当前位置:文档之家› 城市道路设计规范10混凝土路面设计

城市道路设计规范10混凝土路面设计

城市道路设计规范10混凝土路面设计
城市道路设计规范10混凝土路面设计

第十章水泥混凝土路面设计

第一节设计原则与规定

第10.1.1条本章适用于接缝处设传力杆、不设传力杆及设补强钢筋网的水泥混凝土路面(以下简称混凝土路面)的设计。

设计内容包括结构组合设计、混凝土板厚度设计、混凝土板平面尺寸设计、接缝构造和传力杆设计、局部补强钢筋与钢筋网设计等。

第10.1.2条混凝土板的厚度,按行车产生的荷载应力不超过水泥混凝土在设计年限末期的疲劳强度并验算温度翘曲应力后确定。

混凝土板长度的确定应使最大行车荷载应力和最大翘曲应力的迭加值不超过水泥混凝土的弯拉强度。

第10.1.3条行车荷载应力和温度翘曲应力均按弹性半无限地基上的弹性薄板理论,用有限元法计算。

各项计算可用电子计算机或本章所列计算公式及图表计算。

第二节设计标准及参数

第10.2.1条混凝土路面设计以100kN轴载作为标准轴载。

其他各级轴载Pi的作用次数Ni应按式(10.2.1)换算为标准轴载Pk的作用次数Nc。

双后轴轴距大于1.35m时,分别按单后轴计。

轴载小于40kN的轴数可不计。轴载大于或等于40kN时均应换算为标准轴载的轴数。

第10.2.2条混凝土路面的交通等级按设计初期设计车道的日标准轴载的轴数Nli分为四级。交通等级及采用的设计年限见表10.2.2。

第10.2.3条设计年限内设计车道上标准轴载累计数N按下式计算。

当初期设计车道的日标准轴载的轴数Nli采用表10.2.2的数值时,设计年限内设计车道上标准轴载累计数N用式(10.2.3-1)计算。

第10.2.4条计算荷载应力按式(10.2.4)计算。

第10.2.5条在旧路上铺筑混凝土板时,旧路顶面的当量回弹模量ES应在最不利季节采用刚性承载板法实测确定。当量回弹模量的计算方法见第9.5.3条。计算回弹模量ECS按式(1 0.2.5-1)计算。

对于新建道路,按照现行的试验方法确定的土基回弹模量值En、基层材料回弹模量E1,并拟用的基层厚度h,查图10.2.5确定基层顶面的当量回弹模量ES。基层为多层时,按柔性路面设计方法计算基层顶面当量回弹模量ES。

第10.2.6条水泥混凝土的设计强度以龄期28d的弯拉强度为准,其值不得低于表10.

2.6-1的规定值。

水泥混凝土的弯拉弹性模量EC宜采用实测值。无实测值时,可按表10.2.6-2选用。

第10.2.7条水泥混凝土的弯拉疲劳强度按设计年限内设计车道上标准轴载的累计数N确定,用式(10.2.7)计算。

第10.2.8条设计年限内混凝土板的最大温度梯度计算值Th(℃/cm)宜采用各城市实测值,当无实测资料时,可根据道路所在的公路自然区划与不同板厚,按表10.2.8选用。

第三节结构组合设计

第10.3.1条混凝土路面下的土基应符合下列规定。

土基的回弹模量值应符合第8.1.2条规定。

埋设地下公用设施沟槽的回填土应与周围土的性质相同,并分层压实到符合第8.4.3条规定的压实度。

第10.3.2条对于膨胀土、粘质土、季节性冰冻地区的松质土等土基,除采取上述措施外,还应加强排水措施,并根据情况加设垫层或对土基顶部土层采取换土、低剂量结合料稳定处理等措施。

在潮湿或过湿土基上应加设垫层。垫层可采用结合料稳定土、炉渣或颗粒材料。

季节性冰冻地区的中湿、潮湿路段的路面结构总厚度小于表10.3.2规定的最小厚度时,其差值应设垫层补足。过湿路段按第八章的规定处理后,可按表10.3.2潮湿路段的要求设垫层。

垫层厚度应大于或等于15cm。其宽度应比基层每侧各宽出25~35cm,或与路基同宽。

第10.3.3条混凝土板下的基层应平整、坚实、抗变形能力强、整体性好、透水性小和耐冲刷。特重和重交通等级的道路应采用无机结合料稳定类、工业废渣稳定类材料做基层。中等和轻交通等级的道路亦可采用符合本条要求的其他材料做基层。

基层顶面当量回弹模量ES不得小于表10.3.3的规定值。

岩石、砂砾路面或旧沥青路面顶面的当量回弹模量值高于表10.3.3规定数值时,可不加铺基层,但应设置整体性好的整平层,其最小厚度不得小于所用材料的施工最小厚度。

基层最小厚度应大于或等于15cm。其宽度应比混凝土板每侧各宽出25~35cm。

第10.3.4条混凝土板表面应平整、耐磨,并且有一定粗糙度。抗滑标准见第9.6.1条。

混凝土板的横断面宜采用等厚式,其厚度按应力计算确定。混凝土板的最小厚度为18cm。

第四节混凝土板厚度设计

第10.4.1条混凝土板设传力杆时,按图10.4.1-1计算混凝土板的最大应力;不设传力杆时,按图10.4.1-2计算混凝土板的最大应力。最大应力σmax,根据初设板厚hc以及水泥混凝土弯拉弹性模量与基层顶面计算回弹模量之比值EC/ECS,按图示方法查得。

第五节混凝土板平面尺寸、温度翘曲应力验算与接缝设计

第10.5.1条混凝土板应设置垂直相交的纵向和横向接缝,将混凝土板分为矩形板。

相邻板的接缝应对齐,不得错缝。在不得已情况出现错缝时,与接缝相对的板边应加设防裂钢筋。见图10.5.1。

第10.5.2条混凝土板长度应通过验算混凝土板的温度翘曲应力后确定,可采用4.5m~5. 5m,最大应不超过6m。

板中点或纵缝边缘中点可能出现的一次最大行车计算荷载应力和温度翘曲应力的迭加值不得超过水泥混凝土的设计强度fcm。

一次最大行车荷载的轴载,按交通等级选用表10.5.2规定值。

计算结果不满足式(10.5.2-1)要求时,应修改混凝土板的厚度与(或)长度,重新计算。

第10.5.3条混凝土板内的温度翘曲应力按下式计算:

第10.5.4条混凝土板的纵缝必须与道路中线平行。纵缝间距按车道宽度选用,可采用3. 50m、3.75m,最大为4.0m。

对于特重及重交通等级,混凝土板的纵缝应采用加拉杆的企口缝或加拉杆的平缝;对于中等交通等级,混凝土板的纵缝宜采用加拉杆的平缝。采用企口缝时必须加设拉杆。纵缝构造见图1 0.5.4-1。

纵缝间距超过4m时,应在板中线上设纵向缩缝。纵向缩缝宜采用设拉杆的假缝,其构造见图10.5.4-2。

第10.5.5条拉杆设在混凝土板厚中央,并与板缝垂直。拉杆中部10cm范围内应涂防锈涂料。拉杆的尺寸、根数及间距按以下公式计算确定。

第10.5.6条胀缝设置应根据混凝土板厚、施工温度、水泥混凝土骨料的膨胀性并结合当地经验确定。夏季施工,混凝土板厚大于或等于20cm时,可不设胀缝;其他季节施工或采用膨胀性大的骨料时,宜段胀缝,其间距为100~200m。

