当前位置:文档之家› 运用转化与化归思想方法解题老师汇总

运用转化与化归思想方法解题老师汇总

运用转化与化归思想方法解题老师汇总
运用转化与化归思想方法解题老师汇总

运用转化与化归思想方法解题

1.转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换

使之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问

题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已

解决的问题.从某种意义上说,数学题的求解都是应用已知条件对问题进行一连串恰当

转化,进而达到解题目的的一个探索过程.

2.转化有等价转化与非等价转化.等价转化要求转化过程中前因后果是充分必要的,才保

证转化后的结果仍为原问题的结果.非等价转化其过程是充分或必要的,要对结论进行

必要的修正,它能带来思维的闪光点,找到解决问题的突破口.

3.常见的转化方法

转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是成功的思维方式.常见的转化方法有:

(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;

(2)换元法:运用“换元”把非标准形式的方程、不等式、函数转化为容易解决的基本

问题;

(3)参数法:引进参数,使原问题的变换具有灵活性,易于转化;

(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;

(5)坐标法:以坐标系为工具,用代数方法解决解析几何问题,是转化方法的一种重要

途径;

(6)类比法:运用类比推理,猜测问题的结论,易于确定转化的途径;

(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问

题;

(8)一般化方法:若原问题是某个一般化形式问题的特殊形式且有较难解决,可将问题

通过一般化的途径进行转化;

(9)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的;

A,而(正难则反)若过正面问题难以解决,可将问题的结果看作集合(10)补集法:eAUU 获得,通过解决全集及补集把包含该问题的整体问题的结果类比为全集U原问题的解决.

化归思想练习题(1)

一、选择题

2=12y的焦点,A,C:xB,C为抛物线上不同的三点,F1.(2015·武汉调研)设为抛物线→→→若FA+FB+FC=0,则|FA|+|FB|+|FC|=()

A.3B.9 C.12 D.18 答案D

解析设A(x,y),B(x,y),C(x,y),因为A,B,C为抛物线上不同的三点,则A,B,3321212=12y的焦点为F(0,3)C:x,准线方程为y=-3.

C可以构成三角形.抛物线→→→因为FA+FB+FC=0,所以利用平面向量的相关知识可得点F为△ABC的重心,从而有x1+x+x=0,y+y+y=9.又根据抛物线的定义可得|FA|=y-(-3)=y+3,1231312|FB|=y-(-3)=y+3,|FC|=y-(-3)=y+3,32231

18.

9=+3+y+3=y+y+y+y所以|FA|+|FB|+|FC|=+3+y3113222x2上任意一点,为椭圆C)已知点F是椭圆C:+y=1的左焦点,点P.2(2015·唐山调研2)

P,则当|PQ|+|PF|取最大值时,点的坐标为(点Q的坐标为(4,3)14B

答案D.(2,0) B.(0,-1) C.(,) A.(,-20) 33,根据椭圆的定E(1,0)(解析由题意知椭圆的左焦点为F-1,0),设椭圆的右焦点为E,则|PE|),易知|=PQ22+(|PQ|-|PE|,所以|PQ|+|PF|=|PQ+|22-|PE|义,知|PF|=22-|时,等号成1)的坐标为(0,-P|PE|≤|QE|,当且仅当是QE的延长线与椭圆的交点,即P-.,-1)2,此时点P22+的坐标为32=(0立,故|PQ|+|PF|的最大值为522+|QE|=16411)

(=1,则+的最小值为(2015·南昌调研)若正数a,b满足+3.ba1ba--1A 答案D.49 B.25 C.36 A.16

11 ab,a+b=,b>0,+=1,所以因为解析a ba20a-4b+16b-+a-16420. a-所以+=4b +16==1b+-+abb-b1-aaa--1ab4a11b42+4×)≥20+4()(+)=20+=4(b +4a)=4(=·36,b+4a又4b+16a abababb4a113当且仅当=且+=1,即a=,b=3时取等号.baab2416≥36-20=16.

+所以-1b-1aππ4.若α、β∈[-,],且αsinα-βsinβ>0,则下面结论正确的是()

2222 答案βD.αD > βα+>0 C.α<βA.α>βB.πππ解析令f(x)=xsinx,∵x∈[-,],f(x)为偶函数,且当x∈[0,]时,f′(x)≥0,222ππ]上为增函数,在[-,0]上为减函数.∴αsinα-,∴f(x)在[02222α|??|α|>|ββsinβ>0?f(|α|)>f(||)β. β>→→→→5.(2015·九江模拟)在△ABC中,|AB|=3,|AC|=2,点D满足2BD=3DC,∠BAC=60°,→→)

(·ADBC=则9898D

.- C. D 答案B. A.-5555→→→→→→→→→→→→333)+AB =BD+ABAD,所以BCBD,所以DC3=BD因为解析2==BCAB-AC+AB=(5552

→→→→→→→→→→→→→→→2313232322AB--AB·AC)·(AC-AB)=AC)·.所以AD·BC =(AC+ABBC=(AC+AB=AC+AB5555555559231222. =-cos60°-×3=×2-×2×3×5555)≤2x1≤f(logx,若在[1,8]上任取一个实数x,则不等式f6.(2015·太原模拟)已知函数(x)=020)

成立的概率是(

1211C 答案 D. B. C. A. 243724-2,∴所求概率为2≤x ≤4)≤2?1≤log≤2?.

