当前位置:文档之家› 工程热力学(讲义)

工程热力学(讲义)

工程热力学(讲义)
工程热力学(讲义)

1 课程学习

1.1 热力学基本定律

1.1.1 热力学基本概念及定义

第一节热力系

热力系:由界面包围着的作为研究对象的物体的总和。

按热力系与外界进行物质交换的情况可将热力系分为:

闭口系(或闭系)--与外界无物质交换,为控制质量(c.m.);

开口系(或开系)--与外界之间有物质交换,把研究对象规划在一定的空间范围内,称控制容积(c.v.)。

按热力系与外界进行能量交换的情况将热力系分为:

简单热力系--与外界只交换热量及一种形式的准静功;

绝热系--与外界无热交换;

孤立系--与外界既无能量交换又无物质交换。

按热力系内部状况将热力系分为:

单元系--只包含一种化学成分的物质;

多元系--包含两种以上化学成分的物质;

均匀系--热力系各部分具有相同的性质;

均匀系--热力系各部分具有不同的性质。

工程热力学中讨论的热力系:

简单可压缩系--热力系与外界只有准静功的交换,且由压缩流体构成。

第二节热力系的描述

热力系的状态、平衡状态及状态参数

*热力系的状态:热力系在某一瞬间所呈现的宏观物理状况。在热力学中我们一般取设备中的流体工质作为研究对象,这时热力系的状态即是指气体所呈现的物理状况。

*平衡状态:在没有外界影响的条件下系统的各部分在长时间内不发生任何变化的状态。处于平衡状态的热力系各处的温度、压力等参数是均匀一致的。而温差是驱动热流的不平衡势,温差的消失是系统建立平衡的必要条件。

对于一个状态可以自由变化的热力系而言,如果系统内或系统与外界之间的一切不平衡势都不存在,则热力系的一切可见宏观变化均将停止,此时热力系所处的状态即是平衡状态。各种不平衡势的消失是系统建立起平衡状态的必要条件。

*状态参数:用来描述热力系平衡态的物理量。处于平衡态的热力系其状态参数具有确定的值,而非平衡热力系的状态参数是不确定的。

状态参数的特性

描述热力系状态的物理量可分为两类:强度量和尺度量

(1)强度量

与系统中所含物质无关,在热力系中任一点具有确定的数值的物理量。

(2)尺度量

与系统所含物质有关的物理量称为尺度量。

强度量:

强度量与系统所含物质的数量无关,它不具可加性.就整个系统而言,强度量对于平衡状态才有确定的参数,对于非平衡状态一般没有确定的数值.

常见的强度量如压力P、温度T等.

还有一些强度量是由尺度量转化而来的,尺度量对质量或是容积的微商具有强度量的性质,比容就是一个很好的例子。

尺度量:

把热力系视为一个整体来定义,具有可加性的物理量称为尺度量。常见的强度量如容积V、质量m等.

对于任意给定平衡及非平衡热力系,尺度量一般具有确定的值。

状态参数是状态的单值函数。热力系状态一定,其状态参数的数值也一定。确定状态参数的函数称为状态函数或点函数,具有以下数学特征:

*在任意过程中,当热力系从初态1过渡到终态2时,任意状态参数的变化量均等于初、终状态下该状态参数的差值,而与过程如何进行无关。

*当热力系经历一封闭的状态变化过程而又回复到原始状态时,其状态参数的变化为零,即状态函数是全微分。

第三节基本状态参数

简单可压缩平衡系的状态常用可测的状态参数比容v、压力P、温度T来描述的物理量,称为基本状态参数。密度和比容

*密度是单位容积内所含物质的质量,单位为千克每立方米。

*比容是单位质量的物质所占的容积,单位为立方米每千克。

总容积V、总质量m为尺度量,但密度和比容为强度量且互为倒数,即密度*比容=1。

压力

单位面积上所受到的垂直作用力称为压力。气体的压力是由气体分子运动撞击表面,而在单位面积上所呈现的平均作用力。

1.压力的测量、表压力和绝对压力

流体的压力用压力计测量,工程上常用的压力计为:弹簧压力计和U形管压力计。

由于测压仪表本身处于大气压力的作用下,表上的压力并非被测系统的真实压力,而是系统压力与当地大气压力的差值,称为表压力,用P 表示。

系统的真实压力,称为绝对压力,用P表示。P 和P 之间的关系。

压力:

定义式:p=F/A

气体的压力是气体分子运动撞击表面,在单位面积上所呈现的平均作用力。

压力的法定计量单位为N/m ,称为帕斯卡,符号为Pa.

弹簧管压力计的基本结构:

工作原理

利用弹簧管在内外压差作用下产生变形,从而拨动指针转动来指示工质与环境间的压差。

温度及热力学第零定律

设想有两个热力系,最初都处于平衡态。将它们接触后将会怎样呢?

热力学第零定律是由经验得到的结果不可能从其它定律中推导出来。

举个例,假如有三个球队A,B,C,A和B打成1:1,而A与C踢成2:2,当B和C比赛时并不能说它们就能打成平手,有可能B获胜或C获胜也可能两对打平。这同热力学第零定律相同,是由经验得出的,而不可能从某个定律中推导出来。

温度标尺

*概念:对温度进行定量度量,表示温度高低的尺度称为温度标,简称温标。

*理论基础:热力学第零定律

*原理:物体的温度用温度计测量。当温度计与被测系统接触时,若二者不处于热平衡,则将引起温度计中测温物质状态变化,直至二者达到热平衡时为止。这样,可利用测温物质在两系统相互作用中所引起的某种特性变化,将被测系统温度显示出来。

*摄氏温标:在1个标准大气压下,水的冰点为0度,汽点为100度,其间分为100个分度的温度称为摄氏温度,用t表示,单位为°C。

*理想气体温标:取水的三相点的温度为0度,零点取三相点温度以下273.16度处,而在零度与三相点温度间取273.16个分度,所得到的温度标尺为理想气体温度标尺,用T表示,单位为K。

*两者的关系:t=T-273.15

第四节状态方程式、状态参数坐标图

状态公理

热力系状态用状态参数来描述,决定平衡热力系状态独立变量的数目等于热力系与外界交换能量的各种方式的总数。对于组成一定的闭系,与外界相互作用除表现为各种形式的功交换外,还可能交换热量,因此,对于组成一定的闭系的给定平衡状态而言,可用n+1个独立的状态参数限定,其中n是系统可能有的准静功形式的数目,1是考虑热交换。

简单可压缩系统平衡状态参数为(n+1=1+1=)2个。

纯物质的状态方程

*纯物质:组成是同一的,化学结构是处处一致的物质。

*纯物质的状态方程:

各种物质具有不同的状态方程式,是物质个性的体现。

状态参数坐标图

对于简单可压缩平衡热力系,可用任意两个独立状态参数组成二维平面坐标系,即为热力状态坐标系。图中任意一点代表某一确定的平衡状态。

只有平衡状态才能在状态坐标图上用点来表示。

第五节热力工程及热力循环

热力系处于平衡态时,一切不平衡势都不存在,因而其平衡态不会发生改变。但当热力系所处的条件变化后,热力系会在不平衡势的推动下发生连续变化,这就是热力学过程,简称热力过程。

准平衡过程

现在考察一下在有限压差作用下的气体膨胀作功过程。

最初,热力系与外界已建立平衡,现移去一块重物,情况会怎样呢?

