当前位置:文档之家› 多孔碳材料最近研究进展

多孔碳材料最近研究进展

多孔碳材料最近研究进展
多孔碳材料最近研究进展

多孔碳材料最近研究进展

1、碳源/方法

[1]Gao等人利用海苔为生物质原料,在500℃下碳化,之后利用铝酸钠作为活化剂,在500-900℃下反应,最后盐酸和水洗得到了孔径分布集中在1nm和2nm的微孔-介孔碳材料,该材料BET比表面积和孔体积分别为1374.3m2/g和1.150cm3/g。以酸性大红作为吸附质,对合成介孔碳进行吸附研究,根据朗格缪尔模型,介孔碳对酸性大红的饱和吸附量达1000mg/g。(Yuan Gao, et al. Chemical Engineering Journal,274(2015)76-83)

[2] Akshay Jain等人以洋姜杆作为生物质原料,利用ZnCl2活化法,制备碳材料,在制备过程中加入H2O2,H2O的加入能够使得材料介孔性增强,并通过调节ZnCl2和H2O2的添加比例,得到了孔径集中在20-50nm 的双介孔活性炭,该碳材料对水中罗丹明B的饱和吸附量达714mg/g。(Akshay Jain, et al. Chemical Engineering Journal,2015,273:622-629)

[3]Yang等人利用柠檬酸钙在高温700-1000℃下,分解生成碳酸钙、氧化钙和具有介孔结构的碳材料。把钙溶解在盐酸中形成可回收的氯化钙溶液,该溶液先与氢氧化钠反应,然后加入柠檬酸形成可回收的柠檬酸钙,从而实现钙模板的回收利用。该方法在得到性能较好的介孔碳材料时,避免了二氧化硅等模板脱除造成的化学资源浪费和可能带来的严重环境问题,是一种合成介孔碳材料的绿色新方法。(Yang J, et al. Microporous Mesoprous Mater.,2014,183(1):91-98)

[4]Feng等人以壳聚糖溶液为原料、三嵌段两亲共聚物F127 为软模板,采用一步法合成多孔碳材料,考察了复配溶液pH 值及碳化温度等条件对材料孔结构、比表面积等的影响。结果表明,材料以介孔为主,比表面积最高达457 cm2/g,氮含量最高达7.60%。 (Feng Miao-na, et al. The Chinese Journal of Process

Engineering,2015,15(3)536-540)

[5]以柠檬酸作为催化剂,在低温水热条件下催化间苯二酚和甲醛的聚合得到了有序的介孔碳材料。合成了具有较高热稳定性,二维六方的孔道结构,孔径约为5.1nm,材料比表面积可达851m2/g。他们开发的研究方法可以在较宽的合成条件下得到,其中反应温度为50-80℃,甲醛和柠檬酸的比例大于3即可。(Lei Liu, et al.Journal of Materials Chemistry,2011(21)16001-16009)

2、磁性介孔碳材料

[6]研究人员以SBA-15作为模板,糠醇作为碳源,在反应体系中加入Fe(NO3)3·9H2O和Ni(NO3)2·6H2O混合溶液,于80℃下反应10h,之后用5%H2-95%Ar对产物进行碳化和原位还原,热碱液浸泡,洗涤得到了载有磁性Fe/Ni纳米颗粒的双介孔碳材料。N2吸脱附实验结果显示,该介孔材料孔径集中在4.0nm和18.5nm,BET比表面积为1057.9m2/g。该介孔碳材料对甲基蓝和甲基橙的饱和吸附量分别为959.5mg/g和849.3mg/g,利用乙醇对吸附染料后的吸附剂进行再生,7次再生后的吸附量仍达到最开始的80%以上。(Yuanyuan Liu.et al. Journal of Colloid and Interface Science,448(2015)45-459)

[7]以TEOS为硅源作为硬模板,间苯二酚和甲醛为碳源,“一锅法”直接反应得到了平均孔径大小为5.4nm、强磁性的磁性Fe3O4粒子为核,介孔碳为外壳的核壳结构磁性介孔碳材料。该材料对多环芳烃芘有很强的吸附能力,在40min内达到吸附平衡,吸附量达77.1mg/g,磁性分离速度快,以甲醇:甲酸=9:1的溶液为脱附试剂,吸附脱附过程进行循环重复6次,芘的回收率仍能达到84%以上。

3、多孔碳材料化学改性(以氮掺杂为主)

[8]研究人员在750℃,N2氛围下通过KOH活化商品介孔碳CMK-3,之后在室温下用5M硝酸氧化,得到了孔量增加、表面功能化的多孔碳材料,BET比表面积由1139m2/g提高到2254m2/g。改性后的多孔碳对水中的二苯并噻吩吸附量提高121%,吸附过程速度明显加快。(Yawei Shi.et al. Fuel 158(2015)565-571)

[9]研究人员通过化学气相沉积方法,以SBA-15作为模板,在850℃下,利用乙腈作为碳源和氮源,合成了掺氮介孔碳,通过改变气相沉积中乙腈的浓度和沉积时间,可以到达含氮量达9.4%(质量分数)的介孔碳材料,该材料孔径分布较为集中,平均孔径为3.36nm。以甲基蓝、甲基橙和酸性品红为吸附对象对合成的材料吸附性能进行研究,发现掺氮介孔碳的吸附效果均不同程度优于非氮介孔碳,而且掺氮介孔碳对三种染料的吸附能在15min之内达到平衡。

(A.Sanche-sanchez,et al. Journal of Colloid and Interface Science,450(2015)91-100)

[10]以F127位模板剂,苯酚和甲醛为碳源,采用两步合成法,即预

先在碱性条件下合成可溶性A阶酚醛树脂,然后在酸性条件下使A阶酚醛树脂在模板剂胶束周围进行可控的聚合,在较为宽泛的条件下合成出具有不同结构的有序介孔碳材料。其中,在水热条件下,以ZrOCl2位助剂,得到了具有大孔-介孔-微孔的多级孔结构碳材料。在以磷酸作催化剂时,在磷酸浓度为3mol/L,碳化温度为600℃时,得到了富含磷酸酯的介孔碳材料,对亚甲基蓝吸附量达725mg/g。(KeKe Hou, et al.RSC Advances,2013,3(47),25050-25057)

[11]利用一步热解法,以EDTA为碳源和氮源,KOH为活化物质,将两者直接研磨混合,然后在高温下煅烧,碳化和活化在一步内完成,制备了比表面积高达2014m2/g的氮掺杂多孔碳材料。在体系中引入三聚氰胺后,材料的含氮量高达12.6%,产量提高400%,比表面积1678m2/g。(Zhen Liu, et al. Nano Res.2013,6(4):293-301)

[12]利用生物基材料海藻酸作为碳源,乙二胺作为氮源,在溶剂热的条件下,加入膨胀剂戊二醛和吡咯,后经过冷冻干燥和在混合气体Ar 和CO2氛围中,高温活化,得到了新型氮掺杂多孔碳材料。其中在以H3PO4-HNO3混合酸作为活化剂时,合成了孔径分布非常集中,比表面积约为1740m2/g的氮掺杂多孔碳材料。(X.Y. Ma, et al. J.Mater.Chem.A,2013,1,913-918)