解析1≤f(xx=000271-8的正方体中,连接相邻面的中心,以这些线段为棱的八面体的)棱长为a7.(2015·广州调研)

(体积为3333aaaaC 答案 D. A. B. C.12463棱锥的底面为正方形且边长为所得图形是一个正八面体,可将它分割为两个四棱锥,解析

3a2a212. =)·=2×(aa,高为正方体边长的一半,∴V2262318.(2015·保定模拟)已知函数f(x)满足f(x)+1=,当x∈[0,1]时,f(x)=x,若在区间

+xf(-1,1]上方程f(x)-mx -m=0有两个不同的实根,则实数m的取值范围是()

1111A.[0,) B.[,+∞) C.[0,) D.(0,] 答案D

2232解析

方程f(x)-mx-m=0有两个不同的实根等价于方程f(x)=m(x+1)有两个不同的实根,等价于直线y=m(x+1)与函数f(x)的图像有两个不同的交点.因为当x∈(-1,0)时,x+1∈(0,1),,1][0,xx,∈??1?在同一平面直角坐标系内作出=f(x)-所以f(x)=1,所以11+x

,∈-1-1,x??1x+

直线y=m(x+1)与函数f(x),x∈(-1,1]的图像,由图像可知,当直线y=m(x+1)与函数f(x)3

1 ,].1,1]-上有两个不同的公共点时,实数m的取值范围为(0的图像在区间(

2 二、填空题22分成两段弧,当劣弧所对的圆心角最小时,直4-2)=+y9.过点(1,2)的直线l将圆(x________. k=线l的斜率2由题意得,劣弧所对圆心角最小,则劣弧对应的弦长最短,此时圆心到直答案解析2垂直时,弦长最短.此时直线,2)的连线与直线(2,0)与点(1l的距离最大,所以当圆心线l2. =的斜率kl22两点,与抛BM(3,0)的直线与抛物线相交于10.设抛物线yA=2x的焦点为F,过点,4S△BCF△ACF的面积之比=________.答案|物线的准线相交于点C,BF|=2,则△BCF

与5S△ACF

222x并整理,得k=的直线方程为0)y=k(2x-3),代入y解析如图所示,设过点xM(3,223k22. =x+x2)3k+x+3k=0.则(221k3132,所是方程的一个根,可得k′|=2.不妨设x=-BB因为|BF|=2,所以|232223-22.

=以x11d|BC|·24′|2SBB|BC||△BCF. =====5′|11S|AC||AA△ACF+|·d|2AC22ππ11.(2015·山西四校联考)若函数f(x)=2sin(2x+φ),且f()=f(-),则函数f(x)图像的对称412轴为________.

4

ππππk)xf()=f(-),所以πk∈Z)解析易知函数f(x)的最小正周期为,而f(x答案=+( 124212πππk ).x=+(k∈Z x图像的一条对称轴为x=,故函数f()的图像的对称轴为

12122,x)>0′(x)-f(=是定义在R上的偶函数,且f(2)0,当x>0时,xf12.(2015·河北五校联考)已知f(x)(0,2)

2)∪答案(-∞,-则不等式xf(x)<0的解集是________.

xffx是奇=),可知g((x)<0与不等式x<0同解.记g(x)xf解析显然x≠0,故不等式

xx

xfx-xff,g(2)==0为增函数,又>0,此时函数,且当x>0时,g′(x)=g(x)2

2x

xf,的解集为(-∞,即不等式∞,-2)∪(0,2)xf(x所以不等式g(x)=)<0<0的解集为(-x 2)∪(0,2).-22yx为椭圆上一PF,设a=1(>b>0)的两个焦点分别为F,13.(2015·衡水月考)已知椭圆+2221ba,,S的垂线,垂足分别为,过F,F分别作lR点,∠FPF的外角平分线所在的直线为l22112 aS所形成的图形的面积为________.答案π当P 在椭圆上运动时,R,解析

|PF|PF|+|F是∠FPM的平分线,所以|MP|=|P|,可得⊥如图,△PFM中,PRFM且PR211111M=2,即动点aPF|=2a,所以|MF|||PM=||+|PF|=MF|,根据椭圆的定义,可得|PF+|22212的轨迹是以点的中点,所以RO为FM的中点,为FFa到点F的距离为定值2,因为R2112所形S为圆心,半径为的轨迹是以点Oa的圆.故R,O为圆心,半径为a的圆.同理点S2.

成的图形的面积为πa)转化与化归思想(2一、选择题13)

-=(1.(2014·衡水二调)sin 170°cos 10°D ] [答案.-.-..A4 B2 C2 D4

-cos 10°3sin 10°-1313 ==-=-解析[]1sin 10°cos 10°cos 10°sin 170°cos 10°sin 10°sin 20°25

2sin 20°-D. 4,故选==-1sin 20°222yx⊥上一点,若PF>b>0)F为焦点的椭圆+=1(a2.(2014·南昌模拟)已知点P是以F,22112ba)

=(PFF=2,则椭圆的离心率ePF,tan ∠1221125A [答案] A. B. C. D. 2333,|=1F=2,得|PFPF[解析]由题意可知,∠F=90°,不妨设|PF|=2,则由tan ∠PF2112125FF|2c|2122. =5,所以离心率2e=从而|FF=|=1=+213a2||PFPF||+21的对称中心,过曲线y=1+sin πx(00,b>0)21) 则+的最小值为(baC ]22 D.6[ B.42 C.3答案+A.2+1

,过点(1,1)1=0(a>0,b>0)=∵y1+sin πx(0

63643222222,C,∴cos +bC-c=][解析利用正弦定理,得到a=+b2-caba=3ab,又cos 2π.

