当前位置:文档之家› 分子生物学实验指导

分子生物学实验指导

分子生物学实验指导
分子生物学实验指导

北京化工大学分子生物学实验指导

实验一 少量质粒DNA的制备

一、实验目的

(1)了解质粒的特性及其在分子生物学研究中的作用。

(2)掌握质粒DNA分离、纯化的原理。

(3)学习碱裂解法分离质粒DNA的方法。

二、实验原理

质粒(plasmid)是一种双链的共价闭环状的DNA分子,它是染色体外能够稳定遗传得因子。质粒具有复制和控制机构,能够在细胞质中独立自主地进行自身复制,并使子代细胞保持它们恒定的拷贝数。从细胞生存来看,没有质粒存在,基本上不妨碍细胞的存活,因此质粒是寄生性的复制子。根据质粒的这种特性,通常采用DNA体外重组技术和微生物转化等基因工程的技术和方法,使重组到质粒的某种基因(如干扰素基因)带进受体细胞(如具有一定特性的大肠杆菌细胞等)表达它的遗传性质,改变或修饰寄主细胞原有的代谢产物,或产生新的物质(如干扰素)。目前,质粒已广泛地用作基因工程中的DNA分子无性繁殖的运载体,同时它也是研究DNA结构与功能的较好模型。

在细菌细胞中,质粒DNA通常为染色体DNA的2%左右,但是细菌质粒DNA的含量与其复制类型有关。质粒在细胞内的复制,一般分为两种类型:严密控制(stringent control)复制型和松弛控制型(relaxed control)复制型。严密控制复制型的质粒只在细胞周期的一定阶段进行复制,染色体不复制时,质粒也不复制。每个细胞内只含1个或几个质粒分子(即有1个或几个拷贝)。松弛控制复制型的质粒在整个细胞周期中随时可以复制,当染色体复制已经停止时,该质粒仍然能够继续复制。该质粒在一个细胞内有许多拷贝,一般在20个以上,例如col E1 质粒(含有产生大肠杆菌素E1 基因)及其衍生质粒,在每个细胞内约有20多个拷贝。

所有分离质粒DNA的方法都包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA。目前应用于质体DNA的纯化或抽取的方法众多,例如碱溶裂法(alkaline lysis)、热裂解法(boiling method)、氯化铯(CsCl)纯化法,及市售柱层析套管法等。最常用的碱裂解法具效率高、价廉、简单易学等优点。其原理是利用碱处理质粒DNA及染色体DNA,使两者双股打开呈单股状态,再加酸中和,使单股回复为双股DNA,同时在急速中和反应中,染色体DNA因分子过于庞大以致于碱基匆忙配对,形成杂乱无序的巨大分子,对水的相对溶解度低而易被沉淀下来。相反,质粒DNA因分子小,两单股DNA恢复原碱基配对快而易溶于水中,所以只要经过离心,即可将染色体DNA与质体DNA分离。本实验所使用的pUC19含有β-lactamase基因,会产生peripasmic酶,进行蓝白斑筛选,抗氨苄青霉基因ampicillin (Amp)两种抗性筛选标记。

碱裂解法:本实验是以alkaline lysis的方法进行,其原理是将大肠杆菌以NaOH及SDS分解,并使蛋白质及DNA变性,然后以酸中和。小分子质粒DNA在中和后可恢复原状,但大部

分的大肠杆菌染色体DNA则无法完全复原而与SDSD-K+所含复合物一起沉淀下来,可离心去除,上清液所含质粒则可以乙醇(ethanol)或异丙醇(isopropanol)将其沉淀下来。

三、实验方法

1.仪器用具:

a.无菌操作台(laminar flow)

b.台式型离心机(microcentrifuge)

c.微量吸管(pipetman)

d.真空干燥机(speed vac)

e. 漩涡混合器

f. 琼脂糖凝胶电泳仪

2.材料:

实验前一天,将含质粒的大肠杆菌接种至含ampicillin (50 μg/ml)的LB培养液中,并在37 o C下振荡培养过夜。

3.药品及试剂:

a.Solution I: 25mM Tris-HCl (pH 8.0), 10 mM EDTA (pH 8.0), 50 mM glucose

b.Solution II: 0.2M NaOH, 1% SDS (使用前以10 N NaOH与10% SDS稀释配制)

c.Solution III: 3M醋酸钾溶液(KAc, pH 5.2)

d.RNase A: 1mg/ml

e.TE buffer: 10mM Tris-HCl(pH8.0), 1mM EDTA (pH8.0)

f.100% 乙醇(ethanol)或异丙醇(isopropanol)

g.LB(Luria-Bertani)培养液: 10g tryptone, 5g yeaste extract, 10g NaCl in 1L

h.酚/氯仿(1:1)溶液

i.1 x TAE电泳缓冲液:40 mM Tris-乙酸, 1mM EDTA(pH 8.0)

j .DNA mark er:DL2000

4.实验步驟:

1)将过夜菌液分別倒入1.5ml微量离心管中以10,000 rpm离心1分钟后,倒去上清

液。

2)沉淀菌体加入50 μl Solution I,用漩涡混合器剧烈振荡使菌体完全悬浮,置于

冰上5分钟。

3)加入100 μl Solution II,盖上管盖后将管子反复上下摇动3次,不可剧烈振荡,

置于冰上5分钟。

4)加入75 μl Solution III,亦温和摇匀,置于冰上5分钟。

5)加等体积酚:氯仿(1:1)225 μl混匀。

6)以12,000 rpm 离心5分钟,小心吸取上清液至另一微量离心管中。

7)加入2倍体积100% 酒精,混合均匀,置于冰上20分钟。

8)以12,000 rpm 离心8分钟,倒掉上清液,加入70% 酒精清洗一次,置于真空干燥

机中10分钟。

9)加入15ul灭菌水,溶解DNA。

10)电泳检测(琼脂糖凝胶电泳),取5μl DNA溶解液加2μl Loading buffer于1%琼脂糖,电泳半小时,电压80伏。

11)电泳凝胶在透射式紫外检测仪上观察,记录结果。

四、注意事项

1.细菌培养过程要求无菌操作。抗菌素等不能高温灭菌,应使用细菌滤器过滤后使用。细菌培养液、配试剂用的蒸馏水、试管和Eppendorf离心管等有关用具和某些试剂须经高压灭菌处理。接触过细菌的器具用后应消毒灭菌再洗净。

2.制备质粒过程中,所有操作必须缓和,不要剧烈振荡,以避免机械剪切力对DNA的断裂作用。同时也应防止DNase引起DNA的降解。

3.酚氯仿有强腐蚀性,使用时要格外小心,不要弄到手上,必要时带手套。

4.加入乙酸钾溶液后,可用小玻璃棒轻轻搅开团状沉淀物,防止质粒DNA可能被包埋在沉淀物内,不易释放出来。

5.用酚/氯仿混合液除去蛋白效果比单度作用酚或氯仿更好。为充分除去残余的蛋白质,可以进行多次抽提,直至两相间无絮状蛋白沉淀。

6.提取的各步操作尽量在低温条件下进行(冰裕上)。

7.电泳时,电泳缓冲液要没过凝胶。

8. 在质粒提取过程中,由于机械力、酸碱度、试剂等的原因,可能使质粒DNA链发生断裂。所以,多数 质粒粗提取物中含有三种构型的质粒:

共价闭合环状DNA(cccDNA): 质粒的两条链没有断裂;超螺旋

开环DNA(ocDNA): 质粒的一条链断裂;松弛的环状分子

线形DNA(lDNA): 质粒的两条链均断裂;线性分子

质粒DNA的形态不一,电泳时在凝胶中的迁移率不同。超螺旋的质粒DNA一般迁移最快、开环(缺口)质粒DNA迁移最慢,线化DNA位于两者之间。本实验采用绿色荧光蛋白(GFP)对DNA进行染色,电泳显示有些脱尾,绿色荧光部分有一大片,可能是把染料直接加到质粒DNA中所致,所以我又将胶用EB(溴化乙锭)染色,紫外线照射下呈桔红色荧光,可由上图清除看到质粒DNA所在位置。

(a)松弛线性的DNA;(b)松弛开环的OC构型;(c)超螺旋的SC构型

实验二 PCR反应

一、实验目的

1、学习PCR 反应的基本原理与实验技术。

2、了解引物设计的一般要求。

二、实验原理

聚合酶链式反应(polymerase chain reaction,PCR)是体外酶促合成特异DNA片断的一种技术。利用PCR技术可在数小时之内大量扩增目的基因或DNA片断,从而免除基因重组和分子克隆等一系列繁琐操作。由于这种方法操作简单、实用性强、灵敏度高并可自动化,因而在分子生物学、基因工程研究以及对遗传病、传染病和恶性肿瘤等基因诊断和研究中得到广泛应用。

PCR进行的基本条件是:

(1) 以DNA为模板(在RT-PCR中模板是RNA);

(2) 以寡聚核苷酸为引物;

(3) 需要4种dNTP 作为底物;

(4) 有 Taq DNA 聚合酶。

PCR 每一个循环由三个步骤组成:

(1) 变性 加热模板DNA,使其解离成单链;

(2) 退火 降低温度,使人工合成的寡聚核苷酸引物在低温条件下与模板DNA 所需扩增序列结合;

(3) 延伸 在适宜温度下,DNA 聚合酶利用dNTP 使引物3’端向前延伸,合成与模板碱基序列完全互补的DNA链。

每一个循环产物可作为下一个循环的模板,因此通过35-45个循环后,目标片断的扩增可达106-107倍。

本实验扩增的片段约1.3kb,故需用LA Taq TM 扩增长片段。

三、 实验方法

1、仪器用具:

a.PCR 扩增仪

b.琼脂糖凝胶电泳仪

2、药品及试剂

a.LA Taq TM(5U/μl)购于Takara

b.10×反应缓冲液:0.67mol/l,pH = 8.8 Tris-HCl,0.067mol/l MgCl

2,0.166mol/l (NH

4

2SO

4

c.dNTP(2.5mM)

d.引物P1,P2

3、实验步骤

1)PCR扩增体系

在150μl离心管中按体积有大到小加入下列试剂,最后加酶:

模板 0.5μl

引物P1 0.5μl

引物P2 0.5μl

dNTP 3 μl

10×buffer 2.5μl

LA Taq 0.5μl

O 17.5μl

ddH

2

Total 25 μl

2)扩增程序

预变性 94℃ 5min

变性 94℃ 30s

30个循环

退火 43℃ 30s

延伸 72℃ 2min

末端延伸 72℃ 10min

保存 16℃ 8h

3)PCR产物电泳检测 反应结束后,取5μl PCR 产物用1% 的琼脂糖凝聚电泳检测,用GLP 在紫外灯下检测。

四、注意事项

1、在加入各试剂时要先加体积大的试剂,再加体积小的试剂,并充分混合。

2、加Taq酶时要拿管的上部,避免用手触摸酶的部分。

3、PCR的影响因素:

(1)模板 单、双链 DNA 都可作为PCR的模板,若起始材料是RNA,需先通过逆转录反应得到一条cDNA。虽然PCR 可以用极度微量的样品甚至是来自于单一细胞的DNA,但为了保证反应得特异性,一般宜用ng级的克隆DNA,μg水平的染色体DNA 或104拷贝数量的待扩增片断来作起始材料。原料可以是粗制制品,但不能混有蛋白酶、核酸酶、Taq DNA 聚合酶抑制剂以及任何能结合DNA 的蛋白质。

(2) 引物 引物是决定PCR结果的关键。5’引物应与靶序列正链5’端序列相同,与负链3’端互补,3’端引物与正链3’端序列互补。较好的引物在结构和组成上应满足以下条件:①作PCR 引物的寡核苷酸至少应含有16个核苷酸,最好长达20-24个核苷酸,4种碱基分布较均匀,(G+C)含量约占50%。这种寡核苷酸在聚合反应温度(72℃)下不会形成稳定的杂合体。②引物不应有发夹结构,即不含有4个碱基对以上的回文序列。③ 两引物之间不应有大于4个碱基对的同源序列。④引物与靶序列的Tm(变性温度)不能低于55℃。

(3) 反应温度和时间 PCR 涉及变性、退火、延伸三个不同温度和时间。通常变性温度和时间为95℃,45秒至少1分钟,过高温度或持续时间过长会降低Taq DNA 聚合酶活性和破

坏dNTP 分子。退火温度可选择比变性温度(Tm)低2-3℃,变性温度按Tm=4(G+C)%+2(A+T)% 计算,在Tm值允许的范围内,较高的退火温度有利于提高PCR 特异性,退火时间一般为1-1.5 分钟。延伸温度为72℃,时间则与待扩增片断长度有关,一般1kb以内片断延伸时间为1分钟,如扩增片断较长可适当增加时间。

(4) Taq DNA 聚合酶 目前有两种Taq DNA 聚合酶供应:从噬热水生菌中提取的天然酶和大肠杆菌合成的基因工程酶(Ampli Taq TM)。两种酶都有依赖于聚合作用的5’-3’外切酶活性,但均缺乏3’-5’外切酶活性。在PCR 中,它们可以相互替代,催化典型的PCR 所需酶量为1-2.5单位。酶量偏少则PCR 产物相应减少,酶量过高则会增加非特异性反应。

(5) dNTP 浓度 dNTP在饱和浓度(200μmol/l)下使用。由于dNTP 溶液有较强酸性,配制时可用1 mol/l NaOH 溶液将其贮存液(50mmol/l)的pH 调至7.0-7.5。分装小管子-20℃保存。过多冻溶会使其降解。

(6) PCR 缓冲溶液 在反应体系中二价阳离子的存在至关重要,镁离子优于锰离子,而该离子无效。它对引物与模板的结合、产物特异性、错误率、引物二聚体的生成及酶的活性等方面有较大影响,镁离子浓度一般在0.5-2.5 mmol/l之间。每当首次使用靶序列和引物的一种新组合时,尤其是调整Mg2+浓度至最佳。

实验三 大肠杆菌感受态细胞的制备

一、 实验目的

(1)了解转化的概念,及其在分子生物学研究中的意义。

(2)学习氯化钙法制备大肠杆菌感受态细胞的方法。

二、 实验原理

质粒DNA需经过转化过程(Transformation),才能将其导入感受态细胞(competent cell)或者大肠杆菌体中,然后通过寄主细菌的系统来达到复制DNA的目的。进行细菌转化作用最常用的一种方法是加入大量的氯化钙(Calcium chloride),导致大肠杆菌的细胞壁发生结构上的变化,变成感受态细胞,而有利于质体DNA进入细菌细胞內。

大部分大肠杆菌品系的转化效率在105-108之间,即每μg质粒DNA中成功的转化细胞数目,影响此效率的因子与感受态细胞状況或吸收DNA的能力有关。而这2项因子又受细菌是否处于对数生长期、处理时是否将细胞保持在4 °C以下,以及氯化钙处理细胞的时间影响。感受态细胞制备完成后,利用热休克处理,使细胞质膜的油脂变性而刺激转化作用,而后給予一段时间恢复后,可用对抗生素之抗性标记,进行筛选工作。本实验是利用冰冷的氯化钙溶液制备感受态细胞,其转化效率约在105-107之间。

三、实验方法

1.仪器用具:

a.37 °C恒温箱

b. spectrophotometer

c. 冰浴

d. 冷冻离心机

2.药品与试剂:

a.LB培养基

NaCl 10g/L

酵母提取物 5g/L

胰蛋白胨 10g/L

b.CaCl

溶液:1mol/L

2

3.实验步骤:

1)从新活化的E.coli DH5α菌平板挑取一个单菌落,接种于5 ml含LB液体培养基试管中,37℃摇菌培养12h左右至对数生长期;

2)将该菌悬液以1:50接种量转接于含有100ml LB液体培养基的三角瓶,37℃剧烈摇菌培养3-4h,至OD600达0.3-0.4;

3)将40ml细菌培养物无菌条件下转移至预冷的1.5 ml离心管中,冰浴30 min;

4)4℃,4000rpm离心10 min,弃上清,收集菌体沉淀;

5)加入700μl冰冷的0.1 mol/L-1 CaCl

重悬细胞,冰浴30 min;

2

6)4℃,4000rpm离心10 min,弃上清,收集菌体沉淀;

7)最后用300μl 0.1 mol/L-1 CaCl

重悬菌体沉淀,再加100μl 10 % 甘油,混匀后分

2

装速冻,-80℃贮存备用。(液氮)

四、注意事项

1、实验中凡涉及溶液的移取、分装等需敞开实验器皿的操作,均应在无菌超净台中进行,以防污染。

2、衡量受体菌生长情况的A

值和细胞数之间的关系随菌株的不同而不同,因此,不同菌株

600

值是不同的。

的合适A

600

3、悬浮菌体时不要剧烈推打枪头,要轻轻的悬浮菌体。

实验四 连接及重组质粒的转化

一、实验目的

1、了解转化的概念,及其在分子生物学研究中的意义。

2、学习将外源质粒DNA 转入受体菌细胞并筛选转化体的方法。

二、实验原理

转化(transformation)是将异源DNA分子引入另一细胞品系,使受体细胞获得新的遗传形状的一种手段,它是微生物遗传、分子遗传、基因工程等研究领域的基本实验技术。

转化过程所用的受体细胞一般是限制-修饰系统缺陷的变异株,即不含限制性内切酶和

,甲基化酶的突变株,常用R-M-符合表示。受体细胞经过一些特殊方法(如:点击法,CaCl

2 RuCl等化学试剂法)的处理后,细胞膜的通透性发生变化,成为能容许外源DNA分子通过的感受态细胞。在一定条件下,将外源DNA分子与感受态细胞混合保温,使外源DNA分子进入受体细胞。进入细胞的DNA分子通过复制表达实现遗传信息的转移,使受体细胞出现新的遗传性状。将经过转化后的细胞在选择性培养基中培养即可筛选出转化体(即带有异源DNA分子的受体细胞 transformant)。

本实验以E coli DH5α菌株为受体细胞,用CaCl2 处理受体菌使其处于感受态,然后与pMD18-T载体共保温,实现转化。

pMD18-T Vector

是一种高效克隆PCR产物 (TA Cloning) 的专用载体。这种载体是由pUC18载体改建而成,在pUC18载体的多克隆位点处的Xba I和Sal I识别位点之间插入了EcoR V识别位点,用EcoR V进行酶切反应后,再在两侧的3'端添加 "T" 而成。因大部分耐热性DNA聚合酶进行PCR反应时都有在PCR产物的3'末端添加一个 "A" 的特性,所以使用这两种制品可以大大提高PCR产物的连接、克隆效率。

该载体携带有抗氨苄青霉素基因,因而使接受了该质粒的受体菌具有抗氨苄青霉素的特性,同时还能进行蓝白斑筛选,其中有β-半乳糖苷酶基因(lacZ)的调控序列和前146个氨基酸的编码信息。在这个编码区中插入了一个多克隆位点(MCS),它并不破坏读框,但可使少数几个氨基酸插入到β-半乳糖苷酶的氨基端而不影响功能,这种载体适用于可编码β-半乳糖苷酶C端部分序列的宿主细胞。因此,宿主和质粒编码的片段虽都没有酶活性,但它们同时存在时,可形成具有酶学活性的蛋白质。这样,lacZ基因在缺少近操纵基因区段的宿主细胞与带有完整近操纵基因区段的质粒之间实现了互补,称为α-互补。由α-互补而产生的LacZ+细菌在诱导剂IPTG的作用下,在生色底物X-Gal存在时产生蓝色菌落,因而易于识别。然而,当外源DNA插入到质粒的多克隆位点后,几乎不可避免地导致无α-互补能力的氨基端片段,使得带有重组质粒的细菌形成白色菌落。这种重组子的筛选,又称为蓝白斑筛选。如用蓝白斑筛选则经连接产物转化的钙化菌平板37℃温箱倒置培养12-16hr后,有重组质粒的细菌形成白色菌落。

三、实验方法

1.仪器用具:

a.37 °C恒温箱

b. 分光光度计

c. 冰浴

d. 冷冻离心机

2.材料:

DH5α

3.实验步骤:

(1)连接体系

pMD18-T vector 0.1 μl

目的基因 1.5 μl

Mix ligation 2.5 μl

O 0.9 μl

ddH

2

total 5 μl

16℃连接2-3h。

(2)取出-70℃冻存的DH5α感受态细胞,置冰上使其缓慢融化,轻弹管壁使细胞混合均

匀;

(3)开盖前将连接产物离心至管底,于冰上吸取5 μl连接物加入到100μl感受态细胞

中;

(4)此时要避免过多的吸吹、移液,轻轻混匀细胞 (用手轻轻弹管壁3、4下),立即置

冰上20 min;

(5)将管置42℃恒温水浴中热激90s,立即放回冰上2 min;

(6)加入800 μl无附加抗生素的LB液体培养基,混匀,37℃预表达培养1.5 h(~150rpm);

(7)吸取200 μl菌液涂布于LB/Amp/IPTG/X-Gal平板上,37℃保温培养约16-24 h,观

察菌落生长情况,利用蓝白斑初筛重组转化体。

(8)第2天早上取出此2 plates,观察并记录菌落数目,以计算所制备感受态细胞的转

化效率。

转化细胞效率(transformation efficiency)= 第2 plate菌数 ×50(稀释倍数) ×105(由pg換算回μg)

四、注意事项

为提高转化率:实验中要注意以下几个重要因素:

①细胞生长状态和密度

不要用已经过多次转接,及贮存在4°C的培养菌液;细胞生长密度以每毫升培养液中

的细胞数在5×107个左右为最佳(可通过测定培养液的A

控制),密度不足或过高均会使

600

转化率下降。

②转化的质粒DNA的质量和浓度

用于转化的质粒DNA应主要是共价闭环DNA(即cccDNA,又称超螺旋DNA),转化率

与外源DNA的浓度在一定范围内成正比,但当加入的外源DNA的量过多或体积过大则会使

转化率下降。

③试剂的质量

等,应是高质量的,且最好分装保存于干燥的暗处。

所用的试剂,如CaCl

2

④防止染菌和其他外源DNA 污染

所用器皿,如离心管、分装用的eppendorf 管等,一定要干净,最好是新的。整个实

验过程中要注意无菌操作,少量其他试剂或DNA的污染都会影响转化率,或是转进了杂DNA。

实验五 SDS-聚丙烯酰胺凝胶电泳

一、实验目的

1、 学习聚丙烯酰胺凝胶电泳原理

2、 掌握聚丙烯酰胺凝胶垂直板电泳的操作技术。

二、实验原理

SDS-聚丙烯酰胺凝胶电泳是最常用的定性分析蛋白质的电泳方法,特别是用于蛋白质纯度检测和测定蛋白质分子量。

SDS-PAGE是在要走电泳的样品中加入含有SDS和β-巯基乙醇的样品处理液,SDS即十二烷基磺酸钠(CH3-(CH2)10-CH2OSO3- Na+),是一种阴离子表面活性剂即去污剂,它可以断开分子内和分子间的氢键,破坏蛋白质分子的二级和三级结构,强还原剂β-巯基乙醇可以断开半胱氨酸残基之间的二硫键,破坏蛋白质的四级结构。电泳样品加入样品处理液后,要在沸水浴中煮3~5 min,使SDS与蛋白质充分结合,以使蛋白质完全变性和解聚,并形成棒状结构。SDS与蛋白质结合后使蛋白质-SDS复合物上带有大量的负电荷,平均每两个氨基酸残基结合一个SDS分子,这时各种蛋白质分子本身的电荷完全被SDS掩盖。这样就消除了各种蛋白质本身电荷上的差异。样品处理液中通常还加入溴酚蓝染料,用于控制电泳过程。另外样品处理液中也可加入适量的蔗糖或甘油以增大溶液密度,使加样时样品溶液可以沉入样品凹槽底部。

制备凝胶时首先要根据待分离样品的情况选择适当的分离胶浓度,例如通常使用的15%的聚丙烯酰胺凝胶的分离范围是104~105,即分子量小于104的蛋白质可以不受孔径的阻碍而通过凝胶,而分子量大于105的蛋白质则难以通过凝胶孔径,这两种情况的蛋白质都不能得到分离。所以如果要分离较大的蛋白质,需要使用低浓度如10%或7.5%的凝胶(孔径较大);而对于分离较小的蛋白质,使用的较高浓度凝胶(孔径较小)可以得到更好的分离效果。分离胶聚合后,通常在上面加上一层浓缩胶(约1 cm),并在浓缩上插入样品梳,形成上样凹槽。浓缩胶是低浓度的聚丙烯酰胺凝胶,由于浓缩胶具有较大的孔径(丙烯酰胺浓度通常为3~5%),各种蛋白质都可以不受凝胶孔径阻碍而自由通过。浓缩胶通常pH值较低(通常pH = 6.8),用于样品进入分离胶前将样品浓缩成很窄的区带。浓缩胶聚合后取出样品梳,上样后即可通电开始电泳。

聚丙烯酰胺凝胶电泳和SDS-聚丙烯酰胺凝胶电泳有两种系统,即只有分离胶的连续系统和有浓缩胶与分离胶的不连续系统,不连续系统中最典型、国内外均广泛使用的是著名的

Ornstein-Davis 高pH 碱性不连续系统,其浓缩胶丙烯酰胺浓度为4%,pH = 6.8,分离胶的丙烯酰胺浓度为12.5%,pH = 8.8。电极缓冲液的pH = 8.3,用Tris 、SDS 和甘氨酸配制。配胶的缓冲液用Tris 、SDS 和HCl 配制。

样品在电泳过程中首先通过浓缩胶,在进入分离胶前由于等速电泳现象而被浓缩。这是由于在电泳缓冲液中主要存在三种阴离子,Cl -

、甘氨酸阴离子以及蛋白质-SDS 复合物,在浓缩胶的pH 值下,甘氨酸只有少量的电离,所以其电泳迁移率最小,而Cl -的电泳迁移率最

大。在电场的作用下,Cl -最初的迁移速度最快,这样在Cl -后面形成低离子浓度区域,即低

电导区,而低电导区会产生较高的电场强度,因此Cl -后面的离子在较高的电场强度作用下会加速移动。达到稳定状态后,Cl -和甘氨酸之间形成稳定移动的界面。而蛋白质-SDS 复合物

由于相对量较少,聚集在甘氨酸和Cl -的界面附近而被浓缩成很窄的区带(可以被浓缩三百

倍),所以在浓缩胶中Cl -是快离子(前导离子),甘氨酸是慢离子(尾随离子)。

当甘氨酸到达分离胶后,由于分离胶的pH 值(通常pH = 8.8)较大,甘氨酸离解度加大,电泳迁移速度变大超过蛋白质-SDS 复合物,甘氨酸和Cl -的界面很快超过蛋白质-SDS 复合物。这时蛋白质-SDS 复合物在分离胶中以本身的电泳迁移速度进行电泳,向正极移动。由于蛋白质-SDS 复合物在单位长度上带有相等的电荷,所以它们以相等的迁移速度从浓缩胶进入分离胶,进入分离胶后,由于聚丙烯酰胺的分子筛作用,小分子的蛋白质可以容易的通过凝胶孔径,阻力小,迁移速度快;大分子蛋白质则受到较大的阻力而被滞后,这样蛋白质在电泳过程中就会根据其各自分子量的大小而被分离。溴酚蓝指示剂是一个较小的分子,可以自由通过凝胶孔径,所以它显示着电泳的前沿位置。当指示剂到达凝胶底部时,停止电泳,从平板中取出凝胶。在适当的染色液中(如通常使用的考马斯亮蓝)染色几个小时,而后过夜脱色。脱色液去除凝胶中未与蛋白结合的背底染料,这时就可以清晰地观察到凝胶中被染色的蛋白质区带。通常凝胶制备需要1~1.5小时,电泳在25~30mA 下通常需要3小时,染色2~3小时,过夜脱色。通常使用的垂直平板电泳可以同时进行多个样品的电泳。

Henderson-Hasselbalch 公式:

种分子的离解度。由上式可以看出:① 浓缩胶的pH (6.8)小于Ornstein 和Davis 设计的高pH 碱性不连续系统,有其独特的特点。根据式中的“α”是缓冲液中各-α

α

1lg +=pKa pH 慢离子甘氨酸的pKa (9.8)3个pH 左右,所以 α≈ 0.001,即在浓缩胶中甘氨酸只有0.1%离解,因此在电场中迁移很慢,是慢离子。② 快离子Cl -由于几乎全部离解,电泳迁移率最大,不受pH 变化的影响。③ 分离胶的pH (8.8)小于慢离子的pKa 一个pH 左右,α≈ 0.1,所以在分离胶中甘氨酸离解加大,电泳迁移率加大,就赶到蛋白质带的前面。

于分离胶的

pH 电泳还可以用于未知蛋白分子量的测定,

在同一凝胶上对一系列已知分纯度的检测,

纯化的蛋白质通常在SDS 电泳一些主要的影响因素:

荷、分子大小和性质都会对电泳有明显影响。一般来说,分子带会影响待分离生物大分子的解离程度,从而对其带电性质产生影响,溶液pH 值V/cm)是每厘米的电位降,也称电位梯度。电场强度越大,电泳速度越快。但增 W=I 2.R .t

泳时间。

此外还可以总结出该系统的特点有:④ 电极缓冲液中共轭碱Tris 的pKa 小约1个pH ,使其缓冲能力大。⑤电极缓冲液的pH 为8.3,相近于Tris 的pKa (8.1)

,以便获得最大的缓冲能力。

SDS -聚丙烯酰胺凝胶子量的标准蛋白及未知蛋白进行电泳,测定各个的标准蛋白的电泳距离(或迁移率)

,并对各自分子量的对数(log M r )作图,即得到标准曲线。测定未知蛋白质的电泳距离(或迁移率),通过标准曲线就可以求出未知蛋白的分子量。

SDS -聚丙烯酰胺凝胶电泳经常应用于提纯过程中上应只有一条带,但如果蛋白质是由不同的亚基组成的,它在电泳中可能会形成分别对应于各个亚基的几条带。SDS -聚丙烯酰胺凝胶电泳具有较高的灵敏度,一般只需要不到微克量级的蛋白质,而且通过电泳还可以同时得到关于分子量的情况,这些信息对于了解未知蛋白及设计提纯过程都是非常重要的。

影响电泳分离的因素很多,下面简单讨论1. 待分离生物大分子的性质

待分离生物大分子所带的电的电荷量越大、直径越小、形状越接近球形,则其电泳迁移速度越快。

2. 缓冲液的性质

缓冲液的pH 值距离其等电点愈远,其所带净电荷量就越大,电泳的速度也就越大,尤其对于蛋白质等两性分子,缓冲液pH 还会影响到其电泳方向,当缓冲液pH 大于蛋白质分子的等电点,蛋白质分子带负电荷,其电泳的方向是指向正极。为了保持电泳过程中待分离生物大分子的电荷以及缓冲液pH 值的稳定性,缓冲液通常要保持一定的离子强度,一般在0.02-0.2,离子强度过低,则缓冲能力差,但如果离子强度过高,会在待分离分子周围形成较强的带相反电荷的离子扩散层(即离子氛),由于离子氛与待分离分子的移动方向相反,它们之间产生了静电引力,因而引起电泳速度降低。另外缓冲液的粘度也会对电泳速度产生影响。

3. 电场强度

电场强度(大电场强度会引起通过介质的电流强度增大,而造成电泳过程产生的热量增大。电流在介质中所做的功(W)为:

上式中:I 为电流强度,R 为电阻,t 为电

度升高,这会造成很多影响: 物的混电场中,对于固体支持介质的相对移动,称为电渗现象。由于支持介质表面可能会存小对待分离生物大分子的电泳迁移速度有明显的影响。在筛孔大的介质中、 实验方法

制备分离胶(pH 8.8)

电流所作的功绝大部分都转换为热,因而引起介质温①样品和缓冲离子扩散速度增加,引起样品分离带的加宽;②产生对流,引起待分离合;③如果样品对热敏感,会引起蛋白变性;④引起介质粘度降低、电阻下降等等。电泳中产生的热通常是由中心向外周散发的,所以介质中心温度一般要高于外周,尤其是管状电泳,由此引起中央部分介质相对于外周部分粘度下降,摩擦系数减小,电泳迁移速度增大,由于中央部分的电泳速度比边缘快,所以电泳分离带通常呈弓型。降低电流强度,可以减小生热,但会延长电泳时间,引起待分离生物大分子扩散的增加而影响分离效果。所以电泳实验中要选择适当的电场强度,同时可以适当冷却降低温度以获得较好的分离效果。