混凝土板与桥梁或其他结构物、交叉口相接以及混凝土板厚度变化处,小半径平曲线、竖曲线处,均应设置胀缝。与结构物或沥青路面相接时,在混凝土路面端部的二或三条横缝均应设胀缝。

隧道内部的混凝土路面不设胀缝,只在隧道洞口附近设胀缝。

对于特重及重交通等级混凝土路面的胀缝应采用滑动传力杆;对于中等交通等级,混凝土路面的胀缝宜采用滑动传力杆,其构造见图10.5.6-1。不设传力杆时,其构造见图10.5.6-2。紧靠结构物的胀缝无法设传力杆时,可采用加横向边缘钢筋(图10.5.6-3)或厚边式(图10.5.6

-4),并与结构物之间留出20~25mm的缝隙,按胀缝处理。厚边式板边厚度hc+he应按不设传力杆时所需厚度确定。

第10.5.7条横向缩缝采用假缝。对于特重及重交通等级,混凝土板的横向缩缝应设传力杆,其构造见图10.5.7-1。对于中等交通等级,混凝土板的横向缩缝宜设传力杆。不设传力杆的横向编缝构造见图10.5.7-2。

采用长间距的胀缝,且横向缩缝不设传力杆时,宜在邻近胀缝或自由端的三条缩缝内设传力杆。

横向缩缝采用切缝时,应每隔二或三条切缝设一条预塑缝。

第10.5.8条施工缝应位于横缝处。混凝土路面设传力杆时,施工缝应按所在横缝系胀缝或缩缝而设置相同的传力杆,并采用相同的接缝构造。混凝土路面不设传力杆时,施工缝构造见图10.5.8与图10.5.6-2。

第10.5.9条接缝处一组传力杆应传递的荷载Q的计算如下:

按温度翘曲应力验算后确定的设传力杆混凝土板厚度及荷载在板中荷位产生的应力,在图1 0.4.1-2不设传力杆的混凝土板荷载应力计算图中查得轴载值QC。100kN与QC之差为接缝处一组传力杆应传递的荷载Q(N)。

第10.5.10条胀缝传力杆为滑动传力杆。传力杆应采用光面钢筋,设在混凝土板厚中央,并与板缝垂直,传力杆长的一半加5cm的范围内涂沥青或其他防锈涂料。在涂沥青一侧的端部加套筒,内留空隙,填充泡沫塑料等弹性材料,见图10.5.6-1。

第10.5.11条传力杆的尺寸及间距按以下规定计算:

一、单根传力杆的传荷能力

胀缝处的滑动传力杆按式(10.5.11-1)与式(10.5.11-2)分别计算单根传力杆的传荷能力,取小值作为单根传力杆的计算传荷能力P。缩继处按式(10.5.11-2)计算。纵缝处拉杆亦应按式(10.5.11.2)进行验算。不能满足传荷要求时,按照缩缝有关规定,调整拉杆的直径与间距。

二、一组传力杆的总传荷能力

1、在荷载作用下混凝土板接缝处的影响范围为荷载两侧各1.8rc,rc为混凝土板的相对刚度半径,按式(10.5.11-3)计算。

2、以2×1.8rc范围内的传力杆为一组,共同向邻板传递荷载。荷载中心处传力杆的传荷能力为100%;距荷载中心1.8rc处的传荷能力为0;位于上述两位置之间的传力杆的传荷能力按直线分配。

横缝传力杆的间距为30~50cm,最外侧一根传力杆到板的纵边的距离为10~15cm。

3、横缝处与纵缝处一组传力杆总传荷能力的计算荷载作用于一根传力杆之上,如图10.5. 11-1时,

4、一组传力杆的总传荷能力应大于或等于需传递的荷载Q。在横缝或纵缝处用下式计算。

ΣPi≥Q(10.5.11.6)

当不符合上述要求时,可调整传力杆或拉杆的间距或直径,重新计算,直至符合要求。

第10.5.12条按设传力杆确定混凝土板的厚度,而在板的自由边不能设置传力设施时,应设置边缘钢筋,自由板角上部应设角隅钢筋。

边缘钢筋为两根直径为14或16mm的钢筋,布置见图10.5.12-1。角隅钢筋直径为10~14m m的钢筋,布置见图10.5.12-2。

边缘钢筋与角隅钢筋可用螺纹钢筋或光面钢筋。

第10.5.13条接缝处采用的封缝材料应有弹性、不透水、耐疲劳、耐老化及抗压入性能好,并能同水泥混凝土表面粘结牢固。

第10.5.14条交叉口范围内混凝土板分块时应注意以下各点:

一、接缝应正交。当非主要行车部位出现锐角时,板角处应加设补强钢筋网或角隅钢筋。

二、混凝土板分块不宜过小,最小边长应大于或等于1.5m。与主要行车方向垂直的边长应小于或等于4.0m。

三、接缝应对齐,不得错缝。当出现错缝时,应按第10.5.1条的规定处理。

四、胀缝应布置在交叉口缘石转弯的切点处。

第10.5.15条在有纵横向交通的广场上,宜采用正方形板块,接缝宜布置成两个方向均能传递荷载的形式。接缝设传力杆时,一个方向的接缝采用普通传力杆,另一个方向的接缝采用滑动传力杆。

第六节板的局部补强及其他处理

第10.6.1条预计土基有可能产生不均匀沉降或路面下有新埋设的市政公用设施时,为防止混凝土路面产生的缝隙张开,板内应配置网状钢筋,见图10.6.1。

每延米混凝土板所需的钢筋面积,由式(10.6.1)计算确定。

纵横向钢筋直径宜相等。钢筋最小间距应为骨料最大粒径的2倍。钢筋最小直径及最大间距见表10.6.1。钢筋网应采用焊接构成。

为加强钢筋网边缘,可采用两根直径14mm的钢筋组成钢筋束。绑扎钢筋时,其搭接长度应大于钢筋直径的30倍,并不得小于25cm。

根据混凝土板受力情况,采用单层或双层钢筋网。单层钢筋网可设在板的上部或下部,距板顶面或底面1/3~1/4板厚处。双层钢筋网分别布置在板上部与板下部,距板顶面及底面各1/3~1/4板厚处。钢筋网边距混凝土板边为10~15cm。

第10.6.2条混凝土路面中的雨水口及各种市政公用设施的检查井,应设置胀缝与混凝土板完全隔开,并在其周围加设防裂钢筋。防裂钢筋采用4根直径10或12mm的钢筋。设置方法见图10.6.2-1及10.6.2-2。

混凝土路面接缝距雨水口或检查井的最近边缘应大于或等于1.5m。

第10.6.3条混凝土路面同柔性路面相接处应设置过渡段,以免柔性路面端部沉陷或拥起,见图10.6.3。

第10.6.4条混凝土路面与桥台相接时,应设桥头搭板,桥头搭板的布置见图10.6.4。

城市道路交通设计规范

中华人民共和国国家标准 城市道路交通规划设计规范 Code for transport planning on urban road GB 50220-95 主编单位:中华人民共和国建设部 批准部门:中华人民共和国建设部 施行日期:1995年9月1日 关于发布国家标准《城市道路交通规划设计规范》的通知 建标[1994]808号 根据国家计委计综(1986)250号文的要求,由建设部会同有关部门共同制订的《城市道路交通规划设计规范》已经有关部门会审,先批准《城市道路交通规划设计规范》GB50220-95为强制性国家标准,自1995年9月1日起施行。 本标准由建设部负责管理,具体解释等工作由上海同济大学负责,出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 1995年1月14日