=<π,∴C又0

(则其前5项的和S=5C

][答案.A.31 B.15 C.11 D5

2=a=2q,解得q+1,∴aa=2a=2,∴aq+成等差数列,且∵[解析]a,a,aa=11123311255

-1-a-q1=11.故选),∴S ==

C.

1(-2或q=舍去

5-1-1-q

2nπ*),若数列{a}的a=cos(n∈N+=a7.(2014·锦州模拟)数列{}满足a=a1,a+a n2nn11n2n++3前n项和为S,则S的值为()

2 013n671A.2 01

3 B.671 C.-671 D.-[答案]D

22π1[解析]因为a+a+a=a+a+a=…=a+a+a=cos=-,3613n3n3512342n+++236

1π2n??*-671×+a+a)∈N=)以3为周期,所以S=671×(acos=所以a+a+a=(n??

3n21n22 013n1++23671D. -,故选2→→→)

,则边BC的值为(AC=2,向量BC⊥(AB+3AC)8.在△ABC中,AB=2C

][B.3 答案C.6 D.6 A.2

→→→→→→→→→→→→AB)·(所以(AC-AB)所以BC·(AB+3AC=0,[解析]因为BC=AC-AB,BC与AB+3AC垂直,1→→→→→→→→→→→22=|cos A|AC|·|AB·AB=0,即AC·AB=-,所以+3AC)=0AC·AB-AB+3AC,所以-3AC2111222所以,2×2×1×=6|·|AC|cos A=4=-,所以|BC|+=|AB|1+|AC|+-2|AB-,所以cos A442C.

6.|BC|故选=,≤00,x??有零点m)+x-则使函数g(x)=f(x10.(2014·吉林实验中学模拟)

已知函数f(x)=?x,>0e,x??)

的实数m的取值范围是(1)

∞,B.(-A.[0,1)

初中数学教学论文 浅谈化归思想方法在数学教学中的应用

浅谈化归思想方法在数学教学中的应用 内容摘要:所谓化归法,是指通过数学内部的联系和矛盾运用,在转化中实现问题的规范化,即将待解问题转化为规范问题,从而使原问题得到解决的一种方法.这里的规范问题是指已经具有确定的解决方法和程序的问题,即运用原有知识已能解决的问题.而将一个问题化为规范问题的过程叫做问题的规范化.因此,简而言之,所谓化归就是问题的规范化、模式化。“化归”方法很多,但有一个原则是和原来的问题相比,“化归”后所得出的问题,应是已经解决或是较为容易解决的问题。在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 关键词:化归法简述运用操作实现化归 随着数学课程改革的深入,教师们已经认识到学生学习方法转变的必要性。数学教学是教师按照学生的认识规律和新课标特点,通过最优途径,指导学生掌握科学的学习方法,并获得具有选择和运用恰当有效学习方法的能力。重视方法指导是坚持“以学生为主体”和培养学生创新素养这一现代教育观念的体现,它能使学生主动参与认识过程,既能调动学生的积极性,又能向教师提出改进教法的反馈信息,有效发挥教法和学法的整体功能,最大限度地使用好教材。在数学方法论中有一种重要的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 一.化归法简述 在学习数学的各个环节中,解题的训练占有十分重要的地位。它既是掌握所学数学知识的必要手段,也是培养和提高数学能力的重要途径。解题的实质就是把数学的一般原理运用于题目的条件或条件的推论而进行的一系列推理,直到求出题目解答为止的过程。这一过程是一种复杂的思维活动的过程。解决问题的过程,实际是转化的过程,即对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。如抽象转化为具体,未知转化为已知,立体转化为平面,高次转化为低次,多元转化为一元,超越运算转化为代数运算等等。这就是数学方法论中的一种新的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,假设有一个数学问题甲,一下子不能直接求解,于是人们将甲问题的求解化为乙问题的求解,然后通过乙问题的求解返回去得出甲问题的求解,这就是化归的基本想法。利用化归法解决问题的过程可以简单地用以下框图表示:

转化与化归思想方法

转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使 之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将 难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题. 转化与化归思想在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归, 如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问 题之间的互相转化、实际问题向数学问题转化等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所有的数学教学内容和解题过程中. 1.转化与化归的原则 (1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验来解决. (2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂 问题的目的,或获得某种解题的启示和依据. (3)直观化原则:将比较抽象的问题化为比较直观的问题来解决. (4)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探讨,使问题获解. 2.常见的转化与化归的方法 转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况 转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有 效策略,同时也是成功的思维方式.常见的转化方法有: (1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题. (2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、 不等式问题转化为易于解决的基本问题. (3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径. (4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的. (5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题. 随着国家经济的发展,科技的发达,人才的需求,中国教育的改革,数学新课标 的出现,在对学生的知识与技能,数学思想及情感与态度等方面的要求,学生在数 学的学习方法也应该要相应改变了,要满足社会的需要.化归与转化思想的实质是揭示联系,实现转化.除极简单的数学问题外,每个数学问题的解决都是通过转 化为已知的问题实现的.从这个意义上讲,解决数学问题就是从未知向已知转化 的过程,同时在生活中许许多多的事情也需要往已知的方面转化,把事情简单化, 这对以后学生的能力与德育方面有很大的帮助.化归与转化的思想是解决数学问 题的根本思想,解题的过程实际上就是一步步转化的过程.数学中的转化比比皆