发展趋势

1)比表面积、孔径分布和总孔体积是衡量多孔材料性质的重要指标,研究比表面积更高、孔径可调的多孔碳材料,是研究的热点和重点。

2)碳源对介孔碳的合成有很大的影响,寻找更为合适、来源更广、价格更为低廉的碳源以制备性质优良,用途广泛的多孔碳材料具有重大意义。

3)目前模板法制备多孔碳材料仍是研究人员使用较广的方法,模板的脱除需要用到强酸或强碱,模板回收难度大,都造成了经济和环境上的浪费。开发新的模板剂,如纳米碳酸钙等,对多孔碳的合成和应用意义大。

4)目前介孔碳材料生产过程成本较高,价格昂贵,综合利用新碳源、新模板、化学物理改性等方法以降低生产成本,提高产量,对介孔碳材料的进一步深入研究和应用具有巨大推动作用。

研究开发内容

1)利用实验室已申请的专利制备笋壳、秸秆、树叶等多种生物质液化液。

2)蔗糖、糠醇、葡萄糖、酚醛树脂等多羟基化合物常作为碳源制备介孔材料,操作较为简单、成本较低、环境污染小;且介孔材料的合成常在酸性条件下进行。生物质液化液产物含有大量羟基活性基团,且液化过程加入了硫酸作为催化剂,利用液化产物作为碳源,合成介孔碳材料。经过前期研究,我们已经取得比表面积为260.13mg/g,孔径在2-5nm之间的有序多孔碳材料。进一步优化实验条件,以期得到比表面积更大,孔径可调的优质有序介孔碳材料。

3)利用纳米碳酸钙合成介孔二氧化硅已有文献报道,碳酸钙在较低

温度下就能直接分解,分解产生的CO2有利于材料孔道的产生,最后模板的脱除无需用的强腐蚀性的HF,更为环保经济。能否直接利用纳米碳酸钙直接作为模板,生物质液化液为碳源合成,很有研究的意义。4)多种条件下合成的孔材料通过SEM、FTIR、XRD、N2吸脱附等研究对材料进行表征,以确定多孔材料的较优合成方法。

5)将合成的多孔碳用于吸附染料废水,以常见染料作为考量吸附质,阳离子染料以亚甲基蓝为代表,阴离子染料以甲基橙为代表,并深入研究多孔碳材料对染料吸附的动力学、热力学等机理。

6)对吸附后的多孔碳材料进行脱附再生试验。尝试利用化学试剂脱附、微波脱附、介质阻挡放电等离子(DBD)等再生方法,考察脱附再生效果,确定较适合的脱附再生方法。

7)对合成的多孔碳材料进行化学或物理改性,例如利用DBD改性方法,在多孔碳材料表面或孔道中引入更多的含氧和含氮基团,以优化多孔碳材料的性能,拓宽其用途。

介孔碳材料的合成及应用分析研究

介孔碳材料的合成及应用研究 李璐 (哈尔滨师范大学> =摘要> 综述了介孔碳材料的合成及应用.关键词: 介孔碳。合成。应用 0 引言 介孔碳是近年来发现的一类新型非硅介孔材料, 它是由有序介孔材料为模板制备的结构复制品. 由于其具有大的比表面( 可高达2500m2# g- 1 >和孔容(可达到2. 25 cm3 # g- 1 >,良好的导电性、对绝大多数化学反应的惰性等优越的性能, 且易通过煅烧除去, 与氧化物材料在很多方面具有互补性, 使其在催化、吸附、分离、储氢、电化学等方面得到应用而受到高度重视. 1 介孔碳材料的合成 介孔碳的制备通常采用硬模板法, 选择适当的碳源前驱物如葡萄糖、蔗糖乙炔、中间相沥青、呋喃甲醇[ 1]、苯酚/甲醛树脂[ 2]等, 通过浸渍或气相沉积等方法, 将其引入介孔氧化硅的孔道中, 在酸催化下使前驱物热分解碳化, 并沉积在模板介孔材料的孔道内, 用NaOH或HF溶掉SiO2 模板,即可得到介孔碳. 以下介绍几种介孔碳材料的合成方法及性质.

1. 1 CMK- 1 Ryoo首次用MCM- 48为模板 合成了介孔碳材料(CMK- 1>. 由于MCM- 48具有两套不相连通的 孔道组成, 这些孔道将变成碳材料的固体部分, 而MCM- 48中氧 化硅部分则会变成碳材料的孔道. 因此CMK- 1 并不是MCM- 48 真 正的复制品, 而是其反转品. 在脱除MCM- 48 的氧化硅过程中, 其结晶学对称性下降[ 3] , 后 续的研究表明与所用的碳前驱物有关, 其中一个具有I41 /a对称性[ 4] .1. 2 CMK- 3 使用SBA- 15 合成六方的介 孔碳( CMK 3>, 由于二维孔道的SBA- 15孔壁上有微孔, 因 图1 孔道不相连的的模板(MCM- 41或1234K 下 焙烧的SBA - 15> 制备的无序碳材料( A>。孔道相 连的模板( 1173K温度以下焙烧的SBA - 15> 制备 的有序介孔碳材料CMK- 3( B>

多孔材料的研究进展培训资料

多孔材料的研究进展

引言 固体材料所包含的空间和表面的多少直接影响着该材料在实际应用中的性能。具有大量的空间和表面积的固体多孔材料已经成为了当代科学研究的热点,在各式各样物理化学过程中显示出极为突出的优势。根据孔径的大小,可以将多孔固体材料分为三类:孔径小于2nm的归为微孔材料;孔径在2-50nm之间的归为介孔材料;孔径大于50nm的归为大孔材料。多孔材料在化工石油催化、气体吸附、药物输送、组织工程支架制备、海洋深潜装备中都有很广泛的应用,是当今时代一种很重要的材料。 1. 纳米多孔材料 相比于传统的纳米颗粒材料,具有可调结构和性能的纳米多孔材料有着非凡的特性。孔径大于50nm的大孔材料具有极快的传质过程和蛋白分子吸附固定速率,在蛋白质组学分析及酶反应研究中有巨大的潜力。在当今组学的前沿,蛋白质的酶解严重缺乏效率,影响后续的分析测试,而目前发展的快速酶解技术需要较为复杂的前处理过程和过量的蛋白消耗;另一方面酶解技术难于联合应用于后续的肤段富集之中[1]。因此,多孔纳米材料的功能化设计合成及其在蛋白质组学分析中的应用至关重要。这种纳米多孔材料的典型就是大孔二氧化硅泡沫材料,它可以作为催化剂极大的提高酶解反应速率。 2. 金属-有机骨架材料[2] 金属-有机骨架材料是一种新型的多孔材料,具有高孔性、比表面积大、合成方便、骨架规模大小可变以及可根据目标要求作化学修饰、结构丰富等优点,在气体吸附、催化、光电材料等领域有广泛的应用。MOFs又名配位聚合物或杂合化合物,是利用有机配体与金属离子间的金属配体络合作用自组装形成的具有超分子微孔网络结构的类沸石材料。MOFs由于能大量进行氢气的可逆吸

