飞速发展使得单片机在各种家用电子产品领域中的应用越来越广泛。 把以单片机为核心,开发出来的各种测量及控制系统作为家用电子产品的一个组成部分嵌入其中,使其更具智能化、拥有更多功能、便于人们操作和使用,更具时代感,这是家用电子产品的发展方向和趋势所在。有的家用电器领域要求增加显示、报警和自动诊断等功能。这就要求我们的生产具有自动控制系统,自动控制主要是由计算机的离线控制和在线控制来实现的,离线应用包括利用计算机实现对控制系统总体的分析、设计、仿真及建模等工作;在线应用就是以计算机代替常规的模拟或数字控制电路使控制系统“软化”,使计算机位于其中,并成为控制系统、测试系统及信号处理系统的一个组成部分,这类控制由于计算机要身处其中,因此对计算机有体积小、功耗低、价格廉以及控制功能强有很高的要求,为满足这些要求,应当使用单片机。 2热电偶测温原理 1.1热电效应 将两种不同成分的导体组成一闭合回路,如图1所示。

图1 当闭合回路的两个接点分别置于不同的温度场中时,回路中将产生一个电势,该电势的方向和大小与导体的材料及两接点的温度有关,这种现象称为“热电效应”。 1.2接触电势 A和B两种不同材料的导体接触时,由于电子的扩散运动,A与B两导体的接触处产生了电位差,称为接触电势。接触电势的大小与导体材料、接点的温度有关,与导体的直径、长度及几何形状无关。 对于温度分别为t和t0的两接点,可得下列接触电势公式:(温度为t时的接触电势,温度为t0时的接触电势) e AB(T0)=U At0 - U Bt0 1.3温差电动势 将某一导体两端分别置于不同的温度场t、t0中,在导体内部,热端自由电子具有较大的动能,向冷端移动,这样,导体两端便产生了电势,这个电势称为温差电势。 导体A、B在两端温度分别为t和t0时形成的电势 e A(t,t0)=U At–U At0 e B(t,t0)=U Bt–U Bt0 1.4热电偶的电势 将由A和B组成的热电偶的两接点分别放在t和t0中,热电耦的电势为: E AB(t,t0)=e AB(t)-e AB(t0)-e A(t,t0)- e B(t,t0) 由于接触电势比温差电势大的多,可将温差电势忽略掉,则热电偶的电势为 E AB(t,t0)= e AB(T)- e AB(T0) (AB的顺序表示电势的方向;当改变脚注的顺序时,电势前面的符号(正、负号)也应随之改变) 综上所述,可以得出以下结论: 热电偶热电势的大小,只与组成热电偶的材料和两接点的温度有关,而与热电偶的形状尺寸无关,当热电偶两电极材料固定后,热电势便是两接点电势差。 1.5热电偶的基本定律

热电偶测温基本原理

1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1)

在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补偿导线的原因, 2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

智能热电偶测温系统设计

摘要 温度是表征物体冷热程度的物理量。在工农业生产和日常生活中,对温度的测量控制始终占据着重要地位。温度传感器应用范围之广、使用数量之大,也高居各类传感器之首。 本文使用温度传感器设计了一个完整的测温系统。该系统所采用的温度传感器为热电偶,A/D转换器件为ADC0809,微型计算机采用的是MCS-51单片机。系统将温度变换、显示和控制集成于一体,用软件实现系统升、降温的调节,控制采用了模糊控制原理对系统进行控制。 设计的系统所满足的技术指标:测温范围为500—800℃,响应时间为小于等于1s,误差范围为-5℃—+5℃。 关键词:热电偶A/D转换模糊控制 ABSTRACT Temperature is the physical quantity of symptom object cold hot level. In the daily life and production of industry and agriculture, occupy important position all along for the measure control of temperature. Temperature sensor application broad scope and use big quantity, also hold the head of each kind of sensor high. This paper uses temperature sensor and has designed , is a and complete to measure warm system. The temperature sensor adopted by this system is thermocouple, the converter of A/D is ADC0809, what personal computer adopt is that MCS-51 only flat machine. System alternates temperature , shows and controls to be more integrated than one body , realizes system with software to rise , cool down regulation, control has adopted vague control principle as system controls. The technical index of design satisfied by system: Measure warm scope is 500 —