化归思想在初中数学解题中的应用

化归思想在初中数学解题中的应用 向阳乡初级中学 周红林 【摘要】化归思想是中学数学最重要的思想方法之一。本文从化归的功能,化归的原则,化归的思维模式以及中学数学中化归的基本形式,化归的特点等内容出发,力求比较全面地体现化归思想在初中数学解题中的作用和地位。 【关键词】化归思想 化归的原则 教学策略 化归思想要点 新课程标准指出:“数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础。”“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。”从中我们可以看出新课程标准下的数学教学更加突出培养学生的数学思想的重要性,而数学思想同样离不开数学方法的支持。 数学是一门演绎推理的学科。它的任一分支在其内容展开过程中,都有形或无形地存在着如下的结论链: 从中我们可以发现,在解决某一个具体问题时,不必都从原始概念开始,而只要把待解决的问题转化为结论链中的某一环节即可。所以,初中数学中,化归思想的运用尤为突出,本文结合自己的工作实际对化归思想提出了一些自己的看法。

一、化归思想的涵义和作用 化归思想,又称转换思想或转化思想,是一种把待解决或未解决的问题,通过某种转化过程归结到一类已经能解决或比较容易解决的问题中去,最终求得问题解答的数学思想。化归法和数形结合方法是转化思想在数学方法论上的体现,是数学中普遍适用的重要方法。 二、化归思想的基本原则 数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。 为更好地把握化归方向,我们必须遵循一些化归的基本原则,化归思想的基本原则主要有熟悉化原则、简单化原则、具体化原则、极端化原则、和谐化原则。 ⒈熟悉化原则 熟悉化就是把我们所遇到的“陌生”问题转化为我们较为“熟悉”的问题,以便利用已有的知识和经验,使问题得到解决。这也是我们常说的通过“旧知”解决“新知”。学习是新旧知识相互联系、相互影响的过程。奥苏伯尔说,影响学习的最重要的因素是学生已知的内容。在教学的应用策略中,他提出了设计“先行组织者”的做法,也就是在学生“已经知道的知识”和“需要知道的知识”之间架起桥梁。这样有利于学生解决问题。 ⒉简单化原则 简单化原则就是把比较复杂的问题转化为比较简单的易于确定

化归思想论文

浅谈化归思想在数学解题中的应用 摘要:化归思想在数学解题中应用非常的广泛。化归原则,即化未知为已知,化繁为简,化难为易。在我们的解题过程中,如果能做到对化归思想运用自如,那么我们将会节约许多资源,化归方法有三大基本要素:化归对象、化归目标、化归方法。在使用化归的过程中关键在于要掌握化归的方法。要掌握化归的精髓,就要采取具体问题与活动多次练习体会的方法,逐步形成化归思想,逐步建立化归方法的认知结构。 Abstract: The Reduction of thinking in mathematical problem solving application is very extensive. Naturalization principle, that of the unknown is known, based simplify of Aesthetic. In our problem solving process, if you can do on the Idea with ease, then we will be saving a lot of resources, Naturalization method has three basic elements: Naturalization object, Naturalization goal of Transformation. The key is to master the use of Naturalization Naturalization. To grasp the essence of Naturalization, it is necessary to take specific issues and activities repeatedly practice experience, and gradually form the Idea, and gradually establish the cognitive structure of Transformation. 关键字:化归思想数学解题思维形成化归思想 化归原理其实是很浅显易懂有非常实用的方法,有人曾提出这样一个问题:“假如在你面前有煤气灶、水龙头、水壶和火柴,你想烧开水,应当怎么做?”有人回答:“用水龙头放出来的水把水壶灌满,再点燃煤气灶,把壶放到煤气灶上。”提问者肯定了这个答案并对问题进行了修改,追问道:“如果其他条件不变,只是壶里已经灌满了水,那你有打算怎么做?”这时那人很有信心的回答:“点燃煤气灶,把壶放到煤气灶上。”可是这一回答并没有使提问者感到满意,因为,在后者看来,更恰当地回答是:“只有物理学家才会这样做,而数学家则会倒去壶中的水,并声称他已经把后一问题化归为先前已经得到解决的问题了。” 华归的一般模式是: 所以说,化归可理解为:由未知到已知,由难到易,又复杂到简单的转化。下面我们来看化归方法在具体数学问题中的应用。 例1由于求解一元一次方程的问题是十分容易的,因此,为了求解二元一次方程组(或n 元一次方程组),我们就可采取消元的方法——这事实上是将求解二元(n元)一次方程组的问题化归为求解一元一次方程的问题,即:

九、化归与转化思想专题(刘成宏)

九、化归与转化思想专题 上海市向东中学 刘成宏 经典例题 【例1】若动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于N M ,两点,求 MN 的最大值. 分析: 动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于N M ,两点, 横坐标相同,那么MN 就转化为N M ,两点纵坐标之差,即x x MN cos sin -=求最值. 解: x x MN cos sin -==)4 sin(2π - x 最大值为2. 【例2】设点)0,(m M 在椭圆 112 162 2=+y x 的长轴上,点P 是椭圆上任意一点. 当MP 的模最小时,点P 恰好落在椭圆的右顶点,求实数m 的取值范围. 解:设),(y x P 为椭圆上的动点,由于椭圆方程为 112 162 2=+y x ,故44≤≤-x . 因为()y m x MP ,-=,2222312)4(4 1 12241m m x m mx x -+-=++-= . 依题意可知,当4=x 取得最小值.而[]4,4x ∈-, 故有44≥m ,解得1≥m . 又点M 在椭圆的长轴上,即44≤≤-m . 故实数m 的取值范围是]4,1[∈m . 【例3】设R y x ∈,且x y x 6232 2 =+,求2 2 y x +的范围. 分析:设2 2 y x k +=,再代入消去y ,转化为关于x 的方程有实数解时求参数k 范围的问题.其中要注意隐含条件,即x 的范围. 解:方法一、由02362 2 ≥=-y x x 得20≤≤x . 设2 2 y x k +=,则2 2 x k y -=,代入已知等式得:0262 =+-k x x , 即x x k 32 12 +- =,其对称轴为3=x .