城市道路交通规划设计规范 第一章总则 第一条为了加强城市道路管理,保障城市道路完好,充分发挥城市道路功能,促进城市经济和社会发展,制定本条例。 第二条本条例所称城市道路,是指城市供车辆、行人通行的,具备一定技术条件的道路、桥梁及其附属设施。 第三条本条例适用于城市道路规划、建设、养护、维修和路政管理。 第四条城市道路管理实行统一规划、配套建设、协调发展和建设、养护、管理并重的原则。 第五条国家鼓励和支持城市道路科学技术研究,推广先进技术,提高城市道路管理的科学技术水平。 第六条国务院建设行政主管部门主管全国城市道路管理工作。省、自治区人民政府城市建设行政主管部门主管本行政区域内的城市道路管理工作。县级以上城市人民政府市政工程行政主管部门主管本行政区域内的城市道路管理工作。 1 总则 1.0.1 为了科学、合理地进行城市道路交通规划设计,优化城市用地布局,提高城市的运转效能,提供安全、高效、经济、舒适和低公害的交通条件,制定本规范。 1.0.2 本规范适用于全国各类城市的城市道路交通规划设计。 1.0.3 城市道路交通规划应以市区内的交通规划为主,处理好市际交通与市内交通的衔接、市域范围内的城镇与中心城市的交通联系。 1.0.4 城市道路交通规划必须以城市总体规划为基础,满足土地使用对交通运输的需求,发挥城市道路交通对土地开发强度的促进和制约作用。 1.0.5 城市道路交通规划应包括城市道路交通发展战略规划和城市道路交通综合网络规划两个组成部分。 1.0.6 城市道路交通发展战略应包括下列内容: 1.0.6.1 确定交通发展目标和水平; 1.0.6.2 确定城市交通方式和交通结构; 1.0.6.3 确定城市道路交通综合网络布局、城市对外交通和市内的客货运设施的选址和用地规模;

公路水泥混凝土路面设计规范标准

1总则 1.0.1 为适应交通运输发展和公路建设的需要,提高水泥混凝土路面的设计质量和技术水平,保证工程安全可靠、经济合理,制定本规范。 1.0.2 本规范适用于新建和改建公路和水泥混凝土路面设计。1.0.3 水泥混凝土路面设计方案,应根据公路的使用任务、性质和要求,结合当地气侯、水文、土质、材料、施工技术、实践 经验以及环境保护要求等,通过技术经济分析确定。水泥混 凝土路面设计应包括结构组合、材料组成、接缝构造和钢筋 配制等。水泥混凝土路面结构应按规定的安全等级和目标可 靠度,承受预期的荷载作用,并同所处的自然环境相适应, 满足预定的使用性能要求。 1.0.4 水泥混凝土路面设计除应符合本规范外,尚应符合国家现行有关标准的规定。 2 术语、符号 2.1 术语 2.1.1 水泥混凝土路面cement concrete pavement 以水泥混凝土做面层(配筋或不配筋)的路面,亦称刚性路面。 2.1.2 普通混凝土路面plain concrete pavement 除接缝区和局部范围外面层内均不配筋的水泥混凝土路面,亦称素混凝土路面。

2.1.3 钢筋混凝土路面jointed reinforced concrete pavement 面层内配置纵、横向钢筋或钢筋网并设接缝的水泥混凝土路面。 2.1.4 连续配筋混凝土路面continuous reinforced concrete pavement 面层内配置纵向连续钢筋和横向钢筋,横向不设缩缝的水泥混凝土路面。 2.1.5 钢纤维混凝土路面steel fiber reinforced concrete pavement 在混凝土面层中掺入钢纤维的水泥混凝土路面。 2.1.6 复合式路面composite pavement 面层由两层不同类型和力学性质的结构层复合而成的路面。 2.1.7 水泥混凝土预制块路面concrete block pavement 面层由水泥混凝土预制块铺砌成的路面。 2.1.8 碾压混凝土roller compected concrete 采用振动碾压成型的水泥混凝土。 2.1.9 贫混凝土lean concrete 水泥用量较低的水泥混凝土。 2.1.10 设计基准期限design reference period 计算路面结构可靠度时,考虑各项基本度量与时间关系所取用的基准时间。 2.1.11 安全等级safety classes

水泥混凝土路面设计计算案例

水泥混凝土路面设计计算案例 一、设计资料 某公路自然区划Ⅱ区拟新建一条二级公路,路基为粘性土,采用普通混凝土 路面,路面宽为9m ,经交通调查得知,设计车道使用初期标准轴载日作用次数 为2100次,试设计该路面厚度。 二、设计计算 (一)交通分析 二级公路的设计基准期查表10-17为20年,其可靠度设计标准的安全等级 查表10-17为三级,临界荷位处的车辆轮迹横向分布系数查表10-7取0.39取交 通量年增长率为5%. 设计基限期内的设计车道标准荷载累计作用次数按式(10-3)计算: 6 2010885.939.005 .0365]1)05.01[(2100365]1)1[(?=??-+?=?-+?=ηr t r s e g g N N 由表10-8可知,该公路属于重交通等级。 (二)初拟路面结构 相应于安全等级为三级的变异水平等级为中级。根据二级公路、重交通等级 和中级变异水平,查表10-1初拟普通混凝土面层厚度为0.22m 。基层选用水泥 稳定粒料(水泥用量5%),厚度为0.18m 。垫层为0.15m 低剂量无机结合料稳定 土。普通混凝土板的平面尺寸为宽4.5m ,长5m 。纵缝为设计拉杆平缝(见图10-8 (a )),横缝为设计传力杆的假缝(见图10-5(a ))。 (三)路面材料参数确定 查表10-11、表10-12,取重交通等级的普通混凝土面层弯拉强度标准值为 5.0MPa ,相应弯拉弹性模量为31GPa 。 根据中湿路基路床顶面当量回弹模量经验参考值表10-10,取路基回弹模量 为30MPa ,根据垫层、基层材料当量回弹模量经验参考值表10-9,取低剂量无 机结合料稳定土垫层回弹模量为600MPa ,水泥稳定粒料基层回弹模量为 1300MPs 。 按式(10-4)-(10-9),计算基层顶面当量回弹模量如下: )(101315.018.015.060018.01300222 222 2122 2121MPa h h E h E h E =+?+?=++ ) (57.2)15 .0600118.013001(4)15.018.0(1215.060018.01300)11(4)(122123312 21122132311m MN h E h E h h h E h E Dx ?=?+?++?+?=++++=--

水泥混凝土路面设计(最新规范)

注:本文档为手算计算书文档,包含公式、计算过程在内,可供老师教学,可供学生学习。下载本文档后请在作者个人中心中下载对应Excel计算过程。(若还需要相关cad图纸或者有相关意见及建议,请私信作者!)团队成果,侵权必究!(温馨提示,本文档没有计算功能,请在作者个人中心中下载对应的Excel计算表格,填入基本参数后,Excel表格会计算出各分项结果,并显示计算过程!)