热电偶测温原理及其焊接

热电偶测温原理及其焊接 2008-12-05 09:19:27 安规与电磁兼容网来源:作者: 前言 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 热电偶测温基本原理 首先,介绍一下热电偶, 热电偶是温度测量中应用最广泛的温度器件, 他的主要特点就是测吻范围宽, 性比较稳定, 同时结构简单, 动态响应好, 更能够远传4-20mA电信号, 便于自动控制和集中控制。热电偶的测温原理是基于热电效应。当两种不同的导体或半导体A和B的两端相接成闭合回路,就组成热电偶,如图6.1所示。 如果A和B的两个接点温度不同(假定),则在该回路中就会产生电流,这表明了该回路中存在电动势,这个物理现象称为热电效应或塞贝克效应,相应的电动势称为塞贝克电势。显然,回路中产生的热电势大小仅与组成回路的两种导体或半导体A、B的材料性质及两个接点的温度有关,热电势用符号表示。闭合回路中产生的热电势有两种电势组成; 温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势, 不同的导体具有不同的电子密度, 所以他们产生的电势也不相同, 而接触电势顾名思义就是指两种不同的导体相接触时, 因为他们的电子密度不同所以产生一定的电子扩散, 当他们达到一定的平衡后所形成的电势, 接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。目前国际上应用的热电偶具有一个标准规范, 国际上规定热电偶分为八个不同的分度, 分别为R, S, K, N, E, J 和T, 其测量温度的最低可测零下270摄氏度, 最高可达1800摄氏度, 其中B, R, S属于铂系列的热电偶, 由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种, 普通型和铠装型如图6.2。普通性热电偶一般由热电极, 绝缘管, 保护套管和接线盒等部分组成, 而铠装型热电偶则是将热电偶丝, 绝缘材料和金属保 护套管三者组合装配后

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

热电偶测温系统设计说明

任务书 课程传感器课程设计 题目热电偶测温系统设计 主要容: 本系统以单片机为核心,硬件设计使用高精度模/数转换器和高精度数/模转换器,分别实现对热电偶电动势的采样、放大、AD 转换和对线性化处理的数据转换,并在程序中采用修正后的数据,实现热电偶的线性化处理。 基本要求: 1、按照技术要求,提出自己的设计方案(多种)并进行比较; 2、利用热电偶和单片机等设计一种热电偶测温系统电路。 3、说明所用传感器的基本工作原理、画出应用电路电路图、写明电路工作原理、注明元器件选取参数、进行方案比较。 主要参考资料: [1]志尚.温度计量与测试[M].:中国计量,1998. [2]茂泰.智能仪器原理及应用[M].: 电子工业,2007. [3]杰,黄鸿.传感器与检测技术[M].: 高等教育,2006. [4]华东.单片机原理与应用[M].: 电子工业,2006. 完成期限 指导教师 专业负责人 2016年5 月7 日

摘要 在现代化的工业现场, 常用热电偶测试高温,测试结果送至主控机。热电偶是工程上应用最广泛的温度传感器之一,它具有构造简单、使用方便、准确度、热惯性小、稳定性及复现性好、温度测量围宽等优点,适用于信号的远传、自动纪录和集中控制,在温度测量中占有重要地位。但由于热电偶的热电势与温度呈非线性关系, 所以必须对热电偶进行线性化处理以保持测试精度。该测温系统通过高精度模/数转换器AD7705对热电偶电动势进行采样、放大, 并在单片机采用一定算法实现对热电偶的线性化处理, 再通过数/模转换器AD421进行数/模转换产生4 mA~ 20mA的电流, 送入主控中心。 关键词:热电偶;线性化;AD转换;DA转换;单片机

热电阻与热电偶的测量原理及区别

热电阻与热电偶的测量原理及区别 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50——+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端