浅谈化归思想方法在数学教学中的应用

浅谈化归思想方法在数学教学中的应用 墨红镇中学李慧连内容摘要:所谓化归法,是指通过数学内部的联系和矛盾运用,在转化中实现问题的规范化,即将待解问题转化为规范问题,从而使原问题得到解决的一种方法.这里的规范问题是指已经具有确定的解决方法和程序的问题,即运用原有知识已能解决的问题.而将一个问题化为规范问题的过程叫做问题的规范化.因此,简而言之,所谓化归就是问题的规范化、模式化。“化归”方法很多,但有一个原则是和原来的问题相比,“化归”后所得出的问题,应是已经解决或是较为容易解决的问题。在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 关键词:化归法简述运用操作实现化归 随着数学课程改革的深入,教师们已经认识到学生学习方法转变的必要性。数学教学是教师按照学生的认识规律和新课标特点,通过最优途径,指导学生掌握科学的学习方法,并获得具有选择和运用恰当有效学习方法的能力。重视方法指导是坚持“以学生为主体”和培养学生创新素养这一现代教育观念的体现,它能使学生主动参与认识过程,既能调动学生的积极性,又能向教师提出改进教法的反馈信息,有效发挥教法和学法的整体功能,最大限度地使用好教材。在数学方法论中有一种重要的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 一.化归法简述 在学习数学的各个环节中,解题的训练占有十分重要的地位。它既是掌握所学数学知识的必要手段,也是培养和提高数学能力的重要途径。解题的实质就是把数学的一般原理运用于题目的条件或条件的推论而进行的一系列推理,直到求出题目解答为止的过程。这一过程是一种复杂的思维活动的过程。解决问题的过程,实际是转化的过程,即对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。如抽象转化为具体,未知转化为已知,立体转化为平面,高次转化为低次,多元转化为一元,超越运算转化为代数运算等等。这就是数学方法论中的一种新的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,假设有一个数学问题甲,一下子不能直接求解,于是人们将甲问题的求解化为乙问题的求解,然后通过乙问题的求解返回去得出甲问题的求解,这就是化归的基本想法。利用化归法解决问题的过程可以简单地用以下框图表示:

浅谈化归思想在中学数学中的应用

浅谈化归思想在中学数学中的应用 发表时间:2010-11-08T15:05:44.580Z 来源:《中小学教育》2010年第11期供稿作者:苏炳堂 [导读] 数与数之间的转化遵循着一些原则,例如具体化原则、简单化原则、和谐统一化原则等等。 苏炳堂广西柳州市第一中学545007 在中学数学中,化归思想不仅是一种重要的数学思想,也是一种最基本的思维策略。化归思想在中学数学中有着很广泛的应用,其关键就在于把原问题转化和归结。对于具体的数学问题,如何实行化归和选择有效的化归手段并没有固定的模式,中学数学常见的化归基本形式有以下三种: 一、数与数之间的转化 数与数之间的转化是中学数学中最常用的一种化归形式,通过转化可以使得原问题简单化、具体化、熟悉化,从而使问题迎刃而解。在中学数学中很多化归都是数与数之间的转化,例如变形所给出的方程求解,数学解法在于不断将高层次的解法化归为较低层次的解法,这就是我们常说的把问题“初等化”。 例1、关于x的方程cos2x+sinx+a=0在(0,π)内有解,求a的取值范围。 分析:假设由题意把x看作未知数,那么那就是一个复合的方程,很难下手,但若考虑以sinx为未知数,再由1-cos2x=sin2x,则问题转化为常见的一元二次方程了,原问题即可解决。所以由1-cos2x=sin2x,原式可化为:a=sin2x-sinx-1即a=(sinx- )2- 。因为x∈(0,π),所以0

转化与化归思想的应用

转化与化归思想的应用 题型一 特殊与一般的转化 例1 已知函数f (x )=a x a x +a (a >0且a ≠1),则f ????1100+f ????2100+…+f ????99100的值为________. 答案 99 2 解析 思维升华 一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果. (1)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a 、b 、c 成等差数列, 则cos A +cos C 1+cos A cos C =________. (2)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+ x )f (x ),则f ???? 52=________. 答案 (1)4 5 (2)0 题型二,常量与变量的转化 例2, 对任意的|m |≤2,函数f (x )=mx 2-2x +1-m 恒为负,则x 的取值范围为________. 变式练习:设f (x )是定义在R 上的单调增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为___________.(-∞,-1]∪[0,+∞) 探究提高 在处理多变元的数学问题时,我们可以选取其中的常数(或参数),将其看做是“主元”,而把其它变元看做是常量,从而达到减少变元简化运算的目的.

题型三 函数、方程、不等式之间的转化 例3 若f (x )是定义在R 上的函数,对任意实数x 都有f (x +3)≤f (x )+3和f (x +2)≥f (x )+2,且f (1)=1,则f (2 014)=________. 答案 2 014 解析 (2)∵f (x +1)≤f (x +3)-2≤f (x )+3-2=f (x )+1, f (x +1)≥f (x +4)-3≥f (x +2)+2-3≥f (x )+4-3=f (x )+1, ∴f (x )+1≤f (x +1)≤f (x )+1. ∴f (x +1)=f (x )+1. ∴数列{f (n )}为等差数列. ∴f (2 014)=f (1)+2 013×1=2 014. (1)若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范 围是________. 答案 (1)(-∞,-8] 2.关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ( A ) ①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假. 命题的个数是 A .0 B .1 C .2 D .3 题型四 数与形的转化 例4.(2014·天津)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________. 答案 (0,1)∪(9,+∞) 解析 设y 1=f (x )=|x 2+3x |,y 2=a |x -1|, 在同一直角坐标系中作出y 1=|x 2+3x |,y 2=a |x -1|的图象如图所示.