4. 电渗

液体在在一些带电基团,如滤纸表面通常有一些羧基,琼脂可能会含有一些硫酸基,而玻璃表面通常有Si-OH 基团等等。这些基团电离后会使支持介质表面带电,吸附一些带相反电荷的离子,在电场的作用下向电极方向移动,形成介质表面溶液的流动,这种现象就是电渗。在pH 值高于3时,玻璃表面带负电,吸附溶液中的正电离子,引起玻璃表面附近溶液层带正电,在电场的作用下,向负极迁移,带动电极液产生向负极的电渗流。如果电渗方向与待分离分子电泳方向相同,则加快电泳速度;如果相反,则降低电泳速度。

5. 支持介质的筛孔

支持介质的筛孔大泳动速度快,反之,则泳动速度慢。

三 1、试剂

凝胶浓度 8% 10% 12.5%

30:0.8% w/v 丙烯酰胺:双丙烯酰胺

2 ml 2.5 ml 3.1 ml l 灌胶前加入APS 和TEMED

μl 36 μl 36 μl

l l l 1.0M Tris-Cl pH 8.8

3 ml 3 ml 3 ml 20% SDS

38 μl 38 μl 38 μl dH 2O

2.43 m 1.9 ml 1.3 ml 混合, 10% APS 36TEMED 5 μl 5 μl 5 μl

总体积

7.5 m 7.5 m 7.5 m

备浓缩)

制胶(pH 6.8积层胶浓度 4% 6%

30:0.8% w/v 丙烯酰胺:双丙烯酰胺

660 μl 1 ml l 胶前加入APS 和TEMED

μl 25

μl SDS 上样缓冲液配制:187.5 mM Tris-HCL(pH 6.8,置于25℃),6% w/v SDS,30% 转移缓冲液配制:25 mM Tris 碱,0.2 M 甘氨酸,20%甲醇(pH 8.5)

2、

泳槽,

压300-600V,电流50-100mA),

或者50μL),

3实验步骤

擦净玻璃杯,用凡士林将密封胶条涂上凡士林,不要太多。

加好,灌胶前再加。用滴管层胶。用10 ml 注射1M Tris-Cl pH6.8

630 μl 630 μ20% SDS

25 μl 25 μl dH2O

3.6 ml 3.6 ml 混合,灌 10% APS 25TEMED 5 μl 5 μl

总体积 5 ml 5 ml

3×glycerol,150 mM DTT,0.03% 溴酚蓝

器材a.垂直板电b.直流稳压电源(电c.烧杯(25,50,100ml),

d.细长头的滴管,

e.微量注射器(10μL

f.玻璃板(13*13cm)

①②将分离胶和浓缩胶的成分除了过硫酸铵和TEMED 两样,其余全将配制好的溶液缓慢加入到装配好的板中至凝胶高度为6 cm 左右,预留1.5 cm 高度配制积层胶。每板凝胶溶液上灌入去离子水,放置1小时左右至聚合完全。

③使用Whatman 3 mm 滤纸吸去分离胶上层覆盖的所有溶液,如上配制积器将积层胶加入板中至顶端,小心插入梳子,注意不要产生气泡。凝胶聚合1小时左右。 ④凝胶电泳前,拔去梳子,每孔均用1×电泳缓冲液清洗。上、下层电泳槽中加入1×电泳缓冲液,上层槽中缓冲液液面需超过上样孔顶端1 - 2 cm。

⑤准备样品液:样品(40 – 60 μg总蛋白或10 – 20 μg核蛋白)与3×上样缓冲液2:1混合,煮沸3分钟。

⑥将准备好的样品液和生物素标记的蛋白质分子量标准(使用生物素标记的分子量标准可以方便地在化学发光检测样品目的蛋白的同时也检测到相应的分子量标准,能更直观地判断目的蛋白大小)。分别上样,标准加进第一个孔中。

⑦电泳:样品首先在60V恒定电压下电泳至染料接近分离胶顶端。然后150恒定电压电泳至溴酚蓝刚出胶底部。凝胶电泳于4℃。

⑧染色 将凝胶放入0.05%考马斯亮蓝R250(内含20%磺基水杨酸)染色液中,使染色液没过胶板,染色30min左右。

⑨脱色 用7%乙酸浸泡漂洗数次,直至背景蓝色褪去。如用50℃水浴或脱色摇床,则可缩短脱色时间。脱色液经活性炭脱色后,可反复使用。

四、注意事项

(1) 制备凝胶应选用高纯度的试剂,否则会影响凝胶聚合与电泳效果。

Acr和Bis是制备凝胶的关键试剂,如含有丙烯酸或其它杂质,则造成凝胶聚合时间延长,聚合不均匀或不聚合,应将它们分别纯化后方能使用。

Acr和Bis均为神经毒剂,对皮肤有刺激作用,实验表明对小鼠的半致死剂量为170mg/1kg,操作时应戴手套和口罩,纯化应在通风橱内进行。

Acr和Bis的贮液在保存过程中,由于水解的作用而形成丙烯酸和NH

,虽然溶液放在棕色

3

试剂瓶中,4℃贮存能部分防止水解,但也只能贮存1-2个月,可测pH值(4.9-5.2)来检查试剂是否失效。

(2) 由于与凝胶聚合有关的硅橡胶条、玻璃板表面不光滑洁净,在电泳时会造成凝胶板与玻璃板或硅橡胶条剥离,产生气泡或滑胶;拨胶时凝胶板易断裂,为防止此现象,所用器材均应严格的清洗。硅橡胶条的凹槽、样品模槽板及电泳槽用泡沫海绵蘸取洗洁净仔细清洗。玻璃板浸泡在重铬酸钾洗液3-4h或0.2mol/L KOH的酒精溶液中20min以上,用清水洗净,再用泡沫海绵蘸取洗洁净反复清洗,最后用蒸馏水冲洗,直接阴干或用乙醇冲洗后阴干。

(3) 安装电泳槽和镶有长、短玻璃板的硅橡胶框时,位置要端正,均匀用力或用一旋紧固定螺丝,以免缓冲液渗漏。样品槽模板梳齿应平整光滑。

(4) 用琼脂封底及灌凝胶时不能有气泡,以免影响电泳时电流的通过。

(5) 凝胶完全聚合后,必须放置30min 至1h,使其充分老化后才能轻轻取出样品模槽板,

分子生物学实验指导(精)

分子生物学实验指导 生物技术教学室编 宁夏大学生命科学学院 2008年8月

实验一分子生物学实验技术多媒体演示 [目的要求] 通过多媒体试验录像进一步掌握分子生物学基本操作技术。 [教学方式] 多媒体光盘演示。 [实验内容] 基本的分子生物学实验操作技术包括核酸凝胶电泳技术;质粒提取;转化;重组体的筛选;PCR技术等。

实验二琼脂糖凝胶电泳检测DNA [目的要求] 通过本实验学习琼脂糖凝胶电泳检测DNA的方法和技术 [实验原理] 琼脂糖凝胶电泳是分离鉴定和纯化DNA片段的常用方法。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应,DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速度向正极方向移动。不同浓度琼脂糖凝胶可以分离从200bp至50 kb的DNA片段。在琼脂糖溶液中加入低浓度的溴化乙锭(Ethidum bromide ,EB),在紫外光下可以检出 10ng的DNA条带,在电场中,pH8.0条件下,凝胶中带负电荷的DNA向阳极迁移。 琼脂糖凝胶有如下特点: (1) DNA的分子大小在凝胶基质中其迁移速率与碱基对数目的常用对数值成反比,分子越大迁移得越慢。 (2) 琼脂糖浓度一个特定大小的线形DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同。DNA电泳迁移率(u)的对数与凝胶浓度(t)成线性关系。 (3) 电压低电压时,线状DNA片段迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量DNA片段的迁移率将以不同的幅度增长,随着电压的增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb的DNA片段的分辨率达到最大,所加电压不得超过5v/cm。 (4) 电泳温度DNA在琼脂糖凝胶电泳中的电泳行为受电泳时的温度影响不明显,不同大小的DNA片段其相对迁移速率在4℃与30℃之间不发生明显改变,但浓度低于0.5%的凝胶或低熔点凝胶较为脆弱,最好在4℃条件下电泳。 (5) 嵌入染料荧光染料溴化乙锭用于检测琼脂糖凝胶中的DNA,染料嵌入到堆积的碱基对间并拉长线状和带缺口的环状DNA,使其刚性更强,还会使线状迁移率降低15%。 (6) 离子强度电泳缓冲液的组成及其离子强度影响DNA电泳迁移率。在没有离子存在时(如误用蒸馏水配制凝胶,电导率最小,DNA几乎不移动,在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化。

分子生物学实验

分子生物学实验 MolecularBiology Experiments 【课程编号】021*******【课程类别】学科基础课 【学分数】3学分【适用专业】生物科学、生物技术 【学时数】 96学时【编写日期】 2009年6月 一、教学目标 本课程是在分子生物学及基因工程等理论课的基础上,开设的一门综合性兼设计性实验课程。该的教学内容主要突出实验技术的基础性和实用性,把目前最基本的分子生物学实验技术融入具体的系列实验中形成综合与设计性大实验。一方面让每个同学通过实际操作来达到更好地训练学生们的实验技术技能的目的;另一方面让学生全面地掌握基因工程的实验技术与方法、实验的设计原理、结果分析方法和分子生物学的基本原理,进一步培养学生的独立分析问题、解决问题的能力并学会如何利用实验手段实现科学研究的基本思维和目的,提高学生从事科学研究的综合素质。 二、教学内容和学时分配 实验一、实验总论5 学时基础性 主要内容:分子生物学基本实验技术简介和实验准备(清理仪器、试剂配置、培养基的配置与灭菌) 教学要求: 了解分子生物学实验课的目的与要求、设计思路、评分标准及仪器操作规范; 掌握试剂与培养基的配置、灭菌方法与操作技能。 重点、难点:学习试剂的配置、仪器操作规范。 实验二、碱性磷酸酶基因的克隆与筛选42学时综合性 主要内容:质粒DNA的提取与定性分析;PCR基因扩增及扩增产物的回收;DNA重组(酶切、连接、转化与筛选) 教学要求: 了解原核基因克隆与筛选的全过程与实验设计策略、载体的基本结构、基因工程酶(限制性内切酶、连接酶、Taq酶)的各种特性、DNA重组以及重组子筛选与鉴定的相关技术; 理解基因克隆与筛选的策略及其相关实验原理、碱裂解法质粒提取过程中各种纯化步骤的设计思想, PCR引物设计以及PCR体系设计的原则与注意事项、DNA重组时设计酶切与连接方案的一般规律、重组DNA导入受体细胞方法以及目的重组子的筛选与鉴定方法、影响DNA重组效率的因素;