1.水泥混凝土路面设计 1.1引言 水泥混凝土路面板为刚性路面,具有较高的力学强度,在车轮荷载作用下变形较小。所以,混凝土板通常工作在弹性阶段。本水泥混凝土路面设计主要依据《公路水泥混凝土路面设计规范》。在荷载图示方面采用静力作用均布面荷载,在地基模型方面,采用温克勒地基模型。在路面板形态方面,采用半空间弹性地基有限大矩形板理论。 1.2题目 广西隆林至百色高速公路(K10+800~K16+000)沥青及水泥混凝土路面设计。 1.3设计资料 1、自然条件 本项目(K10+800~K16+000)位于广西西北端,是滇、黔、桂三省区结合部,属广西山区与云贵高原东南边缘的过渡地带,区域地势由西北向东南逐渐降低,地形以山地为主。当地属亚热带季风气候类型。 2、设计参数 本道路预测交通量较大,重载运营车辆较多,超载现象严重。标准轴载采用BZZ-100。沥青路面设计年限(基准期)为15年。水泥混凝土路面设计年限(基准期)为30年。设计基准期内,预测交通量年增长率为8%~12%。设计初始年交通组成如表1所示。设计路段路基土为粘性路,路基平均填土高度为2.0m。地下水位为地面下-1.0m。

2.行车荷载 2.1车辆的类型和轴型 由交通调查和预测得知,本路建成初期每昼夜双向混合交通量组成如上表,通过查表可知车辆轴重参数如下: 在满足任务要求的前提下拟定年平均交通增长率为8.0%。

水泥混凝土路面设计1

第六章 水泥混凝土路面设计 1.设计资料 新建永州至蓝山高速位于自然区划Ⅳ区,采用普通混凝路面设计,双向四车道,路面宽26m ,交通量年平均增长率为8.0% 2.交通分析 2.1使用初期设计车道每日通过标准轴载作用次数 根据昼夜双向交通量统计,有 使用初期设计车道日标准轴载换算 (小于40KN 的单轴和小于80KN 的双轴略去不计,方向分配系数为a=0.5,车道分 s N

配系数为b=0.8)。 =0.4×5274.11=2105.64 2.2使用年限内的累计标准轴次e N 查《公路水泥混凝土路面设计规范》(JTG D40—2011),设计基准期为t =30a ,临界荷位处轮迹横向分布系数取=η0.2, 交通量年平均增长率g γ=8.0%,累计标准轴次(使用年限内的累计标准轴次): 71074.1365]1)1[(?=??-+= γ γη g g N N t s e 故此路属于重交通等级 3.初拟路面结构 查《公路水泥混凝土路面设计规范》(JTG D40—2011)水泥混凝土面层厚度的参考范围:高速公路(重交通等级)安全等级为一级,变异水平为低级;按设计要求,根据路基的干湿类型,设计6种方案,并进行方案比选。 3.1干燥状态 方案一: (1) 初拟路面结构 初拟水泥混凝土面层厚度h=25cm 。基层选用水泥稳定碎石,厚度h 1=15cm 。底基层选用水泥稳定砂砾,厚度h 2=20cm 。板平面尺寸选为宽3.75m ,长4.5m 。纵缝为设拉杆平缝,横缝为设传力杆的假缝。 (2) 材料参数的确定 1、混凝土的设计弯拉强度与弯拉弹性模量 查《公路水泥混凝土路面设计规范》(JTG D40—2011),普通水泥混凝土路面重型交通:设计弯拉强度f r 0.5=Mpa ,对应的设计弯拉弹性模量标准值E c =31Mpa 。 2、土基的回弹模量 根据《公路水泥混凝土路面设计规范》(JTG D40—2011),路基土干燥状态 时,选用土基的回弹模量值:MPa E 450= 16 1) 100( ∑=??=n i i i s Pi N a b a N

混凝土路面设计

混凝土路面设计 Prepared on 22 November 2020

(一) 设计资料 公路自然区划为V 区,四级公路。 交通年增长率为% 路基土为低液限黏土,路床顶距底下水位2m ,路基处于干燥状态。 设计标准轴重BZZ100KN ,最重轴重P m =1.50KN (1) 标准轴载与轴载换算,水泥混 凝土路面结构设计以100KN 的单轴-双轮组荷载作为标准轴载。 N s = ∑δi n i=1N i ( P i 100 )10 (2) 标准轴载累计作用次数 由表 t=10年 gr=% η取0.55 N e =N s [(1+gr )t ?1]×365 gr N e = 320.405[(1+7.5%)10?1]×3657.5%=90.995×104 中交通荷载等级。 (3) 初拟路面结构 施工变异水平取中级,属于中交通等级荷载。 由规范表4-3初拟混凝土面层厚度为h c =0.21m 查公路工程技术标准四级公路设计车速取20KM/h 单向路幅宽度为。 基层采用水泥稳定砂砾基层。 纵缝为设拉杆平缝。 横缝为设传立杆平缝。 (4) 路面材料参数确定 由表,面层混凝土的弯拉应力取 砾石粗集料的热膨胀系数αc =11×10?6/℃ 混凝土弯拉弹性模量与泊松比为29GPa 低液限黏土的回弹模量取80MPa 低液限黏土距底下水位2m 的

湿度调整系数可取(查表) 路床顶综合回弹模量取为E 0==64 水泥稳定砂砾基层的弹性模量取2000MPa ,泊松比取 板底地基回弹综合模量 E x = ∑?i 2 n i=1E i ∑?i 2n i=1? =3000MPa ?x =∑?i =0.2m n i=1 α=0.26ln (?x )+0.86 =0.26ln (0.2)+0.86=0.442 E t =(E x E 0 )α E 0 =(200064) 0.442 ×80 =366.28MPa 板底地基综合回弹模量E t 取365MPa 混凝土面板的弯曲刚度D c D C =( E C ?3 c 12(1?V c 2))= 29000×0.21312(1?0.162) =22.968MN .m 半刚性基层的弯曲刚度D C D b =( E b ?3 b 12(1?V b 2))= 2000×0.2312(1?0.212) =1.39MN .M 路面结构总相对刚度半径 r g =1.21( D C + D b E t ) 13 =1.21(22.968+1.39 366.28t ) 1 3 =0.490m (5) 荷载应力 设计轴载和极限荷载在临界荷位处产生的荷载应力: σps =1.45×10?31+D b D C ?r g 0.65?c ?2P s 0.94= σps = 1.45×10?31+1.3922.968?0.4900.65×0.21?2×1000.94=1.492MPa

公路水泥混凝土路面设计规范

公路水泥混凝土路面设计规范JTG D40-2002---03 4.4面层 4.4.1水泥混凝土面层应具有足够的强度、耐久性,表面抗滑、耐磨、平整。 4.4.2面层一般采用设接缝的普通混凝土;面层板的平面尺寸较大或形状不规则,路面结构下埋有地下设施,高填方、软土地基、填挖交界段的路基等有可能产生不均匀沉降时,应采用设置接缝的钢筋混凝土面层。其他面层类型可根据适用条件按表4.4.2选用。 表 4.4.2其他面层类型选择 4.4.3普通混凝土、钢筋混凝土、碾压混凝土或钢纤维混凝土面层板一般采用矩形。其纵向和横向接缝应垂直相交,纵缝两侧的横缝不得相互错位。 4.4.4纵向接缝的间距按路面宽度在3.0~4.5m范围内确定。碾压混凝土、钢纤维混凝土面层在全幅摊铺时,可不设纵向缩缝。 4.4.5横向接缝的间距按面层类型和厚度选定: ——普通混凝土面层一般为4~6m,面层板的长宽不宜超过1.30,平面尺寸不宜大于25m2; ——碾压混凝土或钢纤维混凝土面层一般为6~10m; ——钢筋混凝土面层一般为6~15m。 4.4.6普通混凝土、钢筋混凝土、碾压混凝土或配筋混凝土面层所需的厚度,可参照表4.4.6所示参考范围并按4.4.9条规定计算确定。