多孔碳材料制备与应用

摘要 离子液体因为具有绿色环保、不易挥发、稳定性高以及结构设计性强等特点,最几年在合成碳材料中的应用引起了人们的广泛关注[1]。且因多孔碳材料质量轻,法及其相关表征。稳定性好,耐高温,耐酸碱,无毒性,吸附性好等优点而在多领域中被广泛应用。本文主要介绍的是以PEI(聚醚酰亚胺Polyetherimide)为原料制备离子液体前驱体并制得碳材料的方法。首先通过向原材料PEI中加入溴乙腈(BrCH2CN)制备离子液体前驱体,向得到的离子液体前驱体中加入二氰胺银[AgN(CN)2]进行阴离子交换反应,最后通过活化法得到多孔碳材料。这种方法的最大优点是有较高的碳产率。 关键词:离子液体、阴离子交换法、多孔碳材料

Abstract In recent years,the application of ionic liquid in the synthesis of carbon materials has aroused extensive attention because of its features, such as green, less volatile, high stability and structural design of characters. And because the porous carbon material with light weight, good stability, high temperature resistance, acid and alkali resistant, non-toxic and good adsorption, it has been used in many fields. This paper mainly introduces the PEI (Polyetherimide) prepared for ionic liquid precursors, methods of carbon materials and related characterization.First by PEI of raw materials to join bromoacetonitrile (BrCH2CN) of ionic liquid precursor preparation, obtained by ionic liquid precursor to join dicyanamide silver [AgN (CN) 2] by anion exchange reaction, the activation method of porous carbon materials.The greatest advantage of this method is that there is a high carbon yield. Keywords: Ionic liquid, anion exchange, porous carbon material.

多孔碳材料制备与应用之欧阳家百创编

摘要 欧阳家百(2021.03.07) 离子液体因为具有绿色环保、不易挥发、稳定性高以及结构设计性强等特点,最几年在合成碳材料中的应用引起了人们的广泛关注[1]。且因多孔碳材料质量轻,法及其相关表征。稳定性好,耐高温,耐酸碱,无毒性,吸附性好等优点而在多领域中被广泛应用。本文主要介绍的是以PEI(聚醚酰亚胺Polyetherimide)为原料制备离子液体前驱体并制得碳材料的方法。首先通过向原材料PEI 中加入溴乙腈(BrCH2CN)制备离子液体前驱体,向得到的离子液体前驱体中加入二氰胺银[AgN(CN)2]进行阴离子交换反应,最后通过活化法得到多孔碳材料。这种方法的最大优点是有较高的碳产率。 关键词:离子液体、阴离子交换法、多孔碳材料 Abstract In recent years,the application of ionic liquid in the synthesis of carbon materials has aroused extensive attention because of its features, such as green, less volatile, high stability and structural design of characters. And because the porous carbon material with light weight, good stability, high temperature resistance, acid and alkali resistant, non-toxic and good adsorption, it has been used in many fields. This

介孔碳材料

介孔碳材料:合成及修饰 关键词:嵌段共聚物,介孔碳材料,自组装,模板合成 许多应用领域对多孔材料的兴趣是由于他们的高比表面积和理化性质。传统的合成只能随机产生多孔材料,对超过孔径分布几乎是无法控制的,更不用说细观结构了。最新的突破是其它多孔材料的制备工艺,这将导致具有极高比表面积和有序介孔结构的介孔材料制备方法的发展。随着催化剂的发展,分离介质和先进的电子材料被用在许多科学学科。目前合成方法可归类为硬模板法和软模板法。这两种方法都是用来审查碳材料表面功能化取得的进展。 1.简介 多孔碳材料是无处不在和不可或缺的,应用于许多的现在科学领域。多孔碳材料被广泛用作制备电池电极、燃料电池、超级电容。作为分离过程和储气的吸附剂,应用于许多重要的催化过程。介孔碳材料的用途在不同的应用中有着直接的联系,不仅仅关系到其优良的物理和化学性能,如导电、热导率、化学稳定性和低密度,而且关系到其广泛的可用性。近年来碳技术已经取得了很大进展,同时也通过开发和引进新的合成技术改变现有的制备方法。多孔碳材料根据其孔径可分为微孔(孔径<2nm);中孔(2nm<孔径<50nm);大孔(孔径>50nm)。传统的多孔碳材料,例如活性炭和碳分子筛,被热解和物理或是被有机体化学活化合成的。有机体包括在高温下的煤、风、果壳、聚合物[1-3]。这些碳材料通常在中孔和微孔范围内有广泛的孔径分布。活性碳和碳分子筛已大批量生产并被广泛用于吸附、分离和催化方面。 微孔碳材料综述的主要进展包括(a)合成碳材料(表面积高达3000m2g-1)[4,5]使用的氢氧化钾,(b)带有卤素气体的碳选择性反应可控制碳材料产生的微孔大小[6]。后一种方法使用碳化物为碳源,并且卤素气体选择性的除去金属离子。这种化学蚀刻法产生一个具有很窄的粒度分布的微孔。这些碳材料产生的微孔能提供高比表面积、大孔容、吸附气体和液体。尽管微孔材料被广泛应用在吸附分离和催化上,生产使用的方法遭到限制。活性炭微孔材料的缺点(a)由于空间限制规定小孔径使分子运输速度缓慢,(b)低电导率的产生是由于表面官能团的缺陷产生的,(c)多孔结构被高温或石墨化破坏。 为了克服上述这些限制努力寻求其他的合成方法,方法如下:(a)通过物理或组合物理/化学方法的高度活化,[1,7-9](b)碳前躯体碳化是热固性组成成分之一,也是热不稳定性成分,[10,11](c)催化剂辅助活化碳前驱体与金属(氧化物)或有机金属化合物,[9,12-14](d)碳化气凝胶或冷冻,[15,16](e)通过浸渍硬模板复制合成介孔碳,碳化和模板拆除。[17,18](f)自组装通过缩合和碳化使用软模板[19-21]。方法a之d只会导致介孔碳材料有广泛孔径分布(PSD)和可观微孔[9,22]。因此,这些方法都缺乏吸引力。 值得重新审查的是方法e和方法f,这两种方法与有良好控制孔径的介孔碳材料的合成有关联。方法e涉及预合成的有机或无机模板的使用,也被称为硬模板合成方法。这些模板主要是作为介孔碳的模具材料,并且没有明显的化学作用采取前体之间发生模板和碳化[23]。相应的多孔结构是由有明确定义的纳米结构模板预定的。反过来,方法f涉及软模板,通过生成有机分子自组装纳米结构。相应的孔径结构确定合成条件,如混合比、溶剂和温度。虽然该术语"软模板"尚未正式确定,软模板法在本次审查是指自组装模板。软模板法不同于有机自组装硬模板法,分子或基团被操纵在分子能级和被组织成纳米空间氢键或疏水/亲