热电偶测量原理

热电偶测量原理 摘要:温度,无论是在工业还是农业生产过程中都属于很普遍又很重要的指标。测量温度信号使用各种类型的温度传感器实现,如热电偶(TC)、热电阻(RTD)、热敏电阻(NTC)等。本文主要介绍热电偶测量原理及其类型,以及对热电偶选取的简单介绍。 一、何为热电偶 两种不同材料的导体或半导体(通常称为热点极)两端接合(接合点A与B)形成回路时候,当两端的接合点T A≠T B时,在回路中就会产生电动势,通过温度差变化引起电动势的变化称为热电效应,该电动势又被称为热电势,如图 1所示。由于该热电势是由两种不同的导体材料产生的,又称之为热电偶。由热电偶的定义可以发现,热电偶可将温度直接转化电信号,使得测量可以很容易简单的进行。 图 1 热电效应原理 二、热电偶类型 对于热电偶热电势的产生需要达到如下条件: 1.两种不同材料的导体或半导体; 2.温度差的产生,即TA≠TB; 改变T A(称之为测量端,也叫热端)结点温度时,保持T B(称之为参考端,也叫冷端)处于一恒温状态,就能通过热电势与温度关系得出该两种材料所形成的热电偶分度表,由于热电势指的是E AB(T A,T B),两端接合点温度差所对应的电势差有关,而温度差相同但温度段不同时对应的信号大小也是不一致的,例如0~50℃和50~100℃的温度差相同,但信号大小却是不相同,为了准确测量温度信号就必须把其中一头的温度固定下来,通常分度表的T B一般为0℃。所以从理论上讲,任何两种导体都可以配制为热电偶,但得到的并不全是满足测量需求的,如测温精度、测温范围、测温瞬变程度等。在多年的时间测试了许多种热电材料组合的热电特性,经过百多年的发展已经对产品的规格及性能都已标准化。目前常用的热电偶类型有8种,S、R、B、E、T、J、K、N。其中S、R、B属于贵金属材料热电偶;E、T、J、K、N属于廉金属材料热电偶。对于热电偶类型所选用的材料均可在网上找到对应资料。 对于不同型号类型热电偶拥有自己所测量的最优温度区间,将在后续选取中进一步介绍。 三、热电偶测量原理 四个热电偶基本经验定律: 1.均质导体定律:由同一种均质材料两端焊接组成闭合回路时,无论导体两端及其截面温度如何分布,均不产生接触电势,而温差电势相互抵消,总电势为零; 2.中间导体定律:在热电偶回路中接入中间导体(第三导体),只要中间导体两端温度相同,中间导体的引入对热电偶回路的总电势没有影响;

基于单片机的热电偶测温系统方案

基于单片机的热电偶测温系统 摘要 热电偶传感器是目前接触式测温中应用最广的热电式传感器,在工业用温度传感器中占有及其重要的地位。本文设计了基于单片机的热电偶测温系统,该测温系统由温度测量电路、运算放大电路、A/D转换电路及显示电路组成,以AT89C51单片机为主控单元。文中首先介绍了热电偶的测温原理,热电偶冷端补偿方法,结构形式,及其特点等,另外简答介绍了硬件平台中相关模块的功能及用法。另外对硬件电路包括温度转换芯片MAX6675、K型热电偶、89C51单片机、数码管等元器件及温度采集电路、温度转换电路、数码管显示电路做了详细的介绍及说明。 关键词温度传感器热电偶热时间常数冷端补偿

The thermocouple temperature measurement system based on single chip microcomputer ABSTRACT Thermocouple sensor is currently the most widely used in non-contact temperature measurement of thermoelectric sensors, in the industry with a temperature sensor and its important status. This paper designed the thermocouple temperature measurement system based on single chip microcomputer, the temperature measurement system composed of temperature measuring circuit, operational amplifier circuit, A/D conversion circuit and display circuit, AT89C51 single chip processor as the main control unit. This paper first introduces the principle of thermocouple temperature measurement, the thermocouple cold junction compensation method, structure form, and its characteristics, etc., in the hardware platform are introduced another short answer function and usage of related modules. In addition to hardware circuit including temperature conversion chip MAX6675, K type thermocouple, 89 c51, digital tube and other components and temperature acquisition circuit, temperature conversion circuit, digital tube display circuit made detailed introduction and description. KEY WORDS Temperature sensor Thermocouple Thermal time constant Cold junction compensation