分子生物学实验报告

分子生物学实验 院系:生命科学与技术学院 专业:生物科学(基地) 班级: 201101班 学号: 姓名: 分子生物学基础实验 分子生物学实验技术已成为生物化学及分子生物学以及相关学科院系教学科研不可缺少的一部分。为提高学生在分子生物学技术方面的动手能力,生物技术综合实验室主要开设常用而基本的分子生物学实验技术。它的内容包括质粒DNA的制备;DNA的重组;PCR基因扩增等等。 实验一质粒DNA的小量制备 一、实验原理 要把一个有用的外源基因通过基因工程手段,送进细胞中去进行繁殖和表达,需要运载工具,携带外源基因进入受体细胞的这种工具就叫载体(vector)。载体的设计和应用是DNA体外重组的重要条件。作为基因工程的载体必须具备下列条件:(1)是一个复制子,载体有复制点才能使与它结合的外源基因复制繁殖;(2)载体在受体细胞中能大量增殖,只有高复制率才能使外源基因在受体细胞中大量扩增;(3)载体DNA链上有1到几个限制性内切酶的单一识别与切割位点,便于外源基因的插入;(4)载体具有选择性的遗传标记,如有抗四环素基因(Tc r),抗新霉素基因(Ne r)等,以此知道它是否已进入受体细胞,也可根据这个标记将受体细胞从其他细胞中分离筛选出来。细菌质粒具备上述条件,它是基因工程中常用的载体之一。 质粒(plasmid)是一种染色体外的稳定遗传因子,大小在1~120kb之间,具

有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。质粒具有自主复制和转录能力,能使子代细胞保持它们恒定的拷贝数,可表达它携带的遗传信息。它可独立游离在细胞质内,也可以整合到细菌染色体中,它离开宿主的细胞就不能存活,而它控制的许多生物学功能也是对宿主细胞的补偿。 质粒在细胞内的复制,一般分为两种类型:严密控制型(stringent control)和松弛控制型(relaxed control)。前者只在细胞周期的一定阶段进行复制,染色体不复制时,它也不复制。每个细胞内只含有1个或几个质粒分子。后者的质粒在整个细胞周期中随时复制,在细胞里,它有许多拷贝,一般在20个以上。通常大的质粒如F因子等,拷贝数较少,复制受到严格控制。小的质粒,如ColE Ⅰ质粒(含有产生大肠杆菌素E1基因),拷贝数较多,复制不受严格控制。在使用蛋白质合成抑制剂-氯霉素时,染色体DNA复制受阻,而松弛型ColEⅠ质粒继续复制12-16h,由原来20多个拷贝可扩增至1000-3000个拷贝,此时质粒DNA占总DNA的含量由原来的2%增加到40%-50%。本实验分离提纯化的质粒pBR322、pUC19就是由ColE Ⅰ衍生的质粒。 所有分离质粒DNA的方法都包括三个基本步骤:培养细菌使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA。采用溶菌酶可破坏菌体细胞壁,十二烷基硫酸钠(SDS)可使细胞壁解,经溶菌酶和阴离子去污剂(SDS)处理后,细菌染色体DNA 缠绕附着在细胞壁碎片上,离心时易被沉淀出来,而质粒DNA则留在清液中。用乙醇沉淀、洗涤,可得到质粒DNA。 质粒DNA的相对分子量一般在106-107范围内,如质粒pBR322的相对分子质量为2.8×106,质粒pUC19的相对分子质量为1.7×106。在细胞内,共价闭环DNA(covalently closed circular DNA,简称cccDNA)常以超螺旋形式存在。如果两条链中有一条链发生一处或多处断裂,分子就能旋转而消除链的张力,这种松弛型的分子叫做开环DNA(open circular DNA,简称ocDNA)。在电泳时,同一质粒如以cccDNA形式存在,它比其开环和线状DNA的泳动速度快,因此在本实验中,自制质粒DNA在电泳凝胶中呈现3条区带。 二、实验目的 1.掌握最常用的提取质粒DNA的方法和检测方法。 2.了解制备原理及各种试剂的作用。 三、实验材料和试剂

分子生物学实验

实验一.质粒提取与琼脂糖电泳 一、目的 掌握质粒的提取方法及原理;琼脂糖凝胶电泳及观察评判方法。 二、原理 1.质粒是携带外源基因进入细菌中扩增或表达的主要载体,它在基因操作中具 有重要作用。质粒的分离与提取是最常用、最基本的实验技术。在pH 12.0- 12.6碱性环境中,细菌的线性大分子量染色体DNA变性分开,而共价闭环的 质粒DNA 虽然变性但仍处于拓扑缠绕状态。将pH 调至中性并有高盐存在及低温的条件下,大部分染色体DNA、大分子量的RNA和蛋白质在去污剂SDS的作用下形成沉淀,而质粒DNA仍然为可溶状态。硅基质树脂在高盐状态下,特异性吸附DNA,而在低盐状态下,DNA被洗脱下来。 2.带电荷的物质在电场中的趋向运动称为电泳。电泳的种类多,应用非常广泛, 它已成为分子生物学技术中分离生物大分子的重要手段。琼脂糖凝胶电泳由于其操作简单、快速、灵敏等优点,已成为分离和鉴定核酸的常用方法。在pH值为8.0~8.3时,核酸分子碱基几乎不解离,磷酸全部解离,核酸分子带负电,在电泳时向正极移动。采用适当浓度的凝胶介质作为电泳支持物,在分子筛的作用下,使分子大小和构象不同的核酸分子泳动率出现较大的差异,从而达到分离核酸片段检测其大小的目的。核酸分子中嵌入荧光染料(如EB)后,在紫外灯下可观察到核酸片段所在的位置。 三、实验材料、仪器、试剂 (1)菌种:大肠杆菌DH5α (2)分子生物学试剂 10mg/ml溴化乙锭(EB):按10mg/ml浓度将EB溶于去离子水中,剧烈搅拌,完全溶解后,室温下避光保存。 50×TAE电泳缓冲液: 24.2g Tris 5.71g 冰乙酸 10ml 0.5mol/L EDTA(pH8.0) 加去离子水至100ml,室温保存备用,工作液为1×TAE。

最新分子生物学实验指导

分子生物学实验指导

分子生物学实验指导 (补充讲义) 南方医科大学生物化学与分子生物学实验教学中心 二OO九年十二月 目录 实验总RNA的提取、定量与RT-PCR……………………………………………… 1 实验质粒DNA的提取、定量与酶切鉴定 (7) 实验蛋白质聚丙烯酰胺凝胶电泳 (13) 附录Ⅰ相关试剂盒说明书 (19) 附录Ⅱ相关仪器使用说明书 (19) 实验九总RNA的提取、定量与RT-PCR 一、总RNA的提取与定量 目的: 从细胞中分离RNA是分子生物学实验经常进行的操作之一,所提取RNA的质量是进行其它实验的基础,如Northern杂交,目的基因cDNA的克隆,荧光定量,文库构建等。 原理:

在哺乳动物中,平均每个细胞内大约含有10-5μg RNA,其中rRNA占总量的80%-85%,tRNA和核内小分子RNA占10-15%,而mRNA只占1-5%。rRNA由28S、18S、5S等几类组成,这些RNA分子根据密度和分子大小,通过密度梯度离心、凝胶电泳、离子交换层析进行分离。mRNA分子种类繁多,分子量大小不均一,在细胞中含量少,绝大多数mRNA分子(除血红蛋白、有些组蛋白mRNA以外),在3’端存在20-250个多聚腺苷酸(polyA)。利用此特点,用 oligo(dT)亲和层析柱分离mRNA。 RNA分离的方法有:异硫氰酸胍氯化铯超速离心法,盐酸胍-有机溶剂法,氯化锂-尿素法,蛋白酶K-细胞质RNA提取法等、异硫氰酸胍-酚-氯仿一步法等。目前常用的是Trizol法。 Trizol试剂适用于从细胞和组织中快速分离RNA。TRIzol的主要成分是异硫氰酸胍和酚。异硫氰酸胍属于解偶剂,是一类强力的蛋白质变性剂,可溶解蛋白质主要作用是裂解细胞,使细胞中的蛋白,核酸物质解聚得到释放。酚虽可有效的变性蛋白质,但是它不能完全抑制RNA酶活性,因此Trizol中还加入了8-羟基喹啉、β-巯基乙醇等来抑制内源和外源RNase。在加入氯仿离心后,溶液分为水相和有机相,RNA选择性地进入无DNA和蛋白质的水相中。取出水相用异丙醇沉淀可回收RNA;用乙醇沉淀中间层可回收DNA;用异丙醇沉淀有机相可回收蛋白质。 Trizol试剂可用于小量样品(50~100mg组织、5×106细胞)也适用于大量样品(≥1g组织、>107细胞)。对人,动物,植物组织,细菌均适用,整个提取过程在一小时内即可完成。分离的总RNA无蛋白质和DNA污染,可用于Northern blot,dot blot,ployA筛选,体外翻译,RNase保护分析和分子克隆。在用于RT-

分子生物学实验-心得体会

关于分子生物学实验的体会 梁慧媛(生技01级) 不知不觉间,一年的时间就这样流逝了,与分子生物实验相伴,对我而言,的确不同寻常。并不仅仅是学习生物学实验技术和方法的宝贵经历,它意味着更多。 首先是实验条件、实验过程、实验设计的完备性,从这里可以初步感受到生物学研究的科学性与严肃性,自己可以得到宝贵的机会,亲身体会生物学研究的苦辣酸甜。一直一直喜欢,得到正确实验结果时刻的畅快感,那是无法言明的欣慰感,一次身心彻底地放松,可以将所有一整天来积累的疲劳抛之身后,即使仅仅是小小的成功,也会让我们兴奋不已。在整理资料,将一年来保存的记录一遍一遍的翻看,重温其中的特别滋味,我,轻轻地笑了。我,喜欢这里,喜欢生物学。 失误是常有的,经历过吃惊、后悔、无奈,检讨分析,最后重新开始。一波三折的记忆清晰的印在脑海中,这种深深的挫折感,再试一次的勇气,我会一生记取的。 一年间,随着对生物学实验知识和技能的进一步学习,我更坚定了自己学习生物学的志向,感分子生物学实验的"试炼"。 分子生物学实验心得体会 东强(生科01级) 分子生物学实验室本科生第一次接触到了真正培养实验能力的实验课,它不同于我们在大二开的植物、动物、微生物等实验课。在这些课上,主要以制备样品并观察样品的形态、结构特征为主,这是由于我们当时正值大二,专业知识还远不够。 随着以后理论课学习的深入,我们开始了分子生物学实验的学习,这无疑对于深刻巩固我们理论课上学到的知识是有帮助的,也进一步加深了对原有知识的理解,如启动子的概念、类型、PCR的原理等。另外,在实验课中,我们掌握并学会如何运用分子生物学研究中的一些基本实验技术,如质粒的提取、总RNA的制备、PCR技术等。 我们的实验动手能力通过亲身接触实验过程并亲自设计一些实验得到了提高,使我们不再象刚开始做分子生物学实验的时候照搬实验指导上的实验步骤,而是通过我们自己的思考,根据现有的实验条件,对原有的步骤作必要的改进。 此外,通过这门实验课的学习,我们形成了严谨的态度,如有时得出的实验结果与理论不符,我们渐渐养成了仔细分析实验结果的习惯,查找在实验设计或操作过程中出现的问题,同时对理论知识认识得更清楚。 总之,我认为,分子生物学实验课,是称得上实用、精彩、有意思的好实验,对于今后我的研究或工作很有价值。

分子生物学实验课件..