多孔碳材料的制备与应用

多孔碳材料的制备与应用 摘要:多孔碳材料不仅具有碳材料化学稳定高、导电性好等优点,由于多孔结构的引入,还具有比表而积高、孔道结构丰富、孔径可调等特点,在催化、吸附和电化学储能等方而都得到了广泛的应用。本文综述了微孔、介孔、大孔及多级孔碳等多孔碳材料的最新研究进展,重点介绍了多孔碳孔道结构的调控,并对多孔碳材料的应用进行了展望。 关键词:多孔碳;模板合成;活化合成;有序孔道 Abstract: Porous carbon with large specific surface area,tunable porous structure,high stability and goodelectron conductivity,has attracted considerable attention due to its promising applications in the fields of catalyst,catalyst support,absorption and electrochemical energy storage.This manuscript reviews recent development in thefabrication of microporous carbon,mesoporous carbon,macroporous carbon and hierarchically porous carbon withboth ordered and disordered porous structures.The so-called soft- and hard-template methods are efficient in tuningthe porous structures and morphologies of carbon materials.The potential applications of porous carbon materialsare also highlighted in this review. Key words porous carbon:template synthesis; activation preparation; ordered porous channels

介孔碳材料及负载金属催化剂表征

介孔碳材料及负载金属催化剂表征 摘要:介孔材料作为纳米材料的一个重要发展,已成为国际科技界普遍关注的新的研究热点.本文综述了以氧化铝、活性炭为载体负载镍基催化剂的研究方法。 1.前言 近几年来,介孔材料作为一种新兴的材料在光化学、催化及分离等领域具有十分重要的应用,是当今研究的热点之一。 按照国际纯粹与应用化学协会(IUPAC)的定义,孔径在2-50nm范围的多孔材料称为介孔(中孔)材料。按照化学组成,介孔材料可分为硅基和非硅基组成两大类,后者主要包括碳、过渡金属氧化物、磷酸盐和硫化物等,由于它们一般存在着可变价态,有可能为介孔材料开辟新的应用领域,展示出硅基介孔材料所不能及的应用前景[1]。按照介孔是否有序,介孔材料可分为无定形(无序)介孔材料和有序介孔材料[2]。前者如普通的SiO2气凝胶、微晶玻璃等,孔径范围较大,孔道形状不规则;后者是以表面活性剂形成的超分结构为模板,利用溶胶-凝胶工艺,通过有机物和无机物之间的界面定向导引作用组装成一类孔径约在1.5-30nm,孔径分布窄且有规则孔道结构的无机多孔材料,如M41S等。 介孔材料的特点在于其结构和性能介于无定形无机多孔材料(如无定形硅铝酸盐)和具有晶体结构的无机多孔材料(如沸石分子筛)之间,其主要特征[3]为:具有规则的孔道结构;孔径分布窄,且在1.5-10 nm之间可以调节;经过优化合成条件或后处理,可具有很好的热稳定性和一定的水热稳定性;颗粒具有规则外形,且可在微米尺度内保持高度的孔道有序性。 现阶段有多种方法可对介孔材料进行表征。差热/热重(DTA/TG)分析可用于表征物质表面吸附、脱附机理及晶型转变温度,并可鉴别中间体。X射线衍射分析(XRD)法是利用衍射的位置决定晶胞的形状和大小,以及晶格常数。透射电镜(TEM)是在极高、极大倍数下直接观察样品的形貌、结构、粒径大小,并能进行纳米级的晶体表面及化学组成分析。而气体吸附测试(Adsorption measurement)法则是通过向介孔材料中通人氮气等气体来测试其孔径[4]。对介孔材料中装载纳米微粒的表征,同样可以借助许多经典及现代测试手段获得。如利用X射线衍射及广延X射线精细结构能得到孔穴中纳米微粒的元素组成、离子间距及尺寸形

多孔材料研究进展.

多孔材料研究进展 1前沿 根据国际纯粹化学与应用化学联合会的规定 1, 由孔径的大小, 把孔分为三类:微孔 (孔径小于 2nm 、介孔(2~50nm 、大孔(孔径大于 50nm ,如图 1所示。同时,孔具有各种各样的类型(pore type和形状(pore shape ,分别如图 2, 3所示。在一个真实的多孔材料中, 可能存在着一类, 两类甚至三类孔了。在这片概述中, 我们把多孔材料 (porous materials 分为微孔材料 (microporous materials、介孔材料 (mesoporous materials、大孔材料 (macroporous materials ,将分别对其经典例子、合成方法,及其应用予以讨论。

Figure 1 pore size Figure 2 Pore type Figure 3 Pore shape 2 多孔材料 2.1 微孔材料 (microporous materials 典型的微孔材料是以沸石分子筛为代表的。在这里我们要举金属 -有机框架化合物 MOFs (metal-organic frameworks 的例子来给予介绍。 MOF-52是这类材料中的杰出代表, 是 Yaghi 小组在 1999年最先合成出来的。以 Zn (NO 3 2·6H 2O 和对苯二甲酸为原料,通过溶剂热法合成了非常稳定(300℃,在空气中加热 24小时,晶体结构和外形保持不变、具有很高孔隙率(0.61-0.54 cm3 cm-3 、密度很小(0.59gcm 3的多孔材料 MOF-5。如图 4所示分别是 MOF-5的结构单元及其拓扑结构。在MOF-5中, Zn 4(O(BDC3构成了次级构筑单元 SBU(second building unit, SBU通过

多孔碳材料最近研究进展

多孔碳材料最近研究进展 1、碳源/方法 [1]Gao等人利用海苔为生物质原料,在500℃下碳化,之后利用铝酸钠作为活化剂,在500-900℃下反应,最后盐酸和水洗得到了孔径分布集中在1nm和2nm的微孔-介孔碳材料,该材料BET比表面积和孔体积分别为1374.3m2/g和1.150cm3/g。以酸性大红作为吸附质,对合成介孔碳进行吸附研究,根据朗格缪尔模型,介孔碳对酸性大红的饱和吸附量达1000mg/g。(Yuan Gao, et al. Chemical Engineering Journal,274(2015)76-83) [2] Akshay Jain等人以洋姜杆作为生物质原料,利用ZnCl2活化法,制备碳材料,在制备过程中加入H2O2,H2O的加入能够使得材料介孔性增强,并通过调节ZnCl2和H2O2的添加比例,得到了孔径集中在20-50nm 的双介孔活性炭,该碳材料对水中罗丹明B的饱和吸附量达714mg/g。(Akshay Jain, et al. Chemical Engineering Journal,2015,273:622-629) [3]Yang等人利用柠檬酸钙在高温700-1000℃下,分解生成碳酸钙、氧化钙和具有介孔结构的碳材料。把钙溶解在盐酸中形成可回收的氯化钙溶液,该溶液先与氢氧化钠反应,然后加入柠檬酸形成可回收的柠檬酸钙,从而实现钙模板的回收利用。该方法在得到性能较好的介孔碳材料时,避免了二氧化硅等模板脱除造成的化学资源浪费和可能带来的严重环境问题,是一种合成介孔碳材料的绿色新方法。(Yang J, et al. Microporous Mesoprous Mater.,2014,183(1):91-98)