表 4.4.6 水泥混凝土面层厚度的参考范围 4.4.7钢纤维混凝土面层的厚度按钢纤维掺量确定,钢纤维体积率为 0.6%~1.0%时,其厚度为普通混凝土面层厚度的0.65~0.75倍。特重或重交通时,其最小厚度为160mm;中等或轻交通时,其最小厚度为140mm。 4.4.8复合式路面沥青上面层的厚度一般为25~80mm。 4.4.9除混凝土预制块面层外,各种混凝土面层的计算厚度应满足式(3.0.3)的要求。荷载疲劳应力和温度疲劳应力分别按附录B.1和B.2计算。面层设计厚度依计算厚度按10mm向上取整。 采用碾压混凝土或贫混凝土做基层时,宜将基层与混凝土面层视作分离式双层板进行应力分析。上、下层板在临界荷位处的荷载疲劳应力和温度疲劳应力分别按附录C.1和C.2计算。上、下层板的计算厚度应分别满足式(3.0.3)的要求。 具有沥青上面层的水泥混凝土板,在临界荷位处的荷载疲劳应力和温度疲劳应力分别按附录D.1和D.2计算。混凝土板的计算厚度,应满足式(3.0.3)的要求。 4.4.10路面表面构造应采用刻槽、压槽、拉槽或拉毛等方法制作。构造深度在使用初期应满足表4.4.10的要求。 表 4.4.10 各级公路水泥混凝土面层的表面构造深度(mm)要求

城市道路交通规划设计规范

城市道路交通规划设计规范 Code for transport planning on urban road GB 50220-95 3.1.4 城市公共汽车和电车的规划拥有量,大城市应每800-1000人一辆标准车,中、小城市应每1200-1500人一辆标准车。 3.1.5 城市出租汽车规划拥有量根据实际情况确定,大城市每千人不宜少于2辆;小城市每千人不宜少于辆;中等城市可在其间取值。 3.1.7 选择公共交通方式时,应使其客运能力与线路上的客流量相适应。常用的公共交通方式单向客运能力宜符合表的规定。 公共交通方式单向客运能力表 3.2.1 城市公共交通线路网应综合规划。市区线、近郊线和远郊线应紧密衔接。各线的客运能力应与客流量相协调。线路的走向应与客流的主流向一致;主要客流的集散点应设置不同交通方式的换乘枢纽,方便乘客停车与换乘。 3.2.2 在市中心区规划的公共交通线路网的密度,应达到3-4km/km2;在城市边缘地区应达到km2。 3.2.3 大城市乘客平均换乘系数不应大于;中、小城市不应大于。 3.2.4 公共交通线路非直线系数不应大于。 3.2.5 市区公共汽车与电车主要线路的长度宜为8-12km;快速轨道交通的线路长度不宜大于40min的行程。

3.3.1 公共交通的站距应符合表的规定。 公共交通站距表 3.3.2 公共交通车站服务面积,以300m半径计算,不得小于城市用地面积的50%;以500m 半径计算,不得小于90%。 3.3.4 公共交通车站的设置应符合下列规定: 在路段上,同向换乘距离不应大于50m,异向换乘距离不应大于100m;对置设站,应在车辆前进方向迎面错开30m; 在道路平面交叉口和立体交叉口上设置的车站,换乘距离不宜大于150m,并不得大于200m; 长途客运汽车站、火车站、客运码头主要出入口50m范围内应设公共交通车站; 公共交通车站应与快速轨道交通车站换乘。 3.3.6 快速路和主干路及郊区的双车道公路,公共交通停靠站不应占用车行道。停靠站应采用港湾式布置,市区的港湾式停靠站长度。应至少有两个停车位。 3.3.7 公共汽车和电车的首末站应设置在城市道路以外的用地上,每处用地面积可按1000~1400m2计算。有自行车存车换乘的,应另外附加面积。 4.1.3 在城市居民出行总量中,使用自行车与公共交通的比值,应控制在表规定的范围内。 不同规模城市的居民使用自行车与公共交通出行量的比值表 4.3.1 自行车道路路面宽度应按车道数的倍数计算,车道数应按自行车高峰小时交通量确定。自行车道路每条车道宽度宜为1m,靠路边的和靠分隔带的一条车道侧向净空宽度

水泥混凝土路面设计参数(有用)

1、水泥混凝土路面的力学及工作特点 (1)水泥路面的力学特征 ①混凝土的强度及模量远大于基层和土基强度和模量; ②水泥混凝土本身的抗压强度远大于抗折强度; ③板块厚度相对于平面尺寸较小,板块在荷载作用下的挠度(竖向位移)很小; ④混凝土板在自然条件下,存在沿板厚方向的温度梯度,会产生翘曲现象,如受到约束,会在板内产生翘曲应力; ⑤荷载重复作用,温度梯度反复变化,混凝土板出现疲劳破坏。 (2)水泥混凝土路面的力学模式 ①弹性地基上的小挠度薄板模型; ②弹性地基:因为混凝土板下的基层与土基的应力应变很小,不超过材料的弹性区域; ③弹性板:因为板的模量高,应力承受能力强,一般受力不超过弹性比例极限应力,挠度与板厚相比很小 ④水泥混凝土路面设计理论:弹性地基上的小挠度薄板理论。 (3)水泥混凝土路面的工作及设计特点 ①抗弯拉强度低于抗压强度,决定路面板厚度的强度设计指标是抗弯拉强度; ②车轮荷载作用主要的影响是疲劳效应; ③温度差造成板有内应力,出现翘曲变形及翘曲应力,也有疲劳特性; ④板的使用还受限于支承条件,不均匀支承及板底脱空对板内应力的分布影响极大。 2、水泥路面的主要破坏类型与设计标准 (1)水泥路面的主要破坏类型 ①断裂 ②唧泥 ③错台 ④拱起

(2) 水泥路面的荷载作用 重载作用 (3) 水泥路面的设计标准 ①结构承载能力 控制板不岀现断裂,要求荷载应力与温度应力的疲劳综合作用满足材料的设计抗拉强度,即: ②行驶舒适性 控制错台量,要求设置传力杆(基层及结构布置满足) ③稳定耐久性 控制唧泥与拱胀,要求基层水稳定性好,板与基层联结。 3、水泥路面结构设计的主要内容 (1 )路面结构层组合设计; (2)混凝土路面板厚度设计; (3)混凝土面板的平面尺寸与接缝设计

水泥混凝土路面设计例题

水泥混凝土路面设计例题

水泥混凝土路面设计 公路自然区划II 区拟建一条二级公路,中湿路基为黏质土,采用普通混凝土路面,路面宽9m ,设计车道使用初期标准轴载日作用次数为2100,交通量年增长率为5%。试设计水泥混凝土路面。 解: 1、交通分析 查表1可知二级公路的设计基准期为20年,其可靠度设计标准的安全等级为三级。临界荷载位置处的车辆轮迹横向分布系数查表2取0.39. 设计基准期内的累计作用次数: 查表3可知属重交通等级。 2、初拟路面结构 由表1可知安全等级三级的变异水平等级为中级。根据二级公路、重交通等级和中级变异水平,查表4初拟普通混凝土面层厚度为0.22m 。基层可选用水泥稳定粒料,厚0.18。垫层为0.15m ()[]()[] 次 420 1105.98805 .039.0365105.01210036511?=?-+=-+=r r N N t e η

的低剂量无机结合料稳定土。普通混凝土板的平面尺寸为4.5m,长5m 。纵缝为设拉杆的平缝,横缝为不设传力杆的假缝。 3、路面材料参数确定 取重交通等级的普通混凝土面层,查表5得弯拉强度标准值 5.0MPa ,弯拉弹性模量标准值31GPa 。中湿路基路床顶面回弹模量查表6得30MPa ,低剂量无机结合料稳定土垫层回弹模量为600MPa,水泥稳定粒料基层回弹模量为1300MPa. 4、计算基层顶面当量回弹模量 MPa h h h E h E E X 101315.018.015.060018.013002 22 222 212 222 11=+?+?=++=1 2 2112213 22311) 11(4)(1212-++++=h E h E h h h E h E D X 57 .2)15 .06001 18.013001(4)15.018.0(1215.06001218.013001233=?+?++?+?=-m E D h X X x 312.01013 57 .21212 33=?==293 .430101351.1122.651.1122.645.045 .00=??????????? ??-?=??? ???? ???? ? ??-?=--E E a X