实验一、菌株复壮与单菌落菌株的获取 一、实验目的 学习细菌培养的LB培养基及抗生素抗性筛选培养基的配制,掌握高压灭菌和获取细菌单菌落菌株两种基本实验操作技能。 二、实验材料、设备及试剂 1、实验材料 大肠杆菌(E. coli)DH5α菌株:R-,M-,Amp- 2、实验设备 恒温摇床,电热恒温培养箱,无菌工作台,高压灭菌锅 3、试剂 酵母浸膏,蛋白胨,氯化钠,琼脂,卡那霉素 三、实验步骤 液体LB(Luria-Bertain)培养基配方: 蛋白胨(typtone) 1.0% (1 g/100 ml) 酵母提取物(Yeast extraction)0.5% (0.5g/100 ml) 氯化钠 1.0% (1 g/100 ml) PH 7.0 固体LB培养基:每100 ml液体培养基中加入1.5g琼脂粉 请按试剂瓶上的编号使用相应编号的药勺取药,防止药品相互污染! (1)每组按上述液体LB培养基配方,以配制100ml的量称取药品放入烧杯。 (2)用量筒量取约80 ml 蒸馏水注入烧杯中,玻棒搅拌使药品完全溶解后用100ml量筒定容 至100ml。 (3)pH试纸检测pH值,并用1 N NaOH或1 N HCl调节pH值至7.0。 (4)将100ml溶液分装入两个三角瓶,每瓶为50ml。 (5)按固体培养基配方称取适量琼脂粉分别放入两个三角瓶中,以配制成两瓶50ml固体LB培 养基。 (6)两个三角瓶分别用锡纸包扎瓶口。并用记号笔在三角瓶上标注各组标记。 (7)把装有培养基三角瓶放入灭菌锅中,盖上锅盖,以对称方式拧紧锅盖,打开排气阀通电加

热,至有连续的白色水蒸气从排气阀排出时,关闭排气阀。当高压锅温度(气压)指示器指示锅内温度升高至121℃(0.1Mpa)时,调节电压(或利用手动开关电源的方式)使高压锅稳定在该温度(压力)下20 min,然后断开电源。待指示器指示压力降为0时,方可打开排气阀,然后再打开锅盖小心取出锅内物品。 (8)取出三角瓶后,在酒精灯火焰旁进行下述操作。 (9)取其中的一瓶直接倒培养皿,每皿倒入的量以刚好能在培养皿底铺展成薄薄的一层即可。 每组倒1块培养皿,在皿盖上用记号笔写上“LB”及各组的标记。 (10)另外一瓶培养基待温度降低至60℃左右时(刚能感觉不烫手),向培养基中加入0.1ml 50mg/ml的氨苄青霉素(Amp)溶液,使培养基中Amp的终浓度为50mg/L。快速充分混匀后每组倒1块培养皿,在皿盖上标注“LB+”及各组的标记。 (11)接种环蘸取菌液,密密划线。 (12)倒置于37℃恒温培养箱中进行培养。 (13)一天后观察菌落。 四、思考题 (1)在说明本实验所用的菌种时用到这样的符号:“R-,M-,Amp-”,这告诉我们关于该菌 种的什么信息? (2)在步骤7中,为何须待连续的白色水蒸气从排气阀排出时才能关闭排气阀?当灭菌完 毕,为何又须待高压锅指示器指示压力降为0时才能打开高压锅,而且操作次序必须是先打开排气阀然后才能打开高压锅盖? (3)在步骤12中,为何需将涂有菌的培养皿倒置于37℃恒温培养箱中进行菌的培养?为什 么不是正放呢? (4)你预计该实验结果是什么,即两种培养基上菌的生长情况如何? 实验二碱裂解法小量提取质粒DNA 一实验目的 了解少量质粒制备方法与原理,掌握碱法小量提取质粒DNA的操作步骤。 二实验原理 本实验利用NaOH破坏菌体细胞使核酸物质从细胞中释放出来,因此称为碱裂解法抽提。十二烷基磺酸钠(SDS)能裂解细菌细胞膜,但更重要的作用在于其与钾离子反应后所引起的溶液中绝大部分蛋白质以及基因组DNA共沉淀。由于还有很多蛋白质不能被共沉淀掉,因此要进一步用酚、氯仿对溶液进行抽提。最后加入2倍体积的无水乙醇或0.7倍体积的异丙醇沉淀就能得到质量稳定的质粒DNA。从细菌中分离质粒DNA

《分子生物学》实验指导(2015-2016)

《分子生物学》实验指导 实验1 总DNA提取 生物总DNA的提取是分子生物学实验的一个重要内容。由于不同的生物材料细胞壁的结构和组成不同,而细胞壁结构的破坏是提取总DNA的关键步骤。同时细胞内的物质也根据生物种类的不同而有差异,因此不同生物采用的提取方法也不同,一般要根据具体的情况来设计实验方法。本实验介绍采用CTAB法提取植物总DNA的技术。 [实验目的] 学习和掌握学习CTAB法提取植物总DNA的基本原理和实验技术。学习和掌握紫外光吸收法鉴定DNA的纯度和浓度。 [实验原理] 植物叶片经液氮研磨,可使细胞壁破裂,加入去污剂(如CTAB),可使核蛋白体解析,然后使蛋白和多糖杂质沉淀,DNA进入水相,再用酚、氯仿抽提纯化。本实验采用CTAB法,其主要作用是破膜。CTAB 是一种非离子去污剂,能溶解膜蛋白与脂肪,也可解聚核蛋白。植物材料在CTAB的处理下,结合65℃水浴使细胞裂解、蛋白质变性、DNA 被释放出来。CTAB与核酸形成复合物,此复合物在高盐(>0.7mM)浓度下可溶,并稳定存在,但在低盐浓度(0.1-0.5mM NaCl)下CTAB-核酸复合物就因溶解度降低而沉淀,而大部分的蛋白质及多糖等仍溶解于溶液中。经过氯仿/ 异戊醇(24:1) 抽提去除蛋白质、多糖、色素等来纯化DNA,最后经异丙醇或乙醇等沉淀剂将DNA沉淀分离出来。 由于核酸、蛋白质、多糖在特定的紫外波长都有特征吸收。核酸及其衍生物的紫外吸收高峰在260nm。纯的DNA样品A260/280≈1.8,纯的RNA样品A260/280≈2.0,并且1μg/ml DNA 溶液A260=0.020。 [实验器材] 1、高压灭菌锅 2、冰箱 3、恒温水浴锅 4、高速冷冻离心机 5、紫外分光光度计 6、剪刀 7、陶瓷研钵和杵子 8、磨口锥形瓶(50ml) 9、滴管10、细玻棒11、小烧杯(50ml)12、离心管(50ml)13、植物材料 [实验试剂] 1、3×CTAB buffer(pH8.0) 100mM Tris 25mM EDTA 1.5M NaCl 3% CTAB 2% β-巯基乙醇 2、TE缓冲液(pH8.0) 10mmol/L Tris·HCl 1mmol/L EDTA 3、氯仿-异戊醇混合液(24:1,V/V) 4、95%乙醇 5、液氮 [实验步骤] 1、称取2g新鲜的植物叶片,用蒸馏水冲洗叶面,滤纸吸干水分。 2、将叶片剪成1cm长,置预冷的研钵中,倒入液氮,尽快研磨成粉末。 3、待液氮蒸发完后,加入15mL预热(60℃)的CTAB提取缓冲液,转入一磨口锥形瓶中,

分子生物学常用实验指南

生命科学系 2011-2012学年度分子生物学实验 (0801班)

2011-2012学年度分子生物学实验指导 实验一大肠杆菌感受态细胞的制备 (3) 实验二质粒DNA的转化 (4) 实验三质粒DNA的提取 (5) 实验四琼脂糖凝胶电泳检测DNA (7) 实验五PCR基因扩增 (9) 实验六DNA重组 (10) 实验七蓝白斑筛选实验 (11) 实验八DNA酶切技术 (13)

实验一大肠杆菌感受态细胞的制备 一、实验目的:掌握大肠杆菌感受态细胞的制备技术 二、实验原理:感受态——细菌处在容易吸收外源DNA的状态。 我们选用经过基因改造的生物工程菌株——大肠杆菌top10菌株为材料,在0℃、CaCl2低渗溶液处理,细胞壁破坏,细胞成为球型原生质体。因而具备了吸收外源DNA的能力。 三、仪器:1.超净工作台 2.低温离心机 3.恒温摇床 4.紫外分光光度仪 四、材料与试剂: 1.大肠杆菌top10菌株 2. 0.1mol/L CaCl2溶液500mL、 0.2mol/L CaCl2溶液50mL 3..LB液体及固体培养基 4.50%甘油500mL(灭菌) 五、实验操作步骤: 1.从大肠杆菌top10菌株平板上挑取一个单菌落,接种于3mL LB液体培养基中, 37℃振荡(200r/min)培养过夜。 2.次日早上取0.4mL菌液转接到40mL LB液体培养基中,37℃震荡培养2~3h.(A600 应在0.4~0.5之间) 3.将菌液置冰浴中10min。(同时将0.1mol/L CaCl2溶液、50%甘油预冷) 4.取菌液1.5mL,4℃离心2min(3500r/min).弃上清,再加菌液1.5mL,4℃再离 心一次,弃上清,倒置以便使培养液流尽。 5.用冰冷的0.1mol/L CaCl2溶液1mL悬浮细胞(轻轻涡旋使悬浮),立即置冰浴保 温30min。 6.4℃离心2min(3500r/min),弃上清,加入100μL冰冷的0.2mol/L CaCl2溶液、 100μL50%甘油轻轻手摇悬浮,置冰浴上,接着进行质粒DNA转化,或-70℃保存。

分子生物学实验方法与步骤

表达蛋白的SDS-聚丙烯酰胺凝胶电泳分析 一、原理 细菌体中含有大量蛋白质,具有不同的电荷和分子量。强阴离子去污剂SDS与某一还原剂并用,通过加热使蛋白质解离,大量的SDS结合蛋白质,使其带相同密度的负电荷,在聚丙烯酰胺凝胶电泳(PAGE)上,不同蛋白质的迁移率仅取决于分子量。采用考马斯亮兰快速染色,可及时观察电泳分离效果。因而根据预计表达蛋白的分子量,可筛选阳性表达的重组体。 二、试剂准备 1、30%储备胶溶液:丙烯酰胺(Acr)29.0g,亚甲双丙烯酰胺(Bis)1.0g,混匀后加ddH2O,37O C溶解,定容至100ml, 棕色瓶存于室温。 2、1.5M Tris-HCl(pH 8.0:Tris 18.17g加ddH2O溶解, 浓盐酸调pH至8.0,定容至100ml。 3、1M Tris-HCl(pH 6.8:Tris 12.11 g加ddH2O溶解, 浓盐酸调pH至6.8,定容至100ml。 4、10% SDS:电泳级SDS 10.0 g加ddH2O 68℃助溶,浓盐酸调至pH 7.2,定容至100ml。 5、10电泳缓冲液(pH 8.3:Tris 3.02 g,甘氨酸 18.8 g,10% SDS 10ml加ddH2O溶解, 定容至100ml。 6、10%过硫酸铵(AP): 1gAP加ddH2O至10ml。 7、2SDS电泳上样缓冲液:1M Tris-HCl (pH 6.82.5ml,-巯基乙醇1.0ml,SDS 0.6 g,甘油 2.0ml,0.1%溴酚兰 1.0ml,ddH2O 3.5ml。 8、考马斯亮兰染色液:考马斯亮兰 0.25 g,甲醇225ml,冰醋酸 46ml,ddH2O 225ml。 9、脱色液:甲醇、冰醋酸、ddH2O以3∶1∶6配制而成。 二、操作步骤 采用垂直式电泳槽装置 (一)聚丙烯酰胺凝胶的配制