化归思想方法在解题中的应用

化归思想方法在解题中的应用 汕头金平职业技术学校李顺生 摘要:化归,指的是转化与归结.即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题,从而最终解决原问题的一种思想。近几年高考,随着试题由知识立意向能力立意的转变,不断加大化归思想的考查力度。如此,重视化归思想在高中数学教学中的应用显得尤其重要。 关键词:新课程解题渗透化归数学思想 近几年高考试题十分重视数学思想方法的考查,特别是考查能力的试题,其解答过程都蕴含着重要的数学思想方法。“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只能满足于解出来,只有做到对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。 在中学数学中,化归不仅是一种重要的解题思想,也是一种最基本的思维策略。所谓的化归,指的是转化与归结。即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题,从而最终解决原问题的一种思想。 化归应遵循一定的原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利运用熟知的知识、经验和问题来解决。(2)简单化原则:将复杂的问题化归为简单问题,通过以简单问题的解决,达到复杂问题的目的,或获得某种解题的启示和依据。(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。(5)正难则反原则:当问题正面讨论遇到困

转化与化归思想方法

转化与化归思想方法,就就是在研究与解决有关数学问题时采用某种手段将问题通过变换使 之转化,进而得到解决得一种方法、一般总就是将复杂得问题通过变换转化为简单得问题, 将难解得问题通过变换转化为容易求解得问题,将未解决得问题通过变换转化为已解决得问题、 转化与化归思想在高考中占有十分重要得地位,数学问题得解决,总离不开转化与化归,如 未知向已知得转化、新知识向旧知识得转化、复杂问题向简单问题得转化、不同数学问题 之间得互相转化、实际问题向数学问题转化等、各种变换、具体解题方法都就是转化得手段,转化得思想方法渗透到所有得数学教学内容与解题过程中、 1、转化与化归得原则 (1)熟悉化原则:将陌生得问题转化为熟悉得问题,以利于我们运用熟知得知识、经验来解决、 (2)简单化原则:将复杂问题化归为简单问题, 通过对简单问题得解决,达到解决复杂问题 得目得,或获得某种解题得启示与依据、 (3)直观化原则:将比较抽象得问题化为比较直观得问题来解决、 (4)正难则反原则:当问题正面讨论遇到困难时,可考虑问题得反面,设法从问题得反面去探讨,使问题获解、 2、常见得转化与化归得方法 转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况 转化到另一种情形,也就就是转化到另一种情境使问题得到解决,这种转化就是解决问题得 有效策略,同时也就是成功得思维方式、常见得转化方法有: (1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题、 (2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂得函数、方程、不等式问题转化为易于解决得基本问题、 (3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得 转化途径、 (4)等价转化法:把原问题转化为一个易于解决得等价命题,达到化归得目得、 (5)特殊化方法:把原问题得形式向特殊化形式转化,并证明特殊化后得问题、结论适合原问题、 随着国家经济得发展,科技得发达,人才得需求,中国教育得改革,数学新课 标得出现,在对学生得知识与技能,数学思想及情感与态度等方面得要求,学生在数学得学习方法也应该要相应改变了,要满足社会得需要、化归与转化思想得实 质就是揭示联系,实现转化、除极简单得数学问题外,每个数学问题得解决都就是通过转化为已知得问题实现得、从这个意义上讲,解决数学问题就就是从未知向 已知转化得过程,同时在生活中许许多多得事情也需要往已知得方面转化,把事情简单化,这对以后学生得能力与德育方面有很大得帮助、化归与转化得思想就是 解决数学问题得根本思想,解题得过程实际上就就是一步步转化得过程、数学

浅谈中学数学中的化归思想(精)

浅谈中学数学中的化归思想 作者:中原中学刘继华 不断地变换你的问题,我们必须一再地变化它,重新叙述它,变换它,直到最后成 功地找到某些有用的东西为止。 ————波利亚 化归是解决数学问题的一种重要思想方法.化归的思想贯穿于整个数学中,掌握这一思想方法,并学会用它分析问题、处理问题,有着十分重要的意义.匈牙利著名数学家路莎˙彼得以生动的比喻对这种思维方式作了如下风趣的描述:有人提出了这样一个问题:“假设在你面前有煤气灶、水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此某人回答说:“在壶中灌上水,点燃煤气,再把壶放到煤气灶上。”提问者肯定了这一回答;但是,他又追问道:“如果其它的条件都没有变化,只是水壶中已经有了足够多的水,那你又应当怎样去做?”这时被提问者往往会很有信心地说:“点燃煤气,再把水壶放到煤气灶上。”但是,提问者指出,这一回答并不能使他满意,因为,更好的回答应当是:“只有物理学家才会这样做,而数学家们则会倒掉壶中的水,并声称我把后一问题化归为前面所说的问题了。” 路莎˙彼得在这里说的就是化归方法。在数学教育中,化归思想是“问题解决”的一种重要手段和方法。 —、化归方法的基本思想 1、化归方法的含义:把待解决和未解决的问题,通过转化,或再转化,将原问题归结为一个已经能解决的问题,或者归结为一个比较容