透水混凝土路面设计

透水混凝土路面设计规范要求: 透水混凝土适用于轻荷载道路路面,不适用于严寒地区、湿陷性黄土地区、盐渍土地区、膨胀土地区的路面。 透水混凝土路面的设计应该考虑地质条件、荷载等级、景观要求、环境情况、施工条件等因素。 透水混凝土性能设计应符合以下表规定: 透水混凝土性能指标 注:耐磨性与抗冻性能检验可视各地具体情况及设计要求进行。 结构组合设计 1湿陷性黄土、盐渍土、沙性土不应使用全透水和半透水结构混凝土道路,使用基层不透水结构时应设置排水措施。 2城镇道路的路基应稳定、密室、均质,为轻荷载道路的路面结构提供均匀的支承。

3基层和底基层应具有足够的强度和刚度。 4透水混凝土路面的基层结构类型应根据道路的荷载不同按下表选用。 透水混凝土路面基层结构 5基层全透水结构层的技术要求,形式如下图所示: 级配砂砾及级配砾石基层、级配碎石及级配砾石基层和底基层总厚度h2不小于150mm。 基层全透水结构形式

6基层半透水结构层的技术要求,形式如下图所示: 稳定土基层或石灰、粉煤灰稳定砂砾基层和底基层总厚度h2不小于180mm。 基层半透水结构形式 透水混凝土面层 1透水混凝土面层结构设计,分单色层及双色组合层设计。采用双色组合层时,其表面层厚度应不低于30mm. 2根据透水混凝土路面的荷载、功能及地形地貌,选用强度等级及透水系数不同的透水混凝土。 3设计基层全透水结构时,其透水混凝土面层强度等级应不小于C20,厚度(h1)应不小于60mm;设计基层半透水结构和基层不透水结构时,其透水混凝土面层强度等级应不小于C30,厚度(h1)分别不小于100mm和150mm。如基层采用厚度大于150mm的混凝土结构时,可适当减小透水混凝土面层厚度(h1),但不应小于120mm。 4设计透水混凝土面层时,应设计纵向和横向接缝。纵向接缝的间距按路面宽度在3.0~4.5m范围内确定,横向接缝的间距一般为4~6m;广场平面尺寸不宜大于25㎡,面层板的长度比不宜超过1.30。基层有结构缝时,面层缩缝应与其相应结构缝位置一致,缝内应填嵌柔性

水泥混凝土路面课程设计

水泥混凝土路面设计 1标准轴载交通量分析 高速公路设计基准期为30 年,安全等级为一级,我国公路水泥混凝土路面设计规范以汽车轴重为100kN 的单轴荷载作为设计标准轴载,表示为BZZ —100。凡前、后轴载大于40KN (单轴)的轴数均应换算成标准轴数,换算公式为: 16 1 ( )100 n i s i i i p N N α== ∑ 式中: s N — 100KN 的单轴—双轮组标准轴数的通行次数; i P — 各类轴—轮型;级轴载的总重(KN ); n — 轴型和轴载级位数; i N —各类轴—轮型i 级轴载的通行次i α—轴—轮型系数。 则设计年限内设计车道的标准轴载累计作用次数:r r g 365]1)g 1[(η ??-+= t s e N N 式中: e N — 标准轴载累计当量作用次数(日); t — 设计基准年限; r g — 交通量年平均增长率,由材料知,r g =0.05; η — 临界荷位处的车辆轮迹横向分布系数,如下(表1-2),取0.20。

表1-2 混凝土路面临界荷位车辆轮迹横向分布系数 公路等级 纵缝边缘处 高速公路、一级公路、收费站 0.17~0.22 二级及二级以下公路 行车道宽>7m 0.34~0.39 0.54~0.62 行车道宽≤7m 161 ()100n i s i i i p N N α==∑=511.835 r r g 365]1)g 1[(η ??-+= t s e N N =e N 248× 104 因为交通量100×104<248×104<2000×104次,故可知交通属于重交通等级。 2拟定路面结构 由上述及表16-20知相应于安全等级一级的变异水平的等级为低级,根据高速公路重交通等级和低级变异水平等级查表16-17得初拟普通混凝土面层厚度大于240mm 。普通混凝土板的平面尺寸为宽4m ,长4.5m ,拟定各结构层厚:普通混凝土面层厚为250mm ;基层选用水泥稳定粒料,厚为180mm ;二级自然区划及规范知垫层为150mm 的天然砂砾,取普通混凝土面层的弯拉强度标准值为5.0Mpa ,路基回弹模量为30Mpa ;低剂量无机结合稳定土垫层回弹模量去600Mpa ;水泥稳定粒料基层回弹模量取1300Mpa 。 (表2-1) 表2-1 层位 基(垫)层材料名称 厚度(cm) 回弹模量(MPa) 1 水泥稳定粒料 18 1300 2 天然砂砾 15 150 3 土基 - 30 2 2 2122 2121h h E h E h E x ++==222 215.018.015.060018.01300+?+?

城市道路设计规范

1总则 1.0.1为了科学、合理地进行城市道路交通规划设计,优化城市用地布局,提高城市的运转效能,提供安全、高效、经济、舒适和低公害的交通条件,制定本规范。 1.0.2本规范适用于全国各类城市的城市道路交通规划设计。 1.0.3城市道路交通规划应以市区内的交通规划为主,处理好市际交通与市内交通的衔接、市域范围内的城镇城镇与中心城市的交通联系。 1.0.4城市道路交通规划必须以城市总体规划为基础,满足土地使用对规划的需求,发挥城市道路交通对土地开发强度的促进和制约作用。 1.0.5城市道路交通规划应包括城市道路交通发展战略规划和城市道路交通综合网络规划两个组成部分。 1.0.6城市道路交通发展战略规划应包括下列内容: 1.0.6.1确定交通发展目标和水平; 1.0.6.2确定城市交通方式和交通结构; 1.0.6.3确定城市道路交通综合网络布局、城市对外交通和市内的客货运设施的选址和用地规模; 1.0.6.4.提出实施城市道路交通规划过程中的重要技术经济对策; 1.0.6.5提出有关交通发展和交通需求管理政策的建议; 1.7城市道路交通综合网络规划应包括下列内容: 1.0.7.1确定城市公共交通系统、各种交通的衔接方式、大型公共换乘枢纽和公共交通场站设施的分布和用地范围; 1.0.7.2确定各级城市道路红线宽度、横断面形式、主要交叉口的形式和用地范围,以及广场、公共停车场、桥梁、渡口的位置和用地范围; 1.0.7.3平衡各种交通方式的运输能力和运量; 1.0.7.4对网络规划方案作技术经济评估; 1.0.7.5提出分期建设与交通建设项目排序的建议。