最新分子生物学实验文档

分子生物学实验文档

分子生物学基础实验 分子生物学实验技术已成为生物化学及分子生物学以及相关学科院系教学科研不可缺少的一部分。为提高学生在分子生物学技术方面的动手能力,生物技术综合实验室主要开设常用而基本的分子生物学实验技术。它的内容包括质粒DNA的制备;DNA的重组;PCR基因扩增等等。 实验一质粒DNA的小量制备 一、实验原理 要把一个有用的外源基因通过基因工程手段,送进细胞中去进行繁殖和表达,需要运载工具,携带外源基因进入受体细胞的这种工具就叫载体(vector)。载体的设计和应用是DNA体外重组的重要条件。作为基因工程的载体必须具备下列条件:(1)是一个复制子,载体有复制点才能使与它结合的外源基因复制繁殖;(2)载体在受体细胞中能大量增殖,只有高复制率才能使外源基因在受体细胞中大量扩增;(3)载体DNA链上有1到几个限制性内切酶的单一识别与切割位点,便于外源基因的插入;(4)载体具有选择性的遗传标记,如有抗四环素基因(Tc r),抗新霉素基因(Ne r)等,以此知道它是否已进入受体细胞,也可根据这个标记将受体细胞从其他细胞中分离筛选出来。细菌质粒具备上述条件,它是基因工程中常用的载体之一。 质粒(plasmid)是一种染色体外的稳定遗传因子,大小在1~120kb之间,具有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。质粒具有自主复制和转录能力,能使子代细胞保持它们恒定的拷贝数,可表达它携带的遗传信息。它可独立游离在细胞质内,也可以整合到细菌染色体中,它离开宿主的细胞就不能存活,而它控制的许多生物学功能也是对宿主细胞的补偿。 质粒在细胞内的复制,一般分为两种类型:严密控制型(stringent control)和松弛控制型(relaxed control)。前者只在细胞周期的一定阶段进行复制,染色体不复制时,它也不复制。每个细胞内只含有1个或几个质粒分子。后者的质粒在整个细胞周期中随时复制,在细胞里,它有许多拷贝,一般在20个以上。通常大的质粒如F因子等,拷贝数较少,复制受到严格控制。小的质粒,如ColE Ⅰ质粒(含有产生大肠杆菌素E1基因),拷贝数较多,复制不受严格控制。在使用蛋白质合成抑制剂-氯霉素时,染色体DNA复制受阻,而松弛型ColEⅠ质粒继续复制12-16h,由原来20多个拷贝可扩增

分子生物学试验基础知识

分子生物学实验基础知识 分子生物学是在生物化学基础上发展起来的,以研究核酸和蛋白质结构、功能等生命本质的学科,在核酸、蛋白质分子水平研究发病、诊断、治疗和预后的机制。其中基因工程(基因技术,基因重组)是目前分子生物学研究热点,这些技术可以改造或扩增基因和基因产物,使微量的研究对象达到分析水平,是研究基因调控和表达的方法,也是分子水平研究疾病发生机制、基因诊断和基因治疗的方法。转化(trans formation)、转染、转导、转位等是自然界基因重组存在的方式,也是人工基因重组常采用的手段。基因重组的目的之一是基因克隆(gene clone),基因克隆可理解为以一分子基因为模板扩增得到的与模板分子结构完全相同的基因。使需要分析研究的微量、混杂的目的基因易于纯化,得以增量,便于分析。 外来基因引起细胞生物性状改变的过程叫转化(transformation),以噬菌体把外源基因导入细菌的过程叫转染(transfection)。利用载体(噬菌体或病毒)把遗传物质从一种宿主传给另一种宿主的过程叫转导(transduction)。一个或一组基因从一处转移到基因组另一处的过程叫转位(transposition),这些游动的基因叫转位子。 一、基因工程的常用工具 (一)载体 载体(Vector)是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增、表达的工具。载体有质粒(plasmid)、噬菌体、单链丝状噬菌体和粘性末端质粒(粘粒)、病毒等。载体具有能自我复制;有可选择的,便于筛选、鉴定的遗传标记;有供外源DNA插入的位点;本身体积小等特征。 质粒存在于多种细菌,是染色体(核)以外的独立遗传因子,由双链环状DNA组成,几乎完全裸露,很少有蛋白质结合。质粒有严紧型和松弛型之分。严紧型由DNA多聚酶Ⅲ复制,一个细胞可复制1-5个质粒。而松弛型由DNA多聚酶Ⅰ复制,一个细胞可复制30-50个质粒,如果用氯霉素可阻止蛋白质合成,使质粒有效利用原料,复制更多的质粒。质粒经过改造品种繁多,常用的有pBR322、pUC系列等。这些质粒都含有多个基本基因,如复制起动区(复制原点Ori),便于复制扩增;抗抗生素标记(抗氨芐青霉素Ap r、抗四环素Tc r等)或大肠埃希菌部分乳糖操纵子(E.coli LacZ)等,便于基因重组体的筛选;基因发动子(乳糖操纵子Lac、色氨酸操纵子Trp等)和转录终止序列,便于插入的外源基因转录、翻译表达。质粒上还有许多限制性内切酶的切点,即基因插入位点,又叫基因重组位点,基因克隆位点。 常用噬菌体载体有单链噬菌体M13系统;双链噬菌体系统。噬菌体应和相应的宿主细胞配合使用。以上载体各有特点,便于选择,灵活应用。 (二)工具酶

分子生物学实验指导-3

北京化工大学分子生物学实验指导

实验一 少量质粒DNA的制备 一、实验目的 (1)了解质粒的特性及其在分子生物学研究中的作用。 (2)掌握质粒DNA分离、纯化的原理。 (3)学习碱裂解法分离质粒DNA的方法。 二、实验原理 质粒(plasmid)是一种双链的共价闭环状的DNA分子,它是染色体外能够稳定遗传得因子。质粒具有复制和控制机构,能够在细胞质中独立自主地进行自身复制,并使子代细胞保持它们恒定的拷贝数。从细胞生存来看,没有质粒存在,基本上不妨碍细胞的存活,因此质粒是寄生性的复制子。根据质粒的这种特性,通常采用DNA体外重组技术和微生物转化等基因工程的技术和方法,使重组到质粒的某种基因(如干扰素基因)带进受体细胞(如具有一定特性的大肠杆菌细胞等)表达它的遗传性质,改变或修饰寄主细胞原有的代谢产物,或产生新的物质(如干扰素)。目前,质粒已广泛地用作基因工程中的DNA分子无性繁殖的运载体,同时它也是研究DNA结构与功能的较好模型。 在细菌细胞中,质粒DNA通常为染色体DNA的2%左右,但是细菌质粒DNA的含量与其复制类型有关。质粒在细胞内的复制,一般分为两种类型:严密控制(stringent control)复制型和松弛控制型(relaxed control)复制型。严密控制复制型的质粒只在细胞周期的一定阶段进行复制,染色体不复制时,质粒也不复制。每个细胞内只含1个或几个质粒分子(即有1个或几个拷贝)。松弛控制复制型的质粒在整个细胞周期中随时可以复制,当染色体复制已经停止时,该质粒仍然能够继续复制。该质粒在一个细胞内有许多拷贝,一般在20个以上,例如col E1 质粒(含有产生大肠杆菌素E1 基因)及其衍生质粒,在每个细胞内约有20多个拷贝。 所有分离质粒DNA的方法都包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA。目前应用于质体DNA的纯化或抽取的方法众多,例如碱溶裂法(alkaline lysis)、热裂解法(boiling method)、氯化铯(CsCl)纯化法,及市售柱层析套管法等。最常用的碱裂解法具效率高、价廉、简单易学等优点。其原理是利用碱处理质粒DNA及染色体DNA,使两者双股打开呈单股状态,再加酸中和,使单股回复为双股DNA,同时在急速中和反应中,染色体DNA因分子过于庞大以致于碱基匆忙配对,形成杂乱无序的巨大分子,对水的相对溶解度低而易被沉淀下来。相反,质粒DNA因分子小,两单股DNA恢复原碱基配对快而易溶于水中,所以只要经过离心,即可将染色体DNA与质体DNA分离。本实验所使用的pUC19含有β-lactamase基因,会产生peripasmic酶,进行蓝白斑筛选,抗氨苄青霉基因ampicillin (Amp)两种抗性筛选标记。 碱裂解法:本实验是以alkaline lysis的方法进行,其原理是将大肠杆菌以NaOH及SDS分解,并使蛋白质及DNA变性,然后以酸中和。小分子质粒DNA在中和后可恢复原状,但大部