这时看到活塞缓慢上移,一段时间后,重新到达平衡。

若同时移去四块,则活塞上移的速度加快。

通过上面的例子,可知移去重物质量愈大,突然移去后引起热力系内部的不平衡愈明显。若将总质量为m 的重物分成n小块(m=nDm),然后依次移去一小块Dm,则随n增加,Dm减小所引起的热力系内部不平衡性也减小。当n的数目极大而使Dm为一微小质量时,其所造成热力系内部的不平衡小到可以忽略。此时,热力系所经历的一系列状态都无限接近于平衡状态,称这种过程为准平衡过程。同时,由于推动活塞运动的不平衡力极小,活塞移动是无限缓慢的,这种过程又叫准静过程。

可见,热力系实施准平衡过程的条件是推动过程进行的不平衡势为无限小。在上述例子中,热力系内外的

压差为无限小,即

其中p为热力系内部的压力;psurr为外界环境的压力。

由上分析,可得到以下结论:热力系的一切变化过程都是在不平衡势推动下进行的,没有不平衡就没有变化,也就没有过程。当不平衡势为无限小时所进行

的极限过程为准平衡过程。

热力循环

封闭的热力过程称为热力循环。此时,热力系从某一初态出发经历一系列状态变化后又回到初态,如下图中的封闭过程1-2-3-4-1。系统实施热力循环的目的是通过热力系的状态变化实现预期的能量转换。

工程上最常见的是两类循环:热机循环和制冷机(或热泵)循环。

热机循环的工作原理如左图,其目的是实现热功转换,即从高温热源取得热量Q,而对外作功W。为对外输出有效功量,循环膨胀功应大于压缩功。其循环过程表示在p-V图上,为顺时针方向。

制冷机(或热泵)循环的目的在于将热量从低温物体取出并排向高温物体如左图所示,为此需要消耗外功,故循环在p-V图上沿1-4-3-2-1进行。

通常称热机循环为正循环,制冷机或热泵循环称为逆循环。

循环指标

*正循环

(1)循环净作功量:

(2)循环的经济性

循环的经济性用热效率来衡量

*逆循环

(1)循环净功量:

(2)循环的经济性

循环的经济性用工作系数来衡量:

==

强度量:

强度量与系统所含物质的数量无关,它不具可加性.就整个系统而言,强度量对于平衡状态才有确定的参数,对于非平衡状态一般没有确定的数值.

常见的强度量如压力P、温度T等.

还有一些强度量是由尺度量转化而来的,尺度量对质量或是容积的微商具有强度量的性质,比容就是一个很好的例子。

尺度量:

把热力系视为一个整体来定义,具有可加性的物理量称为尺度量。常见的强度量如容积V、质量m等.

对于任意给定平衡及非平衡热力系,尺度量一般具有确定的值。

压力:

定义式:p=F/A

气体的压力是气体分子运动撞击表面,在单位面积上所呈现的平均作用力。

压力的法定计量单位为N/m ,称为帕斯卡,符号为Pa.

弹簧管压力计的基本结构:

工作原理

利用弹簧管在内外压差作用下产生变形,从而拨动指针转动来指示工质与环境间的压差。

1.1.2 能量与热力学第一定律

第一节热力学第一定律的实质

能量转换与守恒定律的内容和意义

*内容:“自然界一切物质都具有能量。能量不可能创造,也不可能消灭,而只能在一定条件下从一种形式转化为另一种形式。在转换中,能量的总量恒定不变。”

*意义:能量的转换反映了运动由一种形式转变为另一种形式的无限能力,能量守恒反映了物质世界中运动不灭的事实。

热力学第一定律

*实质:能量守恒—热力学第一定律是能量转换与守恒定律在热力学中的应用,确定了热力过程中各种能量在量上的相互关系。

*含义:在任何发生能量传递和转换的热力过程中,传递和转换前后能量的总量维持恒定”。

*应用范围: 热力学第一定律是对参与过程的各种能量进行量的分析的基本依据,是一个普遍的自然规律,存在于一切热力过程中,并贯穿于过程的始终。

第二节功

热力系与外界传递能量的方式

作功和传热—热力系与环境之间在不平衡势的作用下发生能量交换所实施的热力过程。

*热力学定义: 功是物系间相互作用而传递的能量。当系统完成功时,其对外界的作用可用在外界举起重物的单一效果来表示。*符号规定:系统对外界作功,功为正;外界对系统作功,功为负。

*法定计量单位: 焦耳,符号为J。1J功的物理意义:物体在1N力的作用下产生1m位移时所完成的功量。*实现:通过热力系的状态变化来实现热力系间的相互作用(作功或传热),将功(或热)与系统的状态变化联系起来。

*稳定流动过程中几种功:

?轴功:系统通过轴与外界交换的功,是开口系所求的功。

?容积功(膨胀功):系统体积变化所作的功,是简单可压缩系热变功的源泉。

?流动功:开口系付诸于质量迁移所作的功,是进出口推动功之差。

?技术功:技术上可资利用的功。

第三节热

*定义:热力系与外界之间依靠温差传递的能量。

*符号规定:热力系吸收热量时取正号,放热时取负号。

*单位:在法定计量单位中,热量的单位为焦耳,符号为J;在公制中,热量的单位为卡,符号为cal。1cal=1/860W.h。焦耳与卡之间的换算关系为:

1cal=4.1868J

*物理学中热量的计算:

热与功之间的比较

*联系:热、功都是物系与外界在不平衡势作用的过程中传递的能量,是过程量。通过热力系的状态变化来体现。

*区别:功的传递可以折合为外界重物高度变化的单一效果,而热不能,它是由温差传递的能量。

第四节循环过程热力学第一定律的表达式

如左图所示,容器中盛有一定量的气体,并置一搅拌器于其中。容器、搅拌器和气体组成一个闭口系。现将容器绝热,重物下落,使搅拌器回转。这时有功加到热力系中依靠摩擦,功变为热使气温升高。然后气体对环境放热,温度下降而回复到原态,这样热力系就从初态经循环回到原态。利用不同重物进行多次测量,发现加入的功量与放出的热量成正比,关系如下

式中,A为比例常数,称为功的热当量,在公制单位中A=1/427kcal/(kgf m),在法定单位中A=1。

上式说明,热力系经循环回到原态时,从外界吸入(放出)的热量等于其对外完成的(得到的)功量。适用于任何与外界有功和热交换的封闭系统所完成的封闭循环,为闭系循环过程热力学第一定律的表达式。

第五节热力学第一定律推论,状态参数内能

状态参数内能

在循环过程中,闭系热力学第一定律的表达式可写作

对任意循环1-A-2-B-1,有

同样对另一任意循环1-C-2-B-1有

以上分析说明,该积分结果与途径无关,因此被积函数是某个态函数的全微分用U表示这个态函数,即由能量守恒定律可以判定,系统既然有净能量输入,则它绝不会自行消失,而必然以某种方式储存于热力系统中,称为系统的热力学能(内能)。内能是一个态函数。

外部储存能

外部储存能系统,需用系统外参考坐标系内测量的参数来表示。

*宏观动能:质量为m的物体以速度c 运动时,所具有的宏观动能为

*重力位能:质量为m的物体在参考坐标系中的高度为z时,具有的重力位能为

系统的总储存能

*系统的总储存能为内、外储存能之和:

*比储存能e为

考虑外部储存能时,闭系的能量方程式可表示为:

第六节热力系与外界的物质交换

质量守恒方程式

对于开口系统,在某过程中有物质流入流出

若流入质量为m ,流出质量为m ,则开系的质量增加为

这就是开系质量守恒的一般形式。

若在流动过程中流道内各点流体的热力状态及流动情况不随时间变化,则为稳定流动过程。

用方程式表示为

推挤功和流动功

将物质移入具有一定压力的热力系需要作功。如左图所示,气缸内有面积为A的无重量活塞,有一重物置于其上对活塞产生平均压力p。若由外界将气体引入气缸内,则需要对抗压力p作功。若移入m千克气体后使活塞上升高度h,则在此过程中外界需付出的功量为:

这称为外界对系统所作的推挤功。

流体在流道内流过,取1、2两截面间的流体作为热力系。当一定量流体从截面1进入热力系时,外界需克服P作推挤功PV。而当流体从截面2流出时,系统对外界作推挤功PV。流体从截面1流入,从截面2流出的过程中,系统付诸于质量迁移所作的功称为流动功,用Wf表示

推挤功是为克服某种作用力,气体发生宏观位移所消耗的功。在移动过程中气体仅发生位置变化,而无热力状态的变化。流动功是流动过程中气体穿过边界进出开系时与外界交换的推挤功的差值。因此,流动功可视为流动过程中系统与外界由于物质的进出而传递的机械功。

如果移动的工质为1kg,则其流动功为比流动功。

第七节热力学第一定律的表达式

基本表达式

以上表达式为热力学第一定律的基本表达式,反映了热力系能量在转换过程中之间量的关系,适用于闭系内进行的一切过程(包括各种非平衡过程及准平衡过程)。

稳定流动能量方程式

*开口系能量方程式:

*稳定流动能量方程式:

它们可用于各种相关的能量过程的分析。由于不同过程中参与转换的能量形式不同,因而其能量守恒方程式也会呈现不同的形式,但都是“能量守恒”这一原则在不同情况下的体现。

*定义式:H=U+pV [ J],相应的比焓为h = u + pv [ J/kg] 。

*实质:是状态参数,是由于工质流动而携带的、并取决于热力状态参数的能量。

*物理意义:流动工质的热力学能和流动功之和。

第八节能量方程式的应用

热力学第一定律的能量方程式是能量守恒定律应用用热力过程的数学描述,是一切热力过程应遵循的共同准则,不同的具体过程,具有不同形式的能量方程式。

热力发动机

热力发动机包括内燃机、蒸汽机、燃气轮机、蒸汽轮机等。气体流经气轮机发生膨胀,压力下降,对外作功。如左图所示,取1-1、2-2截面间的流体为热力系。

气流流经气轮机的流动特征:

*若气轮机处于稳定工况,流动为稳定流动。

*气流经气轮机进出口速度相差不大,

*气流对外散热损失甚微,Q=0;

*进出口气体重力位能之差甚微,Δz=0。

气体流经气轮机时的能量方程式

在气轮机中气流对外输出的净功量(轴功),等于其进出口焓差。

喷管

喷管是使气流加速的变截面流道的热力设备。取喷管进出口截面间的流体为热力系,假定流动是稳定的。喷管实际流动过程的特征:

*气流对外散热损失甚微,Q=0;

*气流流经喷管无净功输入或输出,W =0;

*进出口气体重力位能之差甚微,Δz=0。

气体流经喷管时的能量方程式

喷管中气流宏观动能的增加是由气流进出口焓差转换而来。

气轮机叶轮

气流流经气轮机叶轮上的动叶栅,推动转轮回转对外作功,取叶轮进出口截面间的流体为热力系。

气流经气轮机叶轮的流动特征:

*气流对外散热损失甚微,Q=0;

*进出口气体重力位能之差甚微,Δz=0;

*在一般冲击式气轮机中,气流流经动叶栅时热力状态不变化,Δh=0。

气流流经气轮机叶轮时的能量方程式

在气轮机叶轮中是将气流的宏观动能差转化为对外的机械功的单纯的机械能变换过程。

压气机

压气机是消耗外功而使气体升压的设备,工程上常见的压气机有活塞式和回转式。

气流流经压气机的流动特征:

*对外略有散热,进出口气流的动能差和位能差可以忽略。

能量方程式

热交换器

电厂中的锅炉、加热器等换热设备均属热交换器,左图为一表面式热交换器,取1、2截面间的流体为热力系。

流体流经热交换器的流动特征:

*无净功输入或输出,忽略进出口流体的动能差和位能差。

气流在热交换器中得到的热量等于其焓的增加量。

节流过程

节流过程是气体流经管道中的阀门或缩孔时发生的一种非平衡的流动过程。取图示1、2截面间的流体为热力系。

节流过程可简化为:

*绝热,无净功输入或输出,忽略1、2截面流体的动能差和位能差。

能量方程式

在绝热节流过程中,节流前后工质的焓值不变。

第九节非稳定流动的能量方程式

非稳定流动,流体在流道内的状态及其对外的热量功量交换随时间而变化。

非稳定流动能量方程式

非稳定能量方程的应用

均匀状态定态流动充气过程:在充放气过程中,每一瞬间整个容器内气体各处的参数一致;在充气过程中,通过容器边界进入容器的气体进口状态不随时间变化。

假定干管中气体的参数不变,充气过程可进行到容器中气体的压力等于干管中气体的压力时为止。自然,也可在任何低于干管气流的压力下中止充气过程。

选容器边界所围的空间作热力系,为开口系统,进行绝热充气的条件为:

忽略进入容器时气体的动能和位能变化,得到能量方程式为

在充气过程中,容器内气体热力学能的增量等于充入气体的焓。

1.1.3 熵与热力学第二定律

第一节热过程的不可逆性

与不可逆过程相关的几个概念

*不可逆过程:系统经历某过程后,不能逆行而使正过程在系统及环境中所引起的变化在逆过程中全部得到消除的过程。

*自发转变:过程自动地(无条件地)或单独地(百分之百地)转变。

*耗散效应:不可逆过程中使功变为热的效应。

*外部不可逆因素:对所取热力系而言,系统与外界环境之间的不可逆因素。

*内部不可逆因素:对所取热力系而言,内部的不可逆因素。

几个典型的不可逆自然过程

*功的耗散:功可自发、完全地转变为热,而从单一热源取热不可能使其转变为功。

*不等温传热过程:有限温差作用下热可自发地由高温物体传向低温物体,但不能自发地从低温物体传向高温物体。

*无阻膨胀:(动画下页所示)隔板将容器分为A、B两边,A边盛有气体,B边为真空。若抽去隔板,则A 边气体将膨胀并移向B边。因B边为真空,对A边气体的膨胀没有造成阻力未对外完成功量,为无阻膨胀(自由膨胀),是工程上常见的一种自发过程,但其逆过程--自动压缩(或无功压缩),却是不可能实现的。*混合过程:不同气体的混合过程可以自发进行,但混合物的分离却需消耗外功。

不可逆过程的特点

一切不可逆过程在其不可逆这一特性上是完全等效的。各种不可逆因素并不是孤立无关而是有内在联系的。

第二节可逆过程

可逆过程的一般性定义

当系统完成某一过程后,若能使过程逆行而使系统及外界回复到原始状态不遗留下任何变化的过程。

可逆过程的基本特征

准平衡过程;

在过程中不应包含任何诸如摩擦、磁滞、电阻等耗散效应;