多孔材料的研究进展

引言 固体材料所包含的空间和表面的多少直接影响着该材料在实际应用中的性能。具有大量的空间和表面积的固体多孔材料已经成为了当代科学研究的热点,在各式各样物理化学过程中显示出极为突出的优势。根据孔径的大小,可以将多孔固体材料分为三类:孔径小于2nm的归为微孔材料;孔径在2-50nm之间的归为介孔材料;孔径大于50nm的归为大孔材料。多孔材料在化工石油催化、气体吸附、药物输送、组织工程支架制备、海洋深潜装备中都有很广泛的应用,是当今时代一种很重要的材料。 1. 纳米多孔材料 相比于传统的纳米颗粒材料,具有可调结构和性能的纳米多孔材料有着非凡的特性。孔径大于50nm的大孔材料具有极快的传质过程和蛋白分子吸附固定速率,在蛋白质组学分析及酶反应研究中有巨大的潜力。在当今组学的前沿,蛋白质的酶解严重缺乏效率,影响后续的分析测试,而目前发展的快速酶解技术需要较为复杂的前处理过程和过量的蛋白消耗;另一方面酶解技术难于联合应用于后续的肤段富集之中[1]。因此,多孔纳米材料的功能化设计合成及其在蛋白质组学分析中的应用至关重要。这种纳米多孔材料的典型就是大孔二氧化硅泡沫材料,它可以作为催化剂极大的提高酶解反应速率。 2. 金属-有机骨架材料[2] 金属-有机骨架材料是一种新型的多孔材料,具有高孔性、比表面积大、合成方便、骨架规模大小可变以及可根据目标要求作化学修饰、结构丰富等优点,在气体吸附、催化、光电材料等领域有广泛的应用。MOFs又名配位聚合物或杂合化合物,是利用有机配体与金属离子间的金属配体络合作用自组装形成的具有超分子微孔网络结构的类沸石材料。MOFs由于能大量进行氢气的可逆吸附,因此被认为是最具有储氢前景的材料之一;它可以存储和运载药物,也可以用于生

介孔碳的合成及水处理的研究进展

2019年第1期近年来, 由于介孔材料具有较大的比表面积、可调的孔径尺寸和可控的形貌等独特性质,成为了科学家们研究热点。介孔碳作为介孔家族的一员,具有比表面积高、孔容大、介观结构丰富、孔径均匀可调、吸附能力强、理化性能稳定等优点[1]。因此,在能量储存、环境治理、生物制药、性质改良以及电子器件的制作等方面均具有广阔的应用前景。在环境治理方面,介孔碳弥补了活性炭孔径小的缺点,广泛应用于水中重金属离子和有机大分子物质等污染物的处理。 1介孔碳的合成 自从韩国的R.Ryoo 首次采用MCM48为硬模 板,蔗糖为碳源合成介孔碳,在介孔碳研究领域具有 里程碑意义[2]。 随着,研究人员对介孔碳材料研究的不断深入,逐渐发现了多种制备不同形貌特性碳材料的方法,例如化学活化法、物理活化法、催化活化法、溶胶-凝胶法、水热法、模板法等。 1.1化学活化法和物理活化法 随着介质材料研究的不断深入, 合成碳材料的方法也越来越多,比较传统的方法有化学活化法和物理活化法。活化法通过活化剂与材料进行融合,使活化剂与材料中的原子进行化学反应,从而形成较好的孔隙结构,化学活化法是将原材料进行粉碎与相对应的活化剂混合,在惰性气体环境下进行加热处理并且进行碳化,最终形成介孔碳材料[3]。该法可以通过改变活化剂的添加量控制介孔碳材料的比表面积,且加入活化剂后,原料中的氧和氢以水的形式结合并脱离分解这个过程的确大大加快了,碳化温度也确实大大降低了[4]。物理活化法的活化剂通常采 用O 2、C O 2等具有氧化性气体作为活化剂, 氧化性气体与碳原子发生气化,形成孔隙[5]。但由于活化气体氧化性很强,且活化温度很难控制,所以会严重影响孔隙的结构,并造成碳大量损失。化学活化法和物理活化法都有自身的优点,但也各有不足。例如物理活化法合成的介孔碳孔径较大,比表面积相对较小,还会出现环境污染,生产成本较高,因而很少用于工业生产。然而,随着研究的不断深入,科研工作者将物 介孔碳的合成及水处理的研究进展* 田喜强, 赵宏吉,董艳萍,赵东江,姬静怡(绥化学院食品与制药工程学院, 黑龙江绥化152061)摘要: 随着近些年来国家对环境治理力度的不断增强,治理手段的不断更新,介孔碳也凭着其特有的组成和结构,在催化、吸附分离等领域得以广泛应用,尤其在污水的处理中更是受青睐。本文主要从介孔碳的合成方法及在水处理领域的研究方面,综述了介孔碳的研究进展和发展趋势,以期望为我国污水处理提供有价值的信息。 关键词:介孔材料;水处理;研究进展中图分类号:O 613.71 文献标识码:A Research progress in synthesis of mesoporous carbon and water treatment *TIAN Xi-qiang,ZHAO Hong-ji,DONG Yan-ping,ZHAO Dong-jiang,JI Jing-yi (D epartment of Food and Pharmaceutical Engineering,Suihua College,Suihua 152061,China ) Abstract:Wit h the strengthening of national environmental regulation and management means constantly up - dated,mesoporous carbon also with its unique composition and structure,are widely used in the areas of catalysis,adsorption separation,especially in wastewater treatment in recent years.This paper summarizedmainly the research progress and developing trend of mesoporous carbonfrom the synthesis methods of mesoporous carbon and research in the field of water treatment,expecting to provide valuable information for sewage treatment in China. Key words:mesoporous material ;water treatment ;research progress D OI :10.16247/https://www.doczj.com/doc/8c9625940.html,ki.23-1171/tq.20190149 收稿日期:2018-08-08 基金项目:黑龙江省大学生创新创业训练计划项目 (201710236026);绥化市科技计划项目 (S HKJ2016-047);黑龙江省教育厅基本科研业务费基础研究 (2016-KYYWF-0923)作者简介:田喜强(1979-) ,男,黑龙江省兰西县人,副教授,2009年毕业于黑龙江大学,无机化学专业,硕士,主要从事纳米功能材料研究。 S um 280 No.1化学工 程师Chemical Engineer 2019年第1期