易解决的问题甚至为人们所熟知的具有既定解决方法和程序的问题,最终求得原问题的解决.我们就把这种将未知转化归结为已知的解决数学问题的基本方法称之为化归方法. 2、化归方法是辨证思维在方法论上的反映 数学中充满着矛盾,有着极其丰富的辨证内容,例如,数学概念中一与多、正与负、常量与变量、有限与无限以及数学运算中的加与减、乘与除、乘方与开方、微分与积分等都表现为矛盾的对立统一的形式. 化归方法正是根据客观事物是普遍联系、永恒发展和矛盾的对立统一及其相互转化的观点,来实现问题解决的,它着眼于揭示联系实现转化.因此说化归方法是辨证思维在方法论上的反映. 3、化归方法的作用 我们知道整个中学数学内容,始终贯穿着数学知识和数学方法这两条线.中学数学问题的解决过程常常表现为不断发现问题、分析问题直到归结转化为熟悉的或已能解决的问题的过程,化归方法是中学数学中的重要数学方法之一. 例如 (1代数中解一般方程(或不等式的基本思路是多元向一元、高次向低次的化归;分式方程向整式方程的化归,无理方程向有理方程的化归.

转化与化归思想

高三数学思想、方法、策略专题 第三讲 转化与化归思想 一.知识探究: 等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。 1.转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能带来思维的闪光点,找到解决问题的突破口。 2.常见的转化方法 (1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题; (2)换元法:运用“换元”把非标准形式的方程、不等式、函数转化为容易解决的基本问题; (3)参数法:引进参数,使原问题的变换具有灵活性,易于转化; (4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题; (5)坐标法:以坐标系为工具,用代数方法解决解析几何问题,是转化方法的一种重要途径; (6)类比法:运用类比推理,猜测问题的结论,易于确定转化的途径; (7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题; (8)一般化方法:若原问题是某个一般化形式问题的特殊形式且有较难解决,可将问题通过一般化的途径进行转化; (9)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的; (10)补集法:(正难则反)若过正面问题难以解决,可将问题的结果看作集合A ,而把包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集A C U 获得原问题的解决。 3.化归与转化应遵循的基本原则: (1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决; (2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据; (3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律; (4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;

化归思想在初中数学解题中的应用

化归思想在初中数学解题中的应用 数学是一门演绎推理的学科。它的任一分支在其内容展开过程中,都有形或无形地存在着如下的结论链: 从中我们可以发现,在解决某一个具体问题时,不必都从原始概念开始,而只要把待解决的问题转化为结论链中的某一环节即可。所以,初中数学中,化归思想的运用尤为突出,本文结合自己的工作实际对化归思想提出了一些自己的看法。 一、化归思想的涵义和作用 化归思想,又称转换思想或转化思想,是一种把待解决或未解决的问题,通过某种转化过程归结到一类已经能解决或比较容易解决的问题中去,最终求得问题解答的数学思想。化归法和数形结合方法是转化思想在数学方法论上的体现,是数学中普遍适用的重要方法。 二、化归思想的基本原则 数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。 ⒈化陌生的问题为熟悉的问题 熟悉化就是把我们所遇到的“陌生”问题转化为我们较为“熟悉”的问题,以便利用已有的知识和经验,使问题得到解决。这也是我们常说的通过“旧知”解决“新知”。学习是新旧知识相互联系、相互影响的过程。奥苏伯尔说,影响学习的最重要的因素是学生已知的内容。在教学的应用策略中,他提出了设计“先行组织者”的做法,也就是在学生“已经知道的知识”和“需要知道的知识”之间架起桥梁。这样有利于学生解决问题。 ⒉化简单问题为容易问题 简单化原则就是把比较复杂的问题转化为比较简单的易于确定解决方案的问题,从而使问题获解。中学数学受多年应试教育的影响,有些问题被复杂化了,而学生对于这类问题却又相当头疼,所以通过化归,将问题变为比较简单的形式、关系结构,或者通过问题的简单化,获得解决复杂问题的思路,往往更容易让学生接受。 ⒊化抽象问题为具体直观问题 具体化就是把比较抽象的问题转化为比较具体、直观的问题,以便形象地把握问题所涉及的各个对象之间的关系,使问题易于求解。新课程标准提出:数学教学要紧密联系生活实际,注重探索和合作,由具体到抽象。但绝不是只要让学生直观感受,满足于具体的现象而忽视问题的本质。对于抽象的关系,可以让学生对一些具体的关系进行观察、比较、分析、归纳,逐步提高他们的思维的能力。 ⒋从一般到特殊,从特殊再到一般。 极端化原则就是运用极端化位置或状态的特性引出一般位置或状态下的特性,从而获得解决问题的思路。这也是我们常说的从一般到特殊再到一般。 ⒌条件和结论的和谐统一。 所谓“和谐”指的是配合得适当和匀称。和谐化原则就是在对问题进行化归时,要注意把条件和结论的表现形式转化为更具数、式与形内部固有的和谐统一特点的形式,以帮助我们去确定解决问题的方法。 三、化归思想的要点 1、化归思想方法的实施应有明确的对象、设计好目标、选择好方法。