可逆过程中不应包含任何一种外部的或内部的不可逆因素。

可逆过程的实现条件

过程为准平衡过程且无任何耗散效应。

可逆过程与准平衡过程的比较

*区别:准平衡过程着眼于热力过程中系统所经历的各状态的特征而可逆过程则着眼于过程所产生的效果,可逆过程是一个理想的极限过程,是不可能实现。

*联系:一个可逆过程必须同时也是一个准平衡过程,但准平衡过程则不一定是可逆的。

第三节热力学第二定律

热力学第二定律的实质

热过程不可逆(热力学第二定律是经验定律)。

热力学第二定律的几种说法

*克劳修斯说法(1850年):不可能把热从低温物体传至高温物体而不引起其它变化。

*开尔文说法(1851年):不可能从单一热源取热,并使之完全变为有用功而不产生其它影响。

*普朗克说法:不可能制造在循环动作中把一重物升高而同时使一热库冷却的一部机器。

各种说法表述的是一个共同的客观规律,彼此等效,一种说法成立可推论另一种说法的成立,任何一种说法都是其它说法在逻辑上导致的必然结果。

热力学第二定律的推论

*一切可逆循环的克劳修斯积分等于零,而一切不可逆循环的克劳修斯积分小于。

*对于任意可逆循环,闭合积分等于零,因此被积函数是某态函数的全微分,这个态函数定义为熵。

*孤立体系熵增原理:在孤立体系内,一切实际过程(不可逆过程)都朝着使系统熵增加的方向进行,或在极限情况下(可逆过程)维持系统的熵不变,而使系统熵减小的过程是不可能发生的。

*可以定义一个与测温物质性质无关的温度标尺(证明)。

热力学绝对温标的特点:独立于物质个性。

实用温度标尺的特点:首先确定若干固定的、易于复现的状态温度,然后在一定温度间隔内选用一定的测温设备,并提出测温设备上的度数与温度之间关系的计算公式。利用内插法得到此温度间隔内任意点的温度。

热力学第二定律的数学表达式

利用熵函数,可将热力学第二定律用数学表达式表示为

其中,不等号用于不可逆过程,等号适用于可逆过程。

第四节卡诺定理

卡诺定理:不可能制造出在两个温度不同的热源间工作的热机,而使其效率超过在同样热源间工作的可逆热机。

定理证明:

任意热机E:

可逆热机R:

令:任意热机作正循环,可逆热机作逆循

环,且使

这样的结果:

★热机内的工质各自完成循环,未发生变化;

★高温热源未发生变化;

★低温热源放出的热量:

★功源得到的功量:

由第二定律得出:

卡诺定理包含三层意义:

所有热机的可逆效率为最高;

所有可逆热机的效率相等;

不可逆热机效率必小于可逆热机效率。

第五节卡诺循环

卡诺循环的装置示意图

某热机C在高温热源和低温热源之间实现可逆循环。

卡诺循环的P-v图

热机热效率为:

从卡诺循环的热效率得到的重要结论

*卡诺循环的热效率仅与热源及冷源的温度有关,与工质的性质和热机的类型等无关;

*为提高卡诺循环的热效率,应尽量提高热源温度和尽量降低冷源温度。

*如果冷热源间没有温差存在,利用此单一热源作功是不可能的。由此得出热机工作必不可少的热力学条件:必须有两个以上温度不等的热源。

第六节热力系的可用能

机械能热能

一定环境条件下,热能中可能转变为功的部分,为可用能,不能转变的部分为不可用能。

热量的可用能与不可用能

*定义:在T0、P0环境条件下,从热源T取热量Q,可能作的最大功。

以热机为系统:

第一定律:

熵方程:

可用能:

不可用能:

耗散功:

工质的可用能----开系稳定流动

工质(T、p、h)经开口系流动到出口()与环境平衡,只与环境交换

第一定律得:

第二定律得:

最大功(可用能):

不可用能:

耗散功:

闭系在与温度为、压力为的环境相互作用下,可逆地过渡到与环境相平衡的状态所能完成的最大功。

第一定律得:

第二定律得:

环境熵的变化:

从而得:

闭系的最大功:

定温-定容系统的最大功

定温-定压系统的最大功

在一定条件下,热力系从任意状态过渡到另一状态所能完成的最大有用功等于系统在初、终状态下功势函数的差值。

工程热力学的公式大全

工程热力学公式大全 1.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 2.比热比: v p v p v p Mc Mc c c c c ===''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 221mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++ =221 2.gz c u e ++=22 1 3.U E = 或u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算)

3.102000121221t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算) 4.把()T f c v =的经验公式代入?=?2 1dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1121 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之与,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?21pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11、w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12、pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+=

(完整版)哈工大工程热力学习题答案——杨玉顺版

第二章 热力学第一定律 思 考 题 1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 d d q u p v δ=+ 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h pv =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者 的数学本质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+???蜒? 因为 0du =??,()0d pv =?? 所以 0dh =??, 因此焓是状态参数。 而对于能量方程来说,其循环积分: q du pdv δ=+???蜒?

工程热力学期末复习题1答案

一、判断题: 1. 平衡状态一定稳定状态。 2. 热力学第一定律的实质是能量守恒定律; 3.公式d u = c v d t 适用理想气体的任何过程。 4.容器中气体的压力不变则压力表的读数也绝对不会改变。 5.在T —S 图上,任意二条可逆绝热过程线不能相交。 6.膨胀功与流动功都是过程的函数。 7.当把一定量的从相同的初始状态压缩到相同的终状态时,以可逆定温压缩过程最为省功。 8.可逆过程是指工质有可能沿原过程逆向进行,并能恢复到初始状态的过程。 9. 根据比热容的定义式 T q d d c ,可知理想气体的p c 为一过程量; 10. 自发过程为不可逆过程,非自发过程必为可逆过程; 11.在管道内作定熵流动时,各点的滞止参数都相同。 12.孤立系统的熵与能量都是守恒的。 13.闭口绝热系的熵不可能减少。 14.闭口系统进行了一个过程,如果熵增加了,则一定是从外界吸收了热量。 15.理想气体的比焓、比熵和比定压热容都仅仅取决与温度。 16.实际气体绝热节流后温度一定下降。 17.任何不可逆过程工质的熵总是增加的,而任何可逆过程工质的熵总是不变的。 18. 不可逆循环的热效率一定小于可逆循环的热效率; 19.混合气体中质量成分较大的组分,其摩尔成分也一定大。 20.热力学恒等式du=Tds-pdv 与过程可逆与否无关。 21.当热源和冷源温度一定,热机内工质能够做出的最大功就是在两热源间可逆热机对外输出的功。 22.从饱和液体状态汽化成饱和蒸汽状态,因为气化过程温度未变,所以焓的变化量Δh=c p ΔT=0。 23.定压过程的换热量q p =∫c p dT 仅适用于理想气体,不能用于实际气体。 24.在p -v 图上,通过同一状态点的定熵过程的斜率大于定温过程的斜率。

【工程热力学讲义大全】

【工程热力学讲义大全】 绪论 问题:本课程是什么?干什么?有什么特点? 一、能源和动力工程 1、能源:人类赖以生存和发展的物质资源称为能源。人们的衣、 食、住、行,时时处处都离不开能源。从某个角度来讲,人类的发展史就是开发和利用能源的历史。而开发和利用能源的先进程度是社会进步的标志。 2、能源的利用:能源的利用方式可分为两种,一是直接利用,即将 自然界的能源不经过形态转换而利用。如晒太阳、风车、水车等。 自然界现有形态的能源称为一次能源。二是间接利用,将一次能源经过形态转换再利用。如火力发电、发动机等。这样的能源称为二次能源。在能源利用的发展史中,先是一次利用,后来发展二次利用,电能的优点是众所周知的。从节能和环保的观点出发,能源一次利用方式并非落后和将被淘汰,应当发展。 3、动力工程:由热能转换为机械能的装置称为热机,所有热机(蒸 汽机、内燃机、蒸汽动力装置等)称为动力工程。

二、工程热力学 1、主要内容:基本概念;基本理论;基本工质;热力过程;热力循 环。工程热力学是研究热功转换及其规律的科学。早期是随着热机而诞生的,如今应用已很广,包括热机、制冷、空调、化工等众多领域。 2、研究方法:宏观方法(宏观定义、宏观定律、宏观参数)与合理 抽象、简化手段相结合。 3、特点:用少量的宏观基本定律演绎出丰富的内容,具有应用的广 泛性和结论的准确性。 三、几个问题: 1、能量和能源一样吗? 2、能量守恒吗?什么是节能?如何节能?节能的标准是什么?