分子生物学实验手册

微量加样器的使用及注意事项 1 微量加样器的使用原理及分类 根据其加样的物理学原理可分为两种①空气垫加样器(又称活塞冲程);②无空气垫的活塞正移动加样器,这两种加样器具有不同的特定应用范围。 活塞冲程(空气垫) 加样器可很方便地用于固定或可调体积液体的加样,加样体积的范围在小于1μl~10ml 之间。加样器中的空气垫的作用是将吸于塑料吸头内的液体样本与加样器内的活塞分隔开来,空气垫通过加样器活塞的弹簧样运动而移动,进而带动吸头中的液体,死体积和移液吸头中高度的增加决定了加样中这种空气垫的膨胀程度。因此,活塞移动的体积必须比所希望吸取的体积要大约2%~4%,温度、气压和空气湿度的影响必须通过对空气垫加样器进行结构上的改良而降低,使得在正常情况下不至于影响加样的准确度。一次性吸头是本加样系统的一个重要组成部分,其形状、材料特性及加样器的吻合程度均对加样的准确度有很大的影响。 以活塞正移动为原理的加样器和分配器与空气垫加样器所受物理因素的影响不同,因此,在空气垫加样器难以应用的情况下,活塞正移动加样器可以应用,如具有高蒸汽压的、高黏稠度以及密度大于2.0g/cm3的液体;又如在临床聚合酶链反应(PCR)测定中,为防止气溶胶的产生,最好使用活塞正移动加样器。活塞正移动加样器的吸头与空气垫加样器吸头有所不同。 2 微量加样器的一般使用原则 加样器根据其加样的物理学原理和结构的不同,其应用特点也有所不同。 (1)活塞正移动加样器无需任何校正,即可用于具不同化学组成和特性(密度和黏度)的液体的吸取加样;相反,空气垫加样器的使用则较受局限。 (2)具有高蒸汽压的液体如氯仿使用空气垫加样器吸取加样通常不能得到跟吸取加样蒸馏水相同的准确度和精密度。由于在液体吸取过程中有部分蒸发,因而加样的体积就会有所减少。可通过预先用液体湿润吸头数次,使得蒸汽相被液体饱和,可以改善加样的准确度。 (3)为防止由高蒸汽压引起液体从吸头中漏出,可使用在底部有瓣的吸头,此瓣只在其与管壁接触的时候打开。 (4)使用空气垫加样器加样,位于液体之上的空气体积膨胀依所加液体密度的不同而不同。当吸取密度高于水的液体时,吸入吸头的体积太低。例如,对于一个密度为1.1的较高浓缩的液体,误差的量将达到0.2%。而吸取较稀的水溶液的这种误差则可以忽略不计。因此,在吸取密度高的液体时,须对加样器吸取体积的设定作相应的校正,才能保证取到正确的体积。然而,在实验室实际工作中,加样器使用者很少碰到要准确吸取密度很高的液体的情况,故由于液体的密度所致加样器使用受限的情况通常难以遇到。 一般来说,为防止所吸取体积上出现误差,有一些基本的操作原则必须遵守。对吸取体积误差影响的因素主要有三个方面:①流体静压;②吸头润湿;③流体动力学。当样本体积从毫升范围降低至微升范围时,物理作用力的关系即发生变化,对于加样来说,其意味着液体表面的作用力效应与其体积或质量(例如重力)的作用力效应相比有所增加,因此,加样器生产厂家在设计和构建加样器和吸头中必须仔细考虑这种情况,而且在使用时也

分子生物学实验方法

实验1 植物总DNA的提取 生物总DNA的提取是分子生物学实验的一个重要内容。由于不同的生物材料细胞壁的结构和组成不同,而细胞壁结构的破坏是提取总DNA的关键步骤。同时细胞内的物质也根据生物种类的不同而有差异,因此不同生物采用的提取方法也不同,一般要根据具体的情况来设计实验方法。本实验介绍采用CTAB法提取植物总DNA的技术。 [实验目的] 学习和掌握学习CTAB法提取植物总DNA的基本原理和实验技术。学习和掌握紫外光吸收法鉴定DNA的纯度和浓度。 [实验原理] 植物叶片经液氮研磨,可使细胞壁破裂,加入去污剂(如CTAB),可使核蛋白体解析,然后使蛋白和多糖杂质沉淀,DNA进入水相,再用酚、氯仿抽提纯化。本实验采用CTAB 法,其主要作用是破膜。CTAB 是一种非离子去污剂,能溶解膜蛋白与脂肪,也可解聚核蛋白。植物材料在CTAB的处理下,结合65℃水浴使细胞裂解、蛋白质变性、DNA 被释放出来。CTAB与核酸形成复合物,此复合物在高盐(>0.7mM)浓度下可溶,并稳定存在,但在低盐浓度(0.1-0.5mM NaCl)下CTAB-核酸复合物就因溶解度降低而沉淀,而大部分的蛋白质及多糖等仍溶解于溶液中。经过氯仿/ 异戊醇(24:1) 抽提去除蛋白质、多糖、色素等来纯化DNA,最后经异丙醇或乙醇等沉淀剂将DNA沉淀分离出来。 由于核酸、蛋白质、多糖在特定的紫外波长都有特征吸收。核酸及其衍生物的紫外吸收高峰在260nm。纯的DNA样品A260/280≈1.8,纯的RNA样品A260/280≈2.0,并且1μg/ml DNA 溶液A260=0.020。 [实验器材] 1、高压灭菌锅 2、冰箱 3、恒温水浴锅 4、高速冷冻离心机 5、紫外分光光度计 6、剪刀 7、陶瓷研钵和杵子 8、磨口锥形瓶(50ml) 9、滴管 10、细玻棒 11、小烧杯(50ml) 12、离心管(50ml) 13、植物材料 [实验试剂] 1、3×CTAB buffer(pH8.0) 100mM Tris 25mM EDTA 1.5M NaCl 3% CTAB 2% β-巯基乙醇

2020年(生物科技行业)分子生物学实验指导

生物科技行业)分子生物学实验指导

分子生物学实验指导 动植物检疫专业 2012 , 2 分子生物学实验注意事项 1.课前要提前预习实验内容,了解实验设计的原理,理清实验顺序,制定实验方案(没有方案或方案不合理者不能进入实验操作)。 2.由于实验内容多,时间短,多数实验需要同时或穿插进行,壹定要做好统筹安排。3.实验课中的所有单项实验都属于壹个整体流程。实验时间安排上没有上下午晚上等严格的作息安排,壹切服从实验进度,必须在理论课上课期间完成。 4.实验的每壹步都要详细地记录操作内容、时间、步骤、结果等,以备查询! 5.对任何自己不熟悉的实验仪器都不要随意操作(尤其是微量移液器!)。在操作的过程中发现任何意外的现象都要及时向任课教师汇报。 6.写作实验报告或实验论文壹定要文理通顺、逻辑清晰、图表说明详细,讨论分析透彻。 7.在实验室内不能大声喧哗。 8.在实验的过程中制造的任何垃圾都要丢到垃圾筐里(或先放在自己的桌面壹角),严禁随地丢弃!特别注意对废弃细菌的杀灭和有毒垃圾的定点投放。9.实验结束后要把用过的器皿清洗后归放整齐且清点数目,向教师汇报征得同意后方可离开实验实。 10.值日组的同学最后离开,等待清扫实验室的卫生,关闭门窗水电。 11.实验时损坏的任何物品都要及时申报。 实验壹质粒DNA 的提取 1.目的学会最常用的小量制备质粒 DNA 的碱裂解方法。 2.原理 根据共价闭合环状质粒 DNA 和线性 DNA 在拓扑学上的差异来分离。在 pH12.0 12.5 这个狭窄的范围内,线性 DNA 双螺旋结构解开而被变性。尽管在这项的条件下共价闭合环状质粒 DNA 也会变性,但俩条互补链彼此互相盘绕,仍会紧密结合在壹起。当加入 pH4.8 的乙酸钾高盐缓冲液使 pH 恢复中性时,共价闭合环状质粒 DNA 复性快,而线性的染色体 DNA 复性缓慢,经过离心和蛋白质和大分子 RNA 壹起沉淀下去。3.器材 超净工作台,接种环,酒精灯,台式离心机,旋涡混合器,微量移液取样器, 1.5ml 微量离心管,恒温摇床,摇菌试管,双面微量离心管架,试管架,标签纸,磁力搅拌机。

分子生物学实验步骤总结超全

一目的基因的获得 细菌基因组DNA的提取 (一)仪器 1)台式高速离心机 2)恒温水浴箱 3)枪式移液器 4)灭菌的EP管和Tip头 (二)试剂 1)溶液1: 25% 蔗糖 50mmol/L Tris-Hcl,pH8.0 50mmol/L EDTA,pH8.0 500ug/ml 溶菌酶(现用现配) 100ug/ml RNase 2)溶液Ⅱ:100mmol/L Tris-Hcl,pH8.0 1% SDS 400ug/ml 蛋白酶K 3)酚:氯仿:异戊醇(25:24:1) 4)氯仿:异戊醇(24:1) 5)3mol/L NaAc(pH5.2) 6)异丙醇或无水乙醇 7)70%乙醇 8) TE缓冲液:10mmol/L Tris-Hcl,pH8.0 1mmol/L EDTA,pH8.0 (三)实验步骤 1) 5mL细菌过夜培养,5000rpm离心10分钟,去上清液。 2)将菌体细胞悬于250uL溶液1中,37°C水浴保温过夜。 3)加250uL溶液Ⅱ,55°C水浴保温4小时。 4)加0.9倍体积的酚/氯仿/异戊醇(25:24:1),轻轻混匀,于14000rpm离心10分钟,转移水相至新的Ep管,重复步骤4一次。 5)向转移的水相中加入0,9倍体积的氯仿/异戊醇(24:1),轻轻混匀,于14000rpm离心10

分钟,转移水相至新的Ep管,重复步骤5一次。 6)向转移的水相中加入0.1倍体积的3mol/L NaAc和0.7倍体积的异丙醇(或2.5倍体积的无水乙醇),冰上放置30分钟。 7)14000rpm离心20分钟,弃上清,用0.5mL70%乙醇洗涤沉淀一次,弃上清,沉淀于室温干燥。 8)将DNA沉淀溶解于15ul TE缓冲液中,-20°C保存。 9)进行DNA含量和纯度检测,琼脂糖凝胶电泳鉴定。 植物DNA的SDS提取法: (一)试验试剂: 1)研磨缓冲液:称取59.63gNaCl,13.25g柠檬酸三钠,37.2gEDTA-Na分别溶解后合并为一,用0.2mol/L的NaOH调至pH7.0,并定容至1000ml。 2)10 SSC溶液:称取87.66gNaCl和44.12g柠檬酸三钠,分别溶解,一起定容至1000ml。3)1 SSC溶液:用10 SSC溶液稀释10倍。 4)0.1 SSC溶液:用1 SSC溶液稀释10倍。 5)Rnase溶液:用0.14mol/LNaCl溶液配制成25mg/ml 的酶液,用1mol/LHCl,pH至5.0,使用前经80℃水浴处理5min(以破坏可能存在的Dnase)。 6)氯仿-异戊醇:按24ml氯仿和1ml异戊醇混合。 7)5mol/L高氯酸钠溶液:称取NaClO4.H2O 70.23g,先加入少量蒸馏水溶解再容至100ml。 8) SDS(十二烷基硫酸钠)化学试剂的重结晶:将SDS放入无水酒精中达到饱和为止,然后在70~80℃的水浴中溶解,趁热过滤,冷却之后即将滤液放入冰箱,待结晶出现再置室温下凉干待用。 9) 1mol/LHCl。 10) 0.2mol/LNaOH。 11) 二苯胺乙醛试剂:1.5g二苯胺溶于100ml冰醋酸中,添加1.5ml 浓硫酸,装入棕色瓶,贮存暗处,使用时加0.1ml乙醛液[浓乙醛:H2O=1:50(V/V)]。 12) 1.0mol/L高酸溶液(HClO4)。 13) 0.05mol/LNaOH。 14) DNA标准液:取标准DNA25mg 溶于少量0.05mol/L NaOH中,再用0.05mol/LNaOH定容至25ml,后用移溶管吸取此液5ml至50ml容量瓶中,加5.0ml1mol/LHClO4,混合冷却后用0.5mol/LHClO4定容至刻度,则得100μg/ml的标准溶液。 (二)实验步骤:

相关主题
文本预览
相关文档 最新文档