有序介孔碳吸附剂的研究进展

有序介孔碳吸附剂的研究进展 闻振涛, 万 颖* (上海师范大学生命与环境科学学院,上海200234) 摘 要:介绍了有序介孔碳吸附剂在吸附中的重要作用,总结了有序介孔碳应用于处理染料废水,去除水中芳香有机污染物,去除重金属离子以及吸附生物分子中的研究现状。展望了有序介孔碳应用于吸附的发展前景。 关键词:有序介孔碳;吸附剂;研究进展中图分类号:TQ 085+ 4 文献标志码:A 文章编号:0367 6358(2011)07 0434 03 R esearch Progress of Ordered M esoporous Carbons as Sorbent s WEN Zhen tao, WAN Ying * (Dep ar tment of Chemistr y ,S hang hai Normal Univ er sity ,S hang hai 200234,China) Abstract:The recent research prog ress of o rdered mesoporo us carbo ns in adso rption o f pollutants such as dye,o rganic arom atics,heavy metal ions and biomolecules,such as v itamin E,w as review ed.T he futur e development of the order ed mesopo rous carbons as sorbents w as also predicted.Key w ords:ordered meso poro us carbo ns;sorbents;research pro gress 收稿日期:2011 05 10 作者简介:闻振涛(1986~),男,硕士生。 *E mail:yw an @https://www.doczj.com/doc/8c9625940.html, 当前,工业中常用的吸附剂大多为微孔材料,主要包括:氧化物分子筛,碳分子筛,活性炭,活性炭纤维,碳纳米管和石墨纳米纤维等。但是,微孔材料存在许多问题,比如微孔太多,使孔的利用率太低;微孔吸附后难脱附,使其再次利用比较困难;微孔孔径过小,不能有效的吸附大分子污染物等。 有序介孔碳由于具有高的表面积,大的孔体积,良好的孔道稳定性,使其不仅具有比活性碳更高的吸附容量而且具有良好的重复利用性;有序介孔碳孔径比活性炭等微孔吸附剂孔径大,使其更容易吸附大分子有机物;通过调节合成时的投料比可以改变有序介孔碳的孔结构,进而使其可以选择性吸附不同种类的吸附质。 有序介孔碳材料一般都是经过纳米灌注的方法合成的,以介孔二氧化硅为硬模板,在介孔氧化硅的孔道中灌注碳源,高温碳化后得到二氧化硅/碳复合材料,通过氢氟酸或氢氧化钠溶液溶解除去氧化硅 得到介孔碳材料 [1] 。Zhao 等 [2] 用三嵌段共聚物 F127为模板,以用苯酚和甲醛制备相对分子质量低 的酚醛树脂为碳源,通过溶剂挥发自组装(EISA ),热聚过程,高温煅烧等步骤,合成了有序介孔碳材料。有序介孔碳已经成为新型的高效吸附剂,在吸附领域有巨大的应用前景。1 有序介孔碳在水处理中的应用 1.1 处理染料废水 染料废水是当前最严重的水体污染物之一,它的污染成分复杂,水体影响因素多,色度大,因此处理非常困难。Yuan 等[3] 以SBA 15和NaY 分子筛为模板合成了不同孔径大小的有序介孔碳材料,研究了材料对亚甲基蓝和中性红的吸附。结果表明,孔径大于3.5nm 的有序介孔碳能够高效吸附亚甲基蓝,当孔径较小时对中性红的吸附性能更好。Yan 等[4]用酸和碱处理过的沸石为模板,糠醛为碳源,通过气相沉积聚合的方法合成介孔碳,把其应用 434 化 学 世 界 2011年

多孔SiO2材料的合成及研究进展

多孔SiO 材料的合成及研究进展* 2 瞿其曙何友昭**淦五二李敏林祥钦 (中国科学技术大学化学系合肥 230026) 多孔材料按照孔径的大小可分为:微孔(Microporous,孔径<2nm),介孔(Mesoporous,孔径2~50nm)和大孔(Macroporous,孔径>50nm)材料。由于多孔材料内表面积很大,因而被广泛应用于催化剂和吸附载体中。典型的微孔材料是具有晶态网络状结构的固体材料,如沸石。它们一般都有较规则的孔道,但由于孔径太小,故而并不适合于对有机大分子的催化与吸附作用。介孔材料,如普通气凝胶、微晶玻璃等,它们的孔径范围较大,但却存在着孔道形状不规 的SiO 2 则、孔径尺寸分布范围大等缺点。陶瓷、水泥是我们常见的大孔材料,但同样存在着以上缺点。 早期合成多孔SiO 的方法,如气溶胶法、气凝胶法等都无一例外的存在 2 着制备过程难以控制的缺点,因而无法获得孔道形状规整、分布均匀的多孔SiO 2材料。但自从1992年,Kresge等[1]首次运用纳米结构自组装技术制备出具有均 分子膜(MCM-41)以来,多孔材料存在的这些缺点匀孔道、孔径可调的介孔SiO 2 正逐步被克服。现今,采用多种纳米结构自组装技术合成形状便于剪裁的多孔材料的方法已经成为当今国际上的一个研究热点。 SiO 2 1 纳米结构自组装技术 纳米自组装技术[2]是指通过比共价键弱的和方向性较小的键,如离子键、氢键及范德瓦耳斯(van der Waals)键的协同作用,自发的将分子组装成具有一定结构的、稳定的、非共价键结合的聚集体。自组装过程的完成一般需要以下3个步骤:首先,通过有序的共价键合成具有确定结构的中间体;然后通过氢键、范德瓦耳斯键和其他非共价键之间的相互作用形成大的、稳定的聚集体;最后,以一个或多个分子聚集体或聚合物为结构单元,重复组织排列制得所需的纳米结构。若要使制得的纳米结构能够稳定的存在,必须要满足以下两个条件:第一,要有足够的非共价键存在以保持体系的稳定;第二是分子之间这种以非共价键相结合的力要大于它们与溶剂之间的作用力,以保证聚集体不会解离成无序结构。 2 合成方法 纳米自组装技术是当今引人瞩目的前沿合成技术,目前运用这一技术合材料的方法大致有以下几种。 成多孔SiO 2 2.1 表面活性剂模板法 以表面活性剂为模板合成无机微孔或介孔材料早已受到了人们的重视。它可广泛运用于膜基分离、选择性催化剂、微电子、电光学等领域。最初,Kresge 分子膜。Attard[3]等用非离子表面活性剂液晶为模板,合成了有序生长的介孔SiO 2 材料。Bagshaw等[4]则用非离子表面等也采用液晶为模板合成了六角形介孔SiO 2 活性剂聚乙烯氧化物(PEO)为模板制得了介孔的分子膜。Zhao等[5]用三嵌段共聚物:聚乙烯氧化物-聚丙烯氧化物-聚乙烯氧化物(PEO-PPO-PEO)为模板合成了具 材料。接着人们将这一技术加以发展来制备有机无机复有有序结构的介孔SiO 2 合纳米材料。如Shea等[6]将双(三乙氧基甲硅烷基)芳香基单体或乙炔基单体这些天然的构件(building blocks)与正硅酸四乙酯(TEOS)反应,制得了网络状的