第一章 基本概念 工程热力学的概念较多,要注意理解。本章先介绍一些基本概念。 1— 1工质和热力系 一、 工质 1、 定义:实现热功转换的媒介物质。 2、 举例: *工质的物理特性:流体(气体和液体)、大热容、变比容。 *工质可分为两大类,气体和蒸汽。气体工质一般作为理想气体处理。 二、 热力系 1、定义:热力学分析和研究的对象或范围。例: 媒介 热 功 工质

工程热力学习题集答案

工程热力学习题集答案一、填空题 1.常规新 2.能量物质 3.强度量 4.54KPa 5.准平衡耗散 6.干饱和蒸汽过热蒸汽 7.高多 8.等于零 9.与外界热交换 10.7 2g R 11.一次二次12.热量 13.两 14.173KPa 15.系统和外界16.定温绝热可逆17.小大 18.小于零 19.不可逆因素 20.7 2g R 21、(压力)、(温度)、(体积)。 22、(单值)。 23、(系统内部及系统与外界之间各种不平衡的热力势差为零)。 24、(熵产)。 25、(两个可逆定温和两个可逆绝热) 26、(方向)、(限度)、(条件)。

31.孤立系; 32.开尔文(K); 33.-w s =h 2-h 1 或 -w t =h 2-h 1 34.小于 35. 2 2 1 t 0 t t C C > 36. ∑=ω ωn 1 i i i i i M /M / 37.热量 38.65.29% 39.环境 40.增压比 41.孤立 42热力学能、宏观动能、重力位能 43.650 44.c v (T 2-T 1) 45.c n ln 1 2T T 46.22.12 47.当地音速 48.环境温度 49.多级压缩、中间冷却 50.0与1 51.(物质) 52.(绝对压力)。 53.(q=(h 2-h 1)+(C 22 -C 12 )/2+g(Z 2-Z 1)+w S )。 54.(温度) 55. (0.657)kJ/kgK 。 56. (定熵线)

57.(逆向循环)。 58.(两个可逆定温过程和两个可逆绝热过程) 59.(预热阶段、汽化阶段、过热阶段)。 60.(增大) 二、单项选择题 1.C 2.D 3.D 4.A 5.C 6.B 7.A 8.A 9.C 10.B 11.A 12.B 13.B 14.B 15.D 16.B 17.A 18.B 19.B 20.C 21.C 22.C 23.A 三、判断题 1.√2.√3.?4.√5.?6.?7.?8.?9.?10.? 11.?12.?13.?14.√15.?16.?17.?18.√19.√20.√ 21.(×)22.(√)23.(×)24.(×)25.(√)26.(×)27.(√)28.(√) 29.(×)30.(√) 四、简答题 1.它们共同处都是在无限小势差作用下,非常缓慢地进行,由无限接近平衡 状态的状态组成的过程。 它们的区别在于准平衡过程不排斥摩擦能量损耗现象的存在,可逆过程不会产生任何能量的损耗。 一个可逆过程一定是一个准平衡过程,没有摩擦的准平衡过程就是可逆过程。 2.1kg气体:pv=R r T mkg气体:pV=mR r T 1kmol气体:pV m=RT nkmol气体:pV=nRT R r是气体常数与物性有关,R是摩尔气体常数与物性无关。 3.干饱和蒸汽:x=1,p=p s t=t s v=v″,h=h″s=s″

武汉大学工程热力学复习题1

工程热力学复习题 第一部分 选择题 001.绝对压力为P ,表压力为P g 真空为P v ,大气压力为P b ,根据定义应有 A .P =P b - P v B .P =P b - P g C .P =P v -P b D .P =P g - P b 002.若过程中工质的状态随时都无限接近平衡状态,则此过程可属于 A .平衡过程 B .静态过程 C .可逆过程 D .准平衡过程 003.有一过程,如使热力系从其终态沿原路径反向进行恢复至其初态,且消除了正向过程给 外界留下全部影响,则此过程属于 A .平衡过程 B .准静态过程 C .可逆过程 D .不可逆过程 004.物理量 属于过程量。 A .压力 B .温度 C .内能 D .膨胀功 005.状态参数等同于 A .表征物理性质的物理量 B .循环积分为零的物理量 C .只与工质状态有关的物理量 D .变化量只与初终态有关的物理量 006.热能转变为功的根本途径是依靠 A .工质的吸热 B .工质的膨胀 C .工质的放热 D .工质的压缩 007.可逆循环在T -s 面上所围的面积表示 A .循环的吸热量 B .循环的放热量 C .循环的净功量 D .循环的净热量 008.热力系储存能包括有 A .内能 B .宏观动能 C .重力位能 D .推动功 009.只与温度有关的物质内部的微观能量是 A .内能 B .内热量 C .内位能 D .内动能 010.构成技术功的三项能量是宏观动能增量,重力位能增量和 A .内功 B .推动功 C .膨胀功 D .压缩功 011.如图所示,工质在可逆过程1~2中所完成的技术功可以可用面积 A .e+d B .a+b C .a+e D .b+d 012.技术功W t 与膨胀功W 的关系为 A .w t =w+ p 1v 1- p 2v 2. B .w t =w+ p 2v 2- p 1v 1- C .w t = w+ p 1v 1 D .w t = w+ p 2v 2 013.当比热不能当作定值时,理想气体的定压比热 A .C p =p T u ??? ???? B . C p =p T h ??? ???? C .C p =dT du D .C p =dT dh 014..理想气体的定容比热C v 与比热比κ,气体常量R 的关系为C v A . 1+κR B .1-κκR C .1-κR D .1 +κκR