1.0.8城市客运交通应按照市场经济的规律,结合城市社会经济发展水平,优先发展公共交通,组成公共交通、个体交通优势互补的多种方式客运网络,减少市民出行时耗。 1.0.9城市货运交通宜向社会化、专业化、集装化的联合运输方式发展。 1.0.10城市道路交通规划设计除应执行本规范的规定外,尚应符合国家现行的有关标准、规范的规定。 2术语 2.1标准货车 以载重量4-5T的汽车为标准车,其他型号的载重汽车,按其车型的大小分别乘以相应的换算系数,折算成标准货车,其换算系数宜按本规范附录A.0.1的规定取值。 2.2乘客平均换算系数 衡量乘客直达程度的指标,其值为乘车出行人次与换算人次之和除以乘车出行人次。 2.3存车换算 将自备车辆存放后,改乘公共交通工具而达到目的地的交通方式。 2.4出行时耗 居民从甲地到乙地在交通行为中所耗费的时间。 2.5当量小汽车 以4-5座的小客车为标准车,作为各种型号车辆换算道路交通量的当量车种。其换算系数宜按本规范附录A.0.2取值。 2.6道路红线 规划道路的路幅边界线。 2.7港湾式停靠站 在道路车行道外侧,采用局部拓宽路面的公共交通停靠站。 2.8公共交通线路网密度 每平方公里城市用地面积上有公共交通线路经过的道路中心线长度,单位为KM/KM2。

《城市道路工程设计规范》2016局部修订CJJ37-2012

UDC 中华人民共和国行业标准CJJ P CJJ37 - 2012 城市道路工程设计规范 Code for design of urban road engineering (2016年版) 2012-01-11发布2012-05-01实施中华人民共和国住房和城乡建设部发布

修订说明 本次局部修订是根据住房和城乡建设部《关于印发2016年工程建设标准规范制订、修订计划的通知》(建标函[2015]274号)的要求,由北京市市政工程设计研究总院有限公司会同有关单位对《城市道路工程设计规范》CJJ37-2012进行修订而成。 本次局部修订依据海绵城市建设对城市道路提出的相关要求,对原有条文中道路分隔带及绿化带宽度、道路横坡坡向、路缘石形式、道路路面以及绿化带入渗及调蓄要求、道路雨水排除原则等相应修改或补充规定。本次局部修订条文合计9条,修订的主要技术内容是:1.补充了需要在道路绿化带或分隔带中设置低影响开发设施时,绿化带或分隔带的宽度要求,以及各种设施间的设计要求。 2.增加立缘石的类型和布置型式。 3.细化了道路横坡的坡向规定。 4.按海绵城市建设的要求补充道路雨水低影响开发设计的原则和要求。 5.按《室外排水设计规范》GB50014修订的内容,调整了道路排水采用的暴雨强度的重现期规定。 6.补充了低影响开发设施内植物的种植要求。 本规范中下划线为修改的内容,用黑体字表示的条文为强制性条文,必须严格执行。 本规范由住房和城乡建设部负责管理和对强制性条文的解释,由北京市市政工程设计研究总院有限公司负责具体技术内容的解释。执行过程中如有意见和建议,请寄送北京市市政工程设计研究总院有限公司(地址:北京市海淀区西直门北大街32号3号楼(市政总院大厦),邮政编码:100082) 本次局部修订的主编单位、参编单位、主要起草人员、主要审查人员: 主编单位:北京市市政工程设计研究总院有限公司 参编单位:天津市市政工程设计研究院 重庆市设计院 主要起草人员:和坤玲王晓华杨斌盛国荣 审查人员:张辰包琦玮李俊奇赵锂白伟岚任心欣

《城市道路设计规范》CJJ37—90

1.1?道路几何设计《城市道路设计规范》CJJ37—901.0.3?在道路设计中应考虑残疾人的使用要求。 2.1.2?除快速路外,每类道路按照所在城市的规模、设计交通量、地形等分为I、II、III。大城市应采用各类道路中的I级标准;中等城市应采用II级标准;小城市应采用III级标准。有特殊情况需变更级别时,应做技术经济论证,报规划审批部门批准。 2.2.1?计算行车速度的规定见表 2.2.1。当旧路改建有特殊困难,如商业街、文化街等。经技术经济比较认为合理时,可适当降低计算行车速度,但应考虑夜间行车安全。2.4.1?城市道路建筑限界见图2.4.1。顶角抹角宽度应与机动车道侧向净宽一致。最小净高见表2.4.1。建筑限界内不得有任何物体侵入。 ? ?2.5.1?道路交通量达到饱和状态时的设计年限规定如下:快速路、主干路为20a,次干路为15a;支路为10~15a。(代表年) 2.5.2?路面结构达到临界状态的设计年限规定如下: 二、沥青混凝土路面,沥青碎石路面与沥青贯入式碎(砾)石路面为15a。支路修筑沥青混凝土等高级路面时,可采用10a。 三、沥青表面处治路面为8a。 四、粒料路面为5a。 2.8.1?地震区的道路工程及重要的附属构筑物应按国家规定工程所在地区的设防烈度,进行抗震设防。 4.3.2?快速路应设中间分车带,不得采用双黄线。 4.5.2?路侧带各组成部分的宽度确定如下: 一、人行道宽度必须满足行人通行的安全和顺畅。 5.1.3?道路的圆曲线半径应采用大于或等于表5.1.3规定的不设超高最小半径值。 5.1.6?圆曲线半径小于表5.1.3中不设超高最小半径时,在圆曲线范围内应设超高。5.1.9?圆曲线半径小于或等于250m时,应在圆曲线内侧按表5.1.9的规定加宽。5.1.11?视距的规定如下: 一、道路平面、纵断面上的停车视距应大于或等于表5.1.11-1规定值。寒冷积雪地区应另行计算。 二、车行道上对向行驶的车辆有会车可能时,应采用会车视距。其值为表5.1.11-1中停车视距的两倍。三、对于凸形竖曲线和立交桥下凹形竖曲线等可能影响行车视距,危及行车安全的地方,均需验算行车视距。验算时,物高为0.1m;目高在凸形竖曲线时为1.2m,在桥下凹形竖曲线时为1.9m。 四、平曲线内侧的边坡、建筑物、树木等均不应妨碍视线 5.1.13?设置分隔带及缘石断口应符合下列规定: 一、快速路上无信号灯管制交叉口的中间分隔带不应设断口。快速路上两侧分隔带的断口间距应大于或等于400m。 二、应严格控制快速路、主干路的路侧带缘石断口。缘石断口位置应离开交叉口,间距应大于50m。 5.1.14?计算行车速度大于或等于50km/h的路段需加速合流或减速分流时,应设变速车道。 5.1.15?路段内人行横道应布设在人流集中处。人行横道应设在通视良好的地点,并应设醒目标志。快速路上行人过街应采用人行天桥或人行地道。 5.2.2?机动车车行道最大纵坡度限制值应符合表5.2.2的规定。5.2.3?坡长限制规定如下: 一、设计纵坡度大于表5.2.2所列推荐值时,可按表5.2.3-1的规定值时,设纵坡缓和段。缓和段的坡度为3%,长度应符合本条二的规定。二、各级道路纵坡最小长度应大于