硅藻多孔材料的研究进展

海南大学 生物医用材料学号:11085204210004 姓名:蒋文凯 年级:2011级 学院:材料与化工学院专业:材料工程 课程名称:生物医用材料 任课教师:曹阳刘钟馨 课程评分:

硅藻多孔材料的研究进展 摘要:硅藻是一类具有色素体的单细胞植物,常由几个或很多细胞个体连结成各式各样的群体。其最明显的特征是细胞壁除个别种类外,均高度硅质化,形成上、下两个透明的壳,以壳环带套合形成一个硅质细胞壁。硅藻死后,它们坚固多孔的外壳—细胞壁也不会分解,而会沉于水底,经过亿万年的积累和地质变迁成为硅藻土。硅藻研究由原来简单的形态描述和分类发展到当今的众多领域,如在环境监测、考古、生物能源、仿生合成等方面。 关键词:硅藻;硅藻土;多孔;仿生合成 硅藻是鱼、贝、虾类特别是其幼体的主要饵料,它与其他植物一起,构成海洋的初级生产力。全球范围内估计,硅藻每年至少贡献20%的初级生产力,相当于热带雨林[1]。海洋硅藻具有种类多、数量大、繁殖快等特点,硅藻存在于生长所需的化合物稀少以致必须要再循环利用的环境中,但硅藻却极大地影响着全球的气候、大气中二氧化碳的浓度和海洋生态系统的功能[2]。硅藻还是形成海底生物性沉积物的重要组成部分。经过漫长的年代,那些在海底沉积下来的以硅藻为主要成分的沉积层,逐渐形成了经济价值极高的硅藻土[3]。 硅藻是当前世界研究的热点之一, 美国、加拿大、英国、俄罗斯、丹麦、挪威等国的学者近年正加紧对硅藻的研究,美国和欧盟投入巨资开展多个单位联合的硅藻项目研究。而目前国内对硅藻的研究却相对较少, 偏重于对海洋硅藻的研究,对淡水硅藻的研究不多。硅藻的应用除硅藻土的直接利用外,主要有水质监测、恢复古环境和气候等方面的应用。硅藻的研究正全面展开, 现代生物科技特别是基因测序技术的发展,使人们能够从基因和分子水平上来探讨硅藻的各种生理机制, 极大地促进了硅藻研究的发展,同时将会拓展硅藻的应用范围[4]。 1.硅藻细胞壁的结构与组成 硅藻是植物体单细胞,或由细胞彼此连接成链状、带状、丛状、放射状的群体,富有或着生,着生种类常具胶质柄或者包被在胶质团或胶质管中。它的细胞壁上有大量的气孔,使其兼具小质量和坚固的结构。细胞壁是由2个套合的半片组成,称半片为瓣。硅藻的半片称上壳(epitheca)(在外)、下壳(hypotheca)(在内),上下壳均有一凸起的面称壳面(valve)。侧面或壳边是两个瓣套合的地方,环绕1周称环带(girdle band)。上壳和下壳都是有果胶质和硅质组成的,没有纤维素[5]。载色体1至多数,小盘状、片状。经过测量发现, 硅藻壳能够承受压强的数量级在106Pa, 一般硅壳越小承受压强越高, 其高抗压强度是由于壳结构,特别是骨架或孔隙的存在,可以化解压力。通过数学模型推算出, 如果藻壳不是呈丝网结构,而变成相同外形的光滑外壳,其强度就会减少60%。

多孔碳材料

功能性多孔炭材料在突发性环境污染事故中的应用 【前言】自20世纪60年代以来,世界范围内已发生多起突发性的环境污染事故,如1986年莱茵河污染事故、2000年多瑙河污染事故和2005年松花江污染事故等。这些环境污染突发性事件不仅造成了巨大的经济损失,而且给环境、人类健康、社会和经济的发展带来了巨大的灾难。因此,对突发环境污染事故的应急处置引起了世界各国政府的高度重视。人们除了积极开展如何防止及预测预警突发性环境灾难事故发生外,还开展了对泄漏的危险化学品及废水的应急处置技术研究,为政府决策、技术措施的实施提供了技术支撑和保证。多孔炭材料具有耐热、耐腐蚀、抗辐射、无毒害、不会造成二次污染、可再生重复利用等特点。以多孔炭材料为吸附剂,对陆地泄漏物和水中泄漏物的应急处置研究近年来逐渐引起人们的关注。在突发性环境污染事件应急处置中,主要是利用多孔炭材料优异的吸附性能。目前应用的多孔炭材料主要有:活性炭、膨胀石墨、炭分子筛、炭纳米纤维、碳纳米管等。已有的研究证实,多孔炭材料不仅对水中溶解的有机物,如苯类化合物、酚类化合物、石油及石油产品等具有较强的吸附能力,而且对于用生物法及其他方法难以去除的有机物的色度、异臭异味、表面活性物质、除草剂、农药、合成洗涤剂、合成染料、胺类化合物以及许多人工合成的有机化合物都有较好的去除效果。这些结果表明,多孔炭材料在突发性环境污染事故应急处置方面的应用具有巨大的潜力和诱人的前景。 一、多孔碳材料的性能及特点 多孔炭材料的孔结构高度发达,具有大的比表面积,由此产生的优异吸附性能是多孔炭材料吸附最明显的特征之一。 与黏土、珍珠岩和天然沸石等吸附剂相比,炭质吸附剂材料的特点是:(1)炭材料是非极性的吸附剂,选择吸附能力可在一定程度上加以调变;对炭材料表面进行化学改性,可以改善或增强其对极性物质的吸附能力;(2)炭材料是疏水性的吸附剂,在有水或水蒸气存在的情况下仍能发挥作用;(3)炭材料孔径分布广,能够吸附分子大小不同的物质,其选择吸附性能较差;(4)炭材料自身具有一定的催化能力;(5)炭材料的化学稳定性和热稳定性优于硅胶等其他吸附剂;(6)炭材料不但适用于吸附陆地泄漏物,亦可用于吸附水体泄漏物;而且用于水上除油时,吸附后不会下沉。 与木纤维、玉米杆、稻草、木屑等材料相比,多孔炭材料能够选择性地吸附油品,吸附的泄漏物可以通过解吸再生回收使用,解吸后的炭材料可重复使用。与聚氨酯、聚丙烯和有丰富网眼状结构的树脂等吸附材料相比,多孔炭材料的价格相对便宜,且吸附容量较大。经化学改性处理后,炭材料能够选择性地吸附经化学改性处理或能与水互溶的化合物,具有耐热、耐腐蚀、抗辐射、无毒害、不会造成二次污染等突出特点。