(完整版)工程热力学习题集附答案

工程热力学习题集 一、填空题 1.能源按使用程度和技术可分为 能源和 能源。 2.孤立系是与外界无任何 和 交换的热力系。 3.单位质量的广延量参数具有 参数的性质,称为比参数。 4.测得容器的真空度48V p KPa =,大气压力MPa p b 102.0=,则容器内的绝对压力为 。 5.只有 过程且过程中无任何 效应的过程是可逆过程。 6.饱和水线和饱和蒸汽线将压容图和温熵图分成三个区域,位于三区和二线上的水和水蒸气呈现五种状态:未饱和水 饱和水 湿蒸气、 和 。 7.在湿空气温度一定条件下,露点温度越高说明湿空气中水蒸气分压力越 、水蒸气含量越 ,湿空气越潮湿。(填高、低和多、少) 8.克劳修斯积分 /Q T δ?? 为可逆循环。 9.熵流是由 引起的。 10.多原子理想气体的定值比热容V c = 。 11.能源按其有无加工、转换可分为 能源和 能源。 12.绝热系是与外界无 交换的热力系。 13.状态公理指出,对于简单可压缩系,只要给定 个相互独立的状态参数就可以确定它的平衡状态。 14.测得容器的表压力75g p KPa =,大气压力MPa p b 098.0=,则容器内的绝对压力为 。 15.如果系统完成某一热力过程后,再沿原来路径逆向进行时,能使 都返回原来状态而不留下任何变化,则这一过程称为可逆过程。 16.卡诺循环是由两个 和两个 过程所构成。 17.相对湿度越 ,湿空气越干燥,吸收水分的能力越 。(填大、小) 18.克劳修斯积分 /Q T δ?? 为不可逆循环。 19.熵产是由 引起的。 20.双原子理想气体的定值比热容p c = 。 21、基本热力学状态参数有:( )、( )、( )。 22、理想气体的热力学能是温度的( )函数。 23、热力平衡的充要条件是:( )。 24、不可逆绝热过程中,由于不可逆因素导致的熵增量,叫做( )。 25、卡诺循环由( )热力学过程组成。 26、熵增原理指出了热力过程进行的( )、( )、( )。 31.当热力系与外界既没有能量交换也没有物质交换时,该热力系为_______。 32.在国际单位制中温度的单位是_______。

工程热力学(1)考试复习重点总结

第一章 基本概念及定义 一、填空题 1、热量与膨胀功都是 量,热量通过 差而传递热能,膨胀功通过 差传递机械能。 2、使系统实现可逆过程的条件是:(1) ,(2) 。 3、工质的基本状态参数有 、 、 。 4、热力过程中工质比热力学能的变化量只取决于过程的___________而与过程的路经无关。 5、热力过程中热力系与外界交换的热量,不但与过程的初终状态有关,而且与_______有关。 6、温度计测温的基本原理是 。 二、判断题 1、容器中气体的压力不变则压力表的读数也绝对不会改变。( ) 2、无论过程是否可逆,闭口绝热系统的膨胀功总是等于初、终态的内能差。( ) 3、膨胀功的计算式?= 2 1 pdv w ,只能适用于可逆过程。 ( ) 4、系统的平衡状态是指系统在无外界影响的条件下(不考虑外力场作用),宏观热力性质不随时间而变化的状态。( ) 5、循环功越大,热效率越高。( ) 6、可逆过程必是准静态过程,准静态过程不一定是可逆过程。( ) 7、系统内质量保持不变,则一定是闭口系统。( ) 8、系统的状态参数保持不变,则系统一定处于平衡状态。( ) 9、孤立系统的热力状态不能发生变化。( ) 10、经历一个不可逆过程后,系统和外界的整个系统都能恢复原来状态。( ) 三、选择题 1、闭口系统功的计算式21u u w -=( )。 (A )适用于可逆与不可逆的绝热过程 (B )只适用于绝热自由膨胀过程 (C )只适用于理想气体绝热过程 (D )只适用于可逆的绝热过程 2、孤立系统是指系统与外界( )。 (A )没有物质交换 (B )没有热量交换 (C )没有任何能量交换 (D )没有任何能量传递与质交换 3、绝热系统与外界没有( )。 (A )没有物质交换 (B )没有热量交换 (C )没有任何能量交换 (D )没有功量交换

《工程热力学》(第五版) 配套课件

第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压

工程热力学课后答案..

《工程热力学》 沈维道主编 第四版 课后思想题答案(1~5章) 第1章 基本概念 ⒈ 闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。 ⒉ 有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。这种观点对不对,为什么? 答:不对。“绝热系”指的是过程中与外界无热量交换的系统。热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。物质并不“拥有”热量。一个系统能否绝热与其边界是否对物质流开放无关。 ⒊ 平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系? 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。 ⒋ 倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式 b e p p p =+ ()b p p >; b v p p p =- ()b p p < 中,当地大气压是否必定是环境大气压? 答:可能会的。因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。 “当地大气压”并非就是环境大气压。准确地说,计算式中的Pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。 ⒌ 温度计测温的基本原理是什么? 答:温度计对温度的测量建立在热力学第零定律原理之上。它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。 ⒍ 经验温标的缺点是什么?为什么? 答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。由于经验温标依赖于测温物质的性质,当选用不同测温物质制作温度计、采用不同的物理性质作为温度的标志来测量温度时,除选定的基准点外,在其它温度上,不同的温度计对同一温度可能会给出不同测定值(尽管差值可能是微小的),因而任何一种经验温标都不能作为度量温度的标准。这便是经验温标的根本缺点。 ⒎ 促使系统状态变化的原因是什么?举例说明。 答:分两种不同情况: ⑴ 若系统原本不处于平衡状态,系统内各部分间存在着不平衡势差,则在不平衡势差的作用下,各个部分发生相互作用,系统的状态将发生变化。例如,将一块烧热了的铁扔进一盆水中,对于水和该铁块构成的系统说来,由于水和铁块之间存在着温度差别,起初系统处于热不平衡的状态。这种情况下,无需外界给予系统任何作用,系统也会因铁块对水放出热量而发生状态变化:铁块的温度逐渐降低,水的温度逐渐升高,最终系统从热不平衡的状态过渡到一种新的热平衡状态; ⑵ 若系统原处于平衡状态,则只有在外界的作用下(作功或传热)系统的状态才会发生变。 ⒏ 图1-16a 、b 所示容器为刚性容器:⑴将容器分成两部分。一部分装气体, 一部分抽成真空,中间是隔板。若突然抽去隔板,气体(系统)是否作功? ⑵设真空部分装有许多隔板,每抽去一块隔板让气体先恢复平衡再抽去一块, 问气体(系统)是否作功? ⑶上述两种情况从初态变化到终态,其过程是否都可在P-v 图上表示? 答:⑴;受刚性容器的约束,气体与外界间无任何力的作用,气体(系统)不对外界作功; ⑵ b 情况下系统也与外界无力的作用,因此系统不对外界作功;