热电偶测温原理

热电偶测温原理 教育知识 热电偶测温原理与检定 前言 热电偶是热电效应理论的具体应用,它在温度测量中得到了广泛的应用。热电偶具有结构简单,容易制造,使用方便和测量精度高等优点。 本论文阐述了热电偶的测温原理、热电偶的安装使用方法以及热电偶检定等方面,特别重点讨论了热电偶的测温原理和检定方法,以便能重点突出本论文的写作目的及观点。通过撰写此论文,使自己能更进一步地掌握和熟悉这些关于热电偶的知识点,为以后在工作岗位上的实践和对热电偶进一步的讨论中打下坚实而有力的基础。 撰写人:王彭 2006年1月12日 摘要:热电偶的测温原理是将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 关键词:原理,使用,检定,实例 热电偶测温原理与检定 第一章热电偶测温原理及正确使用 第一节热电偶的测温原理 在1821年德国医生塞贝克在实验中发现热电效应以来,经珀尔帖、汤姆逊以及开尔文等科学家的大量研究,热电效应理论得到了不断的发展,并日趋完善。热电偶是热电效应的具体应用之一,它在温度测量中得到了广泛的应用,热电偶具有结构简单、容易制造、使用方便和测量精度高等优点。可用于快速测温、点温测量和表面测量等,但是热电偶也存在着不足的地方,如使用的参考端温度必须恒定,否则将歪曲测量结果;在高温或长期使用中,因受被测介质或气氛的作用(如氧化、还原等)而发生劣化,降低使用寿命。尽管如此,热电偶

仍在工业生产和科研活动中起着举足轻重的作用。下面我们从三个热电效应的阐述中来讨论热电偶的测温原理。 一、塞贝克效应和塞贝克电势 热电偶为什么能用来测量温度呢?这就是从热能和电能的相互转化的热电现象说起。在1821年,塞贝克通过实验发现一对异质金属A、B组成的闭合回路(如图1—1)中,如果对接点a加热,那么,a,b两接点的温度就会不同,温度不同,就会有电流产生,使得接在电路中的电流表发生偏转。这一现象现今称为温差电效应或塞贝克效应,相应的电势称为温差热电势或塞贝克电势,它在热电偶回路中产生的电流称为热电流。A、B称为热电极,接点a是用焊接的方法连接一起的,测温时,将它置于被测温度场中,称为测量端或者工作端,接点b一般要求恒定在某一温度称为参考端或自由端。 A A T a b T0 图1—1塞贝克效应示意图 不同的导体材料的电子密度不同,即使相同的导体材料,温度不同,其电子密度也不相同,当异质金属A、B组成闭合回路,由于接点a、b的温度不同(设T>T0),则同一导体温度高的地方自由电子密度大,温度低的地方自由电子密度小,即NA,T>NA,T0;NB,T>NB,T0。由于两金属导体的自由电子密度不同(设NA,T>NB,T;NA,T0>NB,T0),所以在闭合回路中,自由电子密度大的要向自由电子密度小的区域扩散,这样在回路中就产生了“净”电荷流动,即回路中有电动势eAB,这就是产生塞贝克电动势原因。实验证明,当热电极材料一定后,则热电势仅与两接点的温度有关,即: dEAB(T,T0)=SABdT (1—1) 式中:SAB——热电势率或塞贝克系数,其随热电极材料和两接点温度而定。 当两接点的温度分别为T,T0时,回路的热电势为: EAB(T,T0)= SABdT=eAB (T)- eAB (T0) (1—2) 式中:eAB (T),eAB (T0)——接点a,b的分热电势或分塞贝克电势 式(1—2)中角标A、B表示不同的热电极材料,按正极写在前,负极写在后的顺序排列。当温度T>T0时,eAB(T)与总电动势的方向一致,eAB (T0)与总热电动势的方向相反。如果接点的分热电势角标颠倒,它不会改变分热电势的大小,而改变热电势的方向,即: eAB (T0)=- eBA(T0) (1—3) 代入式(1—2)得: EAB(T,T0)= eAB (T)+ eBA(T0) (1—4) 由此可知,热电偶回路的总热电动势的大小仅与热电极的材料和两接点的温度有关,与热电极中间温度分布无关。 对于已定的热电偶,当其参考端温度T0恒定时,eAB(T0)为一常数,则热电势EAB(T,T0)仅是测量端温度的函数,即:

相关主题
文本预览
相关文档 最新文档