金属多孔材料的研究现状与发展前景

金属多孔材料的研究现状与发展前景 摘要:介绍了金属多孔材料的制备方法、应用、发展方向以及前景。 关键字:金属多孔材料;制备方法;应用 1 引言 金属多孔材料是一类具有明显孔隙特征的金属材料(孔隙率可达98%),由于孔隙的存在而呈现出一系列有别于金属致密材料的特殊功能,广泛应用于冶金机械、石油化工、能源环保、国防军工、核技术和生物制药等工业过程中的过滤分离、流体渗透与分布控制、流态化、高效燃烧、强化传质传热、阻燃防爆等,是上述工业实现技术突破的关键材料。 近年来金属多孔材料的开发和应用日益受到人们的关注。金属多孔(泡沫金属)材料是20世纪80年代后期国际上迅速发展起来的,是由刚性骨架和内部的孔洞组成,具有优异的物理特性和良好的机械性能的新型工程材料。它具备的优异物理性能,如密度小、刚度大、比表面积大、吸能减振性能好、消音降噪效果好、电磁屏蔽性能高,使其应用领域已扩展到航空、电子、医用材料及生物化学领域等。通孔的金属多孔材料还具有换热散热能力强、渗透性好、热导率高等优点;而闭孔金属多孔材料的物理特性则与通孔的相反。为了得到不同性能的多孔金属,各种制备方法被相继提出,如直接发泡法,精密铸造法,气泡法,烧结法和电沉积法等[1,2]。 2 金属多孔材料制备方法 2.1 从液态(熔融)金属开始制备 2.1.1熔体发泡法 在一定的条件下金属熔体中可生成气泡,并且一般情况下多数气泡由于浮力作用会迅速上升到液体表面而溢出。为了使更多气泡留在熔体中,可在其中加入增粘剂来阻碍气泡的上浮。19世纪60至70年代,人们就已经尝试用这种方法制备铝、镁、锌及其合金的泡沫材料。过去的10年中,又涌现出了大量的新思路、新工艺,其中有两种熔体发泡工艺特别具有发展前景:其一是直接将气体通入金属熔体中,其二是将发泡剂加入熔体中,发泡剂分解释放大量气体[3]。

去合金化制备纳米多孔金属材料的研究进展_谭秀兰

去合金化制备纳米多孔金属材料的研究进展 * 谭秀兰 1,2 ,唐永建1,刘 颖2,罗江山1,李 恺1,刘晓波 2 (1 中国工程物理研究院激光聚变研究中心,绵阳621900;2 四川大学材料科学与工程学院,成都610065)摘要 用去合金化制备的孔隙尺寸小于100nm 的纳米多孔金属材料,开拓了多孔金属材料一个新的应用领域。目前的研究主要集中于通过不同的合金体系制备出不同的纳米多孔金属,分别介绍了纳米多孔金、铂、铜、钯、钛的制备工艺,并对孔洞形成的溶解-再沉积机制、体扩散机制、表面扩散机制、渗流机制及相分离模型进行了简述。对纳米多孔金的现有研究表明,纳米多孔金具有良好的化学稳定性、高的比表面积以及高的屈服强度,目前应用研究包括作为热交换器、传感器及催化材料等方面。 关键词 纳米多孔金属 制备 去合金化 Prog ress in R esearch on Preparations of Nanoporours M etals by Dealloying T AN Xiulan 1,2,T ANG Yongjian 1,LIU Ying 2,LU O Jiang shan 1,LI Kai 1,LIU Xiaobo 2 (1 R esear ch Center of L aser F usio n,CAEP ,M iany ang 621900;2 Depar tment o f M ater ial Science and Eng ineering ,Sichuan U niv ersity ,Cheng du 610065) Abstract N anoporo us metals made by dealloy ing display no vel pro per ties in many applicat ions.T he pr esent research concentr ates o n pr epar atio ns of mult-i nano po ro ur s metals fro m different alloys.P reparatio ns of nano po rous go ld,plat inum,co pper ,palladium and t itanium ar e r eview ed.T he mechanisms of po re for ming dur ing deallo ying a re summar ied,including the r eso lutio n -redeposit ion mechanism,volume diffusion mechanism,surface diffusio n mecha -nism,the per co lation mechanism and phase separ ation mo del.Nano po rous g old has a go od chemical stabilit y,a high specific surface area,as well as a hig h y ield str eng th.T he cur rent application r esear ches include the applications as heat ex chang ers,sensors and catalytic mat erial,and so on. Key words nanopor ous metals,preparations,deallo ying *中国工程物理研究院科学技术发展基金资助(2007B08007) 谭秀兰:女,1983年生,硕士研究生,研究方向为多孔泡沫金属 E -mail:tx l725@https://www.doczj.com/doc/8c9625940.html, 0 引言 近年来利用去合金化方法制备的孔隙尺寸小于100nm 的纳米多孔金属材料由于比表面积高、密度低而具有特殊的物理、化学、机械性能,开拓了多孔金属材料新的应用领域,作为潜在的传感器和驱动器而受到国际材料学界的高度重视[1,2]。 去合金化,即选择性腐蚀,是指合金组元间的电极电位相差较大,合金中的电化学性质较活泼元素在电解质的作用下选择性溶解进入电解液而留下电化学性质较稳定元素的腐蚀过程。组元既可以是单相固溶体合金中的一种元素,又可以是多相合金中的某一相。最典型的例子是黄铜脱锌和铸铁的石墨化腐蚀。目前,对二元固溶体合金去合金化制备纳米多孔金属成为国内外研究的一大热点,特别是对通过A g -Au 系合金选择性腐蚀制备纳米多孔金的研究。现有的研究主要集中于采用不同的合金体系制备出各种不同的纳米多孔材料。本文对去合金化制备的几种纳米多孔金属及其制备过程、孔洞形成机制和应用方面的研究进行介绍。 1 去合金化制备的纳米多孔材料 纳米多孔金属材料可通过不同的合金体系制备,如通过Ag -Au [1,3-9]、Zn -A u [10]、A-l A u [11]、Cu -Au [12,13]、N-i Au [14]均已制备出纳米孔隙尺寸金。在研究纳米多孔金的基础上,国内外科学研究者们将这种方法拓展应用于其他金属体系,如S-i Pt [15]、Cu -Pt [16]、Cu -Zr [17]、M n -Cu [18]、Cu -Pd [19,20]和A-l T i [21] 等,已制备出纳米多孔铂、纳米多孔铜、纳米多孔钯和纳米多孔钛等多种纳米多孔金属材料。 1.1 纳米多孔金的制备 目前,国际上对去合金化的研究主要集中在以Ag -Au 合金体系为主的均匀固溶体。一方面从相图上看Ag -Au 在所有组成范围内形成单相无限固溶体,另一方面A g 和Au 都为面心立方结构,两元素的点阵常数分别为0.40786nm 和0.40862nm,点阵错配度仅为0.2%,在整个成分范围内点阵常数变化不大。利用Ag -Au 合金的去合金化已制备出多重孔隙尺寸的纳米多孔金块体、纳米孔隙金薄膜、纳米多孔金丝等多种多孔结构。 约翰-霍普金斯大学的Eriebac h er 教授[1]采用2.4g (12

相关主题
文本预览
相关文档 最新文档