工程热力学复习资料 1

工程热力学复习题 一、1.水蒸气定压发生过程在P-V和T-S图上所表示的特征归纳为一点:临界点, 二线:饱和水线饱和蒸汽线;三区:未饱和水,湿饱和蒸汽,过饱和蒸汽。 2.孤立系统中进行可逆变化时系统总熵不变,进行不可逆变化时总熵必增 大。 3.如果势力系处于不平衡状态下,则不能在状态图上标示。 4.组成制冷系统的四大设备是换热器、压缩机、膨胀机、冷却器。 5.在最高温度与最低温度相同的所有的循环中以卡诺循环的热效率最高。 6.湿空气含水蒸气和干空气两种成分。 7.错误!未找到引用源。运用于闭口系统,理想和实际气体,可逆和不可逆过程。 8.将相同质量的氢气和氧气分别储存在相同容器内,二容器温度相等,两者 压力为氢气压力>氧气压力。 9.朗肯循环由两个等压和两个绝热过程构成。 10.理想气体的焓是温度的单值函数。 11.水蒸气定压加热过程水加热生成过热蒸汽经五种变化,即过冷水,饱和水, 湿饱和蒸汽,干饱和蒸汽,过热蒸汽。 12.在T-S图中任意逆过程吸热小于放热 13.定量的某种气体经历某种过程不可能发生的是吸热降温对外做负功 14.同一地区阴雨天的大气压力比晴天的压力高 15.可逆过程一定是准静态过程。 16.水蒸气定压气化过程温度不变 17.卡诺循环由两个等温过程和两个等熵过程组成。 18.经一个不等温传热热量的可用能减小,废热增大。 19.经过一个不可逆过程,工质可以恢复原来状态 20.缩放管进口参数P1下和背压p一定时,在渐扩管切去一段,则出口面积 减小这出口速度c减小,流量Q不变。 21.理想气体可逆定温过程焓不变。 22.不可逆过程的熵产必定大于零。 23.工质经历一个不可逆过程后,熵不变。 24.迈耶公式Cp-Cv=Rg适用于理想气体是否定比热容不限。 25.焓的表达式H=U+PV 26.理想气体的比热容随气体的种类而不同,但对某种气体而言,比热容是气体的单值函数。 27.不可逆循环的熵产必然大于零 28.绝热过程P错误!未找到引用源。=常数,k=Cp/Cv,适用于理想气体定比 热容可逆绝热过程。 29.郎肯循环可理想化为两个定压过程和两个等熵过程。 二、 1.稳定状态不一定是平衡状态(正确) 2.绝热闭口系的熵增就是孤立系的熵增(错误) 3.绝热节流后气体的温度可能升高。(错误)

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c ===''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 221mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++ =221 2.gz c u e ++=221 3.U E = 或u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.102000121221t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把()T f c v =的经验公式代入?=?2 1dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1121Λ 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?21pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

工程热力学课后题答案

习题及部分解答 第一篇 工程热力学 第一章 基本概念 1. 指出下列各物理量中哪些是状态量,哪些是过程量: 答:压力,温度,位能,热能,热量,功量,密度。 2. 指出下列物理量中哪些是强度量:答:体积,速度,比体积,位能,热能,热量,功量, 密度。 3. 用水银差压计测量容器中气体的压力,为防止有毒的水银蒸汽产生,在水银柱上加一段水。若水柱高mm 200,水银柱高mm 800,如图2-26所示。已知大气压力为mm 735Hg ,试求容器中气体的绝对压力为多少kPa ?解:根据压力单位换算 kPa p p p p kPa Pa p kPa p Hg O H b Hg O H 6.206)6.106961.1(0.98)(6.10610006.132.133800.96.110961.180665.92002253=++=++==?=?==?=?= 4. 锅炉烟道中的烟气常用上部开口的斜管测量,如图2-27所示。若已知斜管倾角 30=α , 压力计中使用 3 /8.0cm g =ρ的煤油,斜管液体长度 mm L 200=,当地大气压力 MPa p b 1.0=,求烟气的绝对压力(用MPa 表示)解: MPa Pa g L p 6108.7848.7845.081.98.0200sin -?==???==α ρ MPa p p p v b 0992.0108.7841.06=?-=-=- 5.一容器被刚性壁分成两部分,并在各部装有测压表计,如图2-28所示,其中C 为压力表,读数为 kPa 110,B 为真空表,读数为kPa 45。若当地大气压kPa p b 97=,求压力表A 的读数(用kPa 表示) kPa p gA 155= 6. 试述按下列三种方式去系统时,系统与外界见换的能量形式是什么。 (1).取水为系统; (2).取电阻丝、容器和水为系统; (3).取图中虚线内空间为系统。

工程热力学第四版思考题答案(完整版)(沈维道)(高等教育出版社)

工程热力学第四版沈维道 思考题 完整版 第1章 基本概念及定义 1.闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗 答:否。当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。 2.有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。这种观点对不对,为什么 答:不对。“绝热系”指的是过程中与外界无热量交换的系统。热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。物质并不“拥有”热量。一个系统能否绝热与其边界是否对物质流开放无关。 ⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。 ⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗在绝对压力计算公式 中,当地大气压是否必定是环境大气压 答:可能会的。因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。 “当地大气压”并非就是环境大气压。准确地说,计算式中的P b 应是“当地环境介质”的压 ) ( )( b v b b e b P P P P P P P P P P <-=>+=;

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c = = = ''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 2 2 1mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++=2 21 2.gz c u e ++=22 1 3.U E = 或 u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.10 20 121 2 2 1 t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把 ()T f c v =的经验公式代入?=?2 1 dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1 1 21 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?2 1pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21 pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

工程热力学习题集及答案(1)

工程热力学习题集及答案 一、填空题 1.能源按使用程度和技术可分为 常规 能源和 新 能源。 2.孤立系是与外界无任何 能量 和 物质 交换的热力系。 3.单位质量的广延量参数具有 强度量 参数的性质,称为比参数。 4.测得容器的真空度48V p KPa =,大气压力MPa p b 102.0=,则容器内的绝对压力为 54kpa 。 5.只有 准平衡 过程且过程中无任何 耗散 效应的过程是可逆过程。 6.饱和水线和饱和蒸汽线将压容图和温熵图分成三个区域,位于三区和二线上的水和水蒸气呈现五种状态:未饱和水 饱和水 湿蒸气、 干饱和蒸汽 和 过热蒸汽 。 7.在湿空气温度一定条件下,露点温度越高说明湿空气中水蒸气分压力越 高 、水蒸气含量越 多 ,湿空气越潮湿。(填高、低和多、少) 8.克劳修斯积分/Q T δ? 等于零 为可逆循环。 9.熵流是由 与外界热交换 引起的。 10.多原子理想气体的定值比热容V c = g 72R 。 11.能源按其有无加工、转换可分为 一次 能源和 二次 能源。 12.绝热系是与外界无 热量 交换的热力系。 13.状态公理指出,对于简单可压缩系,只要给定 两 个相互独立的状态参数就可以确定它的平衡状态。 14.测得容器的表压力75g p KPa =,大气压力MPa p b 098.0=,则容器内的绝对压力为 173a KP 。 15.如果系统完成某一热力过程后,再沿原来路径逆向进行时,能使系统和外 界都返回原来状态而不留下任何变化,则这一过程称为可逆过程。 16.卡诺循环是由两个 定温 和两个 绝热可逆 过程所构成。 17.相对湿度越 小 ,湿空气越干燥,吸收水分的能力越 大 。(填大、小) 18.克劳修斯积分/Q T δ? 小于零 为不可逆循环。 19.熵产是由 不可逆因素 引起的。 20.双原子理想气体的定值比热容p c = 72g R 。 21.基本热力学状态参数有:( 压力)、(温度 )、(体积)。 22.理想气体的热力学能是温度的(单值 )函数。 23.热力平衡的充要条件是:(系统内部及系统与外界之间各种不平衡的热力势差为零 )。 24.不可逆绝热过程中,由于不可逆因素导致的熵增量,叫做(熵产)。 25.卡诺循环由(两个可逆定温和两个可逆绝热 )热力学过程组成。 26.熵增原理指出了热力过程进行的(方向 )、(限度)、(条件)。 31.当热力系与外界既没有能量交换也没有物质交换时,该热力系为_孤立系_。 32.在国际单位制中温度的单位是_开尔文_。