混凝土路面施工技术要求

附件:水泥混凝土路面施工技术要求 1 设计依据 (1)《公路工程技术标准》( B01—2003) (2)《公路水泥混凝土路面设计规范》( D40—2002) (3)《公路水泥混凝土路面施工技术规范》( F30—2003) (4)《公路路面基层施工技术规范》 ( 034-2000) (5)《公路路基设计规范》( D30—2004) (6)《公路路基施工技术规范》 ( 033-95) (7)《公路工程质量检验评定标准》 ( F80/1-2004) 2 工程设计 2.1技术指标 一、二级公路水泥混凝土路面结构从上至下依次为:水泥混凝土面板厚26,基层为20厚5%水泥稳定碎石,底基层为30厚12%石灰稳定土,采用特重交通等级设计。水泥混凝土的强度以28d龄期的弯拉强度控制,要求混凝土弯拉强度标准值不得低于5.0,抗冻标号不小于F200。 三、四级公路水泥混凝土路面结构从上至下依次为:水泥混凝土面板厚20,基层为30厚12%石灰稳定土,采用中等交通等级设计。水泥混凝土的强度以28d龄期的弯拉强度控制,要求混凝土弯拉强度标准值不得低于4.5,抗冻标号不小于F200。 路基填筑维持原设计要求不变。 2.2路面接缝设计 2.2.1 纵向接缝 路面宽度大于6m的混凝土面板,在公路中心线处设一道纵向施工缝,采用平缝形式。其余部位纵缝均为缩缝,采用假缝形式,缩缝位置与行车道分幅一致,但不得大于4.5m。 路面宽度等于6m的混凝土面板,在公路中心线处设一道纵向缩缝,采用假缝形式。 路面宽度小于等于4.5m的混凝土面板,不设纵缝。 纵缝均与公路中心线平行。纵向接缝无论是施工缝还是缩缝,均在缝内

城市道路工程设计规范最新版

城市道路工程设计规范最新版 1总则 1 总则 1.0.1 为适应我国城市道路建设和发展的需要,规范城市道路工程设计,统一城市道路工程 设计主要技术指标,指导城市道路专用标准的编制,制定本规范。 1.0.2 本规范适用于城市范围内新建和改建的各级城市道路设计。 1.0.3 城市道路工程设计应根据城市总体规划、城市综合交通规划、专项规划,考虑社会效 益、环境效益与经济效益的协调统一,合理采用技术标准。遵循和体现以人为本、资源节约、环境友好的设计原则。 1.0.4 城市道路工程设计除应符合本规范外,尚应符合国家现行有关标准的规定。 2术语和符号 2.1 术语 2.1 术语 2.1.1 主路main road

快速路或主干路中与辅路分隔,供机动车快速通过的道路。 2.1.2 辅路side road 集散快速路或主干路交通,设置于主路两侧或一侧,单向或双向行驶交通,可间断或连续设置的道路。 2.1.3 设计速度design speed 道路几何设计(包括平曲线半径、纵坡、视距等)所采用的行车速度。 2.1.4 设计年限design life 包括确定路面宽度而采用的远期交通量的年限与为确定路面结构而采用的保证路面结构不需进行大修即可按预定目的使用的设计使用年限两种。 2.1.5 通行能力traffic capacity 在一定的道路和交通条件下,单位时间内道路上某一路段通过某一断面的最大交通流率。 2.1.6 服务水平level of service 衡量交通流运行条件及驾驶人和乘客所感受的服务质量的一项指标,通常根据交通量、速度、行驶时间、行驶(步行)自由度、交通中断、舒适和方便等指标确定。 2.1.7 彩色沥青混凝土路面colorful asphalt concrete pavement 脱色沥青与各种颜色石料或树脂类胶结料、色料和添加剂等材料在特定的温度下拌合形成的具有一定强度和路用性能的新型沥青混凝土路面。

jtgd40XX公路水泥混凝土路面设计规范

jtgd40-XX公路水泥混凝土路面设计规 范 篇一:公路水泥混凝土路面设计规范 公路水泥混凝土路面设计规范JTG D40-XX---03 4.4面层 4.4.1 水泥混凝土面层应具有足够的强度、耐久性,表面抗滑、耐磨、平整。 4.4.2 面层一般采用设接缝的普通混凝土;面层板的平面尺寸较大或形状不规则,路面结构下埋有地下设施,高填方、软土地基、填挖交界段的路基等有可能产生不均匀沉降时,应采用设置接缝的钢筋混凝土面层。其他面层类型可根据适用条件按表选用。 表其他面层类型选择 4.4.3 普通混凝土、钢筋混凝土、碾压混凝土或钢纤维混凝土面层板一般采用矩形。其纵向和横向接缝应垂直相交,纵缝两侧的横缝不得相互错位。 4.4.4 纵向接缝的间距按路面宽度在~范围内确定。碾压混凝土、钢纤维混凝土面层在全幅摊铺时,可不设纵向缩缝。

4.4.5 横向接缝的间距按面层类型和厚度选定: ——普通混凝土面层一般为4~6m,面层板的长宽不宜超过,平 2面尺寸不宜大于25m; ——碾压混凝土或钢纤维混凝土面层一般为6~10m; ——钢筋混凝土面层一般为6~15m。 4.4.6 普通混凝土、钢筋混凝土、碾压混凝土或配筋混凝土面层所需的厚度,可参照表所示参考范围并按条规定计算确定。 表水泥混凝土面层厚度的参考范围 4.4.7 钢纤维混凝土面层的厚度按钢纤维掺量确定,钢纤维体积率为%~%时,其厚度为普通混凝土面层厚度的~倍。特重或重交通时,其最小厚度为160mm;中等或轻交通时,其最小厚度为140mm。 4.4.8 复合式路面沥青上面层的厚度一般为25~80mm。 4.4.9 除混凝土预制块面层外,各种混凝土面层的计算厚度应满足式()的要求。荷载疲劳应力和温度疲劳应力分别按附录和计算。面层设计厚度依计算厚度按10mm向上取整。

实例水泥混凝土路面设计计算

实例水泥混凝土路面设 计计算 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

1.路面类型的选择确定 本设计为二级公路,位于四川地区,公路自然区划为Ⅴ区,路基土为粘性土,设计路段碎石、砂砾、石灰、水泥供应丰富,拟采用普通水泥混凝土路面结构。 交通组成表 路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示。 ①轴载换算: N——100KN的单轴—双轮组标准轴载的作用次数; 式中: s P—单轴—单轮、单轴—双轮组、双轴—双轮组或三轴—双轮组轴型i级轴载的 i 总重KN; N—各类轴型i级轴载的作用次数; i

n —轴型和轴载级位数; i δ—轴—轮型系数,单轴—双轮组时,1=i δ;单轴—单轮时,按式 43.031022.2-?=i i P δ计算;双轴—双轮组时,按式 22.051007.1--?=i i P δ;三轴—双轮组时,按式22.081024.2--?=i i P δ计 算。 轴载换算结果如表7-2所示。 表7-2 轴载换算结果

② 计算累计当量轴次 查《路线设计规范》得三级公路的设计基准期为20年,安全等级为三级,临界荷位处的车辆轮迹轮迹横向分布系数η是~取,075.0=r g ,则: 查《水泥混凝土路面设计规范》水泥混凝土路面所承受的轴载作用,按设计基准期内设计车道所承受的标准轴载累计作用次数分为4级,标准轴载累计作用次数大于1×106 时,属于重交通等级,故本设计属于重交通等级。 2.基层、垫层材料参数确定 (1) 基层 基层、应具有足够的强度和稳定性,在冰冻地区应具有一定的抗冻性。拟选用石灰粉煤灰稳定粒料为基层。配比为石灰:粉煤灰:稳定粒料=1:3:12,查《水泥混凝土路面设计规范》得回弹模量a MP E 13001=。 (2) 垫层 垫层的作用有抗冻、排水、防止污染等,本设计处在山东地区,属于季节性冰冻地区,易发生冻胀、翻浆等现象,为了排出路面路基中滞留的自由水,确保路面结构稳定,避免冻害发生,在底基层下设置垫层。垫层采用石灰稳定土,其中石灰含量10%,查《水泥混凝土路面设计规范》得回弹模量a MP E 6002=。 3.路面的结构厚度 (1) 初拟路面结构 查《水泥混凝土路面设计规范》可知三级公路的可靠度设计标准如表7-3。 表7-3 可靠度设计标准

相关主题
文本预览
相关文档 最新文档