工程热力学复习题

各位同学:以下为《工程热力学B 》复习题,如有问题,请到办公室答疑。 第一章 基本概念 1.如果容器中气体压力保持不变,那么压力表的读数一定也保持不变。( 错 ) 2.压力表读值发生变化,说明工质的热力状态也发生了变化。 ( 错 ) 3.由于准静态过程都是微小偏离平衡态的过程,故从本质上说属于可逆过程。 ( 错 ) 4.可逆过程一定是准静态过程,而准静态过程不一定是可逆过程。( 对 ) 5. 比体积v 是广延状态参数。( 对 ) 6. 孤立系的热力状态不能发生变化。 ( 错 ) 7. 用压力表可以直接读出绝对压力值。 ( 错 ) 8. 处于平衡状态的热力系,各处应具有均匀一致的温度和压力。( 错 ) 9. 热力系统的边界可以是固定的,也可以是移动的;可以是实际存在的,也可以是假想的。 ( 对 ) 10. 可逆过程是不存在任何能量损耗的理想过程。 (对 ) 11.经历了一个不可逆过程后,工质就再也不能回复到原来的初始状态了。 ( 错 ) 12. 物质的温度越高,则所具有的热量越多。( 错 ) 1. 能源按其有无加工、转换可分为 一次 能源和 二次 能源。 2. 在火力发电厂蒸汽动力装置中,把实现 热 能和机械能 能相互转化的 工作物质就叫做 工质 。 3. 按系统与外界进行物质交换的情况,热力系统可分为 开口系 和 闭口系 两大类。 4. 决定简单可压缩系统状态的独立状态参数的数目只需 2 个。 5. 只有 平衡 状态才能用参数坐标图上的点表示,只有 可逆 过程才能用参数 坐标图上的连续实线表示。 6. 绝热系是与外界无 热量 交换的热力系。 7. 孤立系是指系统与外界既无 能量 交换也无 质量 交换的热力系。 8. 测得容器的表压力75g p KPa =,大气压力MPa p b 098.0=,容器内的绝对压力 173 kPa 。 6.热力系在不受外界影响的条件下,系统的状态能够始终保持不变,这种状态称为(平 准静态过程满足下列哪一个条件时为可逆过程 C 。A 做功无压差; B 传热无温差; C 移动无摩擦; D 上述任一个都可。 2.下列说法中正确的是:1 (1)可逆过程一定是准平衡过程

广大复习资料之工程热力学第三章思考题答案

第三章思考题 3-1门窗紧闭的房间内有一台电冰箱正在运行,若敞开冰箱的大门就有一股凉气扑面,感到凉爽。于是有人就想通过敞开冰箱大门达到降低室内温度的目的,你认为这种想法可行吗? 解:按题意,以门窗禁闭的房间为分析对象,可看成绝热的闭口系统,与外界无热量交换,Q =0,如图3.1所示,当安置在系统内部的电冰箱运转时,将有电功输入系统,根据热力学规定:W <0,由热力学第一定律W U Q +?=可知,0>?U ,即系统的热力学能增加,也就是房间内空气的热力学能增加。由于空气可视为理想气体,其热力学能是温度的单值函数。热力学能增加温度也增加,可见此种想法不但不能达到降温目的,反而使室内温度有所升高。 3-2既然敞开冰箱大门不能降温,为什么在门窗紧闭的房间内安装空调器后却能使温度降低呢? 解:仍以门窗紧闭的房间为对象。由于空调器安置在窗上,通过边界向环境大气散热,这时闭口系统并不绝热,而且向外界放热,由于Q<0,虽然空调器工作时依旧有电功W 输入系统,仍然W<0,但按闭口系统能量方程:W Q U -=?, 此时虽然Q 与W 都是负的,但W Q >,所以?U<0。可见室内空气热力学能将减少,相应地空气温度将降低。 3-6 下列各式,适用于何种条件?(说明系统、工质、过程) 1)?q=du+ ?w ;适用于闭口系统、任何工质、任何过程 2)?q=du+ pdv ;适用于闭口系统、任何工质、可逆过程 3)?q=c v dT+ pdv ;适用于闭口系统、理想气体、任何过程 4)?q=dh ;适用于开口系统、任何工质、稳态稳流定压过程 5)?q=c p dT- vdp 适用于开口系统、理想气体、可逆过程 3-8 对工质加热,其温度反而降低,有否可能? 答:有可能,如果工质是理想气体,则由热力学第一定律Q=ΔU+W 。理想气体吸热,则Q>0,降温则ΔT<0,对于理想气体,热力学能是温度的单值函数,因此,ΔU <0。在此过程中,当气体对外作功,W>0,且气体对外作功大于热力学能降低的量,则该过程遵循热力学第一定律,因此,理想气体能进行吸热而降温的过程。 3-9 “任何没有容积变化的过程就一定不对外做功“这种说法对吗?说明理由。 答:这种说法不正确。系统与外界传递的功不仅仅是容积功,还有轴功等形式,因此,系统经历没有容积变化的过程也可以对外界做功。 3-10 说明以下论断是否正确: 1) 气体吸热后一定膨胀,热力学能一定增加; 答:不正确。由热力学第一定律Q=ΔU+W ,气体吸热,Q>0,可能使热力学能增加,也可能膨胀做功。 2) 气体膨胀时一定对外做功; 答:不正确。自由膨胀就不对外做功。容积变化是做膨胀功的必要条件,不是充分条件。 3) 气体压缩时一定消耗外功; 答:不正确。气体冷却时容积缩小但是不用消耗外功。

工程热力学复习题

《工程热力学》复习题型 一、简答题 1.状态量(参数)与过程量有什么不同?常用的状态参数哪些是可以直接测 定的?哪些是不可直接测定的? 内能、熵、焓是状态量,状态量是对应每一状态的(状态量是描述物质系统状态的物理量)。功和热量是过程量,过程量是在一个物理或化学过程中对应量。(过程量是描述物质系统状态变化过程的物理量)温度是可以直接测定的,压强和体积是不可以直接测定的。 2.写出状态参数中的一个直接测量量和一个不可测量量;写出与热力学第二 定律有关的一个状态参数。 3.对于简单可压缩系统,系统与外界交换哪一种形式的功?可逆时这种功如 何计算。 交换的功为体积变化功。可逆时 4.定压、定温、绝热和定容四种典型的热力过程,其多变指数的值分别是多 少? 0、1、k、n 5.试述膨胀功、技术功和流动功的意义及关系,并将可逆过程的膨胀功和技 术功表示在p v 图上。 膨胀功是系统由于体积变化对外所作的功;轴功是指工质流经热力设备(开口系统)时,热力设备与外界交换的机械功(由于这个机械工通常是通过转动的轴输入、输出,所以工程上习惯成为轴功);流动功是推动工质进行宏观位移所做的功。 膨胀功=技术功+流动功 6.热力学第一定律和第二定律的实质分别是什么?写出各自的数学表达式。热力学第一定律的实质就是能量守恒与转换定律在热力学上的应用。(他的文字表达形式有多种,例如:1、在孤立系统中,能的形式可以转换,但能的总量不变;2、第一类永动机是不可能制成的。)数学表达式: 进入系统的能量-离开系统的能量=系统储存能量的增量 热力学第二定律的实质是自发过程是不可逆的;要使非自发过程得以实现,必须伴随一个适当的自发过程作为补充条件。数学表达式可用克劳修斯不等式表示: ∮(δQ T )≤0 7.对于简单可压缩系,系统只与外界交换哪一种形式的功?可逆时这种功如 何计算(写出表达式)? 简单可压缩系统与外界只有准静容积变化功(膨胀功或压缩功)的交换。可逆时公

相关主题
文本预览
相关文档 最新文档