转化与化归思想

专题三:转化与化归思想 【考情分析】 转化与化归思想在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归,如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问题之间的互相转化、实际问题向数学问题转化等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所有的数学教学内容和解题过程中。数学问题解答题离不开转化与化归,它即是一种数学思想又是一种数学能力,高考对这种思想方法的考查所占比重很大,是历年高考考查的重点。 预测2012年高考对本讲的考查为: (1)常量与变量的转化:如分离变量,求范围等。 (2)数与形的互相转化:若解析几何中斜率、函数中的单调性等。 (3)数学各分支的转化:函数与立体几何、向量与解析几何等的转化。 (4)出现更多的实际问题向数学模型的转化问题。 【知识交汇】 转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题。从某种意义上说,数学题的求解都是应用已知条件对问题进行一连串恰当转化,进而达到解题目的的一个探索过程。 1.转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能带来思维的闪光点,找到解决问题的突破口。 2.常见的转化方法 转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是成功的思维方式。常见的转化方法有: (1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题; (2)换元法:运用“换元”把非标准形式的方程、不等式、函数转化为容易解决的基本问题; (3)参数法:引进参数,使原问题的变换具有灵活性,易于转化; (4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题; (5)坐标法:以坐标系为工具,用代数方法解决解析几何问题,是转化方法的一种重要途径; (6)类比法:运用类比推理,猜测问题的结论,易于确定转化的途径; (7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题; (8)一般化方法:若原问题是某个一般化形式问题的特殊形式且有较难解决,可将问题通过一般化的途径进行转化;

人教新版化归与转化的思想方法(教案)

化归与转化的思想方法(教案) 课题:化归与转化的思想方法专题 延寿一中吴东鹏 一、教学目标: 1、知识目标:⑴理解并掌握化归与转化的思想方法; ⑵用哲学观点认识化归与转化的思想方法。 2、能力目标:⑴能运用“化归与转化的思想方法”解决具体条 件下的数学问题; ⑵培养学生观察、分析、处理问题的能力,提高 思维品质; ⑶形成运动变化,对立统一的观点。 3、情感目标:在解题中,让学生体会熟悉化,简单化,和谐化,直 观化,正难则反的数学妙味. 二、教学重点、难点 教学重点:对“化归与转化的思想方法”的理解及运用 教学难点:“化归与转化的思想方法”的运用 三、教法、学法指导 教法:四环递进教学法 学法指导:⑴培养敏锐的洞察能力,类比能力; ⑵找准目标模型,将待解决问题转化为目标模型; ⑶学会用化归与转化的思想方法处理高中数学的 问题;

四、教学过程 1、知识整理 提出问题:结合以前解有关化归与转化题目方面的经验或体会,能否谈谈化归与转化的思想方法: ⑴、在运用已学知识解答一类问题时,不同问题要求运用不同知识,这就要求人们运用类比法,找准某一数学模型为目标模型,通过恰当的手段把问题化归为目标模型,再运用目标模型的内在数学规律,使问题获解,其思维程序是客观问题经抽象数学化→数学问题,经类比化归,找准目标模型把问题转化成模型→数学模型,经求解,运用模型→得解。 ⑵、实施有效的化归,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,也可以变换问题的外部形式,从宏观上可以实现学科间的化归,也可以调动各种方法与技术,从微观上解决多种具体问题,在解题中可以多次使用化归,使问题逐次达到规范化、模式化。 ⑶、解题的过程就是化归的过程,不断地改变你的问题,重新叙述它,变换它,直到最后成功地找到某些能用的东西,解决问题为止。 2、范例选讲 例1:设4()42x x f x =+,求122006()()()200720072007 f f f +++L 解:1144()(1)4242 a a a a f a f a --+-=+++Q 4442424 a a a =+++?

-化归思想典型例题分析(含答案)

化归思想典型例题剖析 【例1】如图3-1-1,反比例函数y=-8x 与一次函数y=-x+2的图象交于A 、B 两点. (1)求 A 、B 两点的坐标; (2)求△AOB 的面积. 解:⑴解方程组82 y x y x ?=-???=-+? 得121242;24x x y y ==-????=-=?? 所以A 、B 两点的坐标分别为A (-2,4)B(4,-2 (2)因为直线y=-x+2与y 轴交点D 坐标是(0, 2), 所以11222,24422 AOD BOD S S ??=??==??= 所以246AOB S ?=+= 点拨:两个函数的图象相交,说明交点处的横坐标和纵坐标,既适合于第一个函数,又适合于第二个函数,所以根据题意可以将函数问题转化为方程组的问题,从而求出交点坐标. 【例2】解方程:22(1)5(1)20x x ---+= 解:令y= x —1,则2 y 2—5 y +2=0. 所以y 1=2或y 2=12 ,即x —1=2或x —1=12 . 所以x =3或x=32 故原方程的解为x =3或x=32 点拨:很显然,此为解关于x -1的一元二次方程.如果把方程展开化简后再求解会非常麻烦,所以可根据方程的特点,含未·知项的都是含有(x —1)所以可将设为y ,这样原方程就可以利用换元法转化为含有y 的一元二次方程,问题就简单化了. 【例3】如图 3-1-2,梯形 ABCD 中,AD ∥BC ,AB=CD ,对角 线AC 、BD 相交于O 点,且AC ⊥BD ,AD=3,BC=5,求AC 的长. 解:过 D 作DE ⊥AC 交BC 的延长线于E ,则得AD=CE 、 AC=DE .所以BE=BC+CE=8. 因为 AC ⊥BD ,所以BD ⊥DE . 因为 AB=CD , 所以AC =BD .所以GD=DE . 在Rt △BDE 中,BD 2+DE 2=BE 2 所以BD BE=4 2 ,即AC=4 2 . 点拨:此题是根据梯形对角线互相垂直的特点通过平移对角线将等腰梯形转化为直角三角形和平行四边形,使问题得以解决.

转换与化归思想

浅谈转换与化归思想 转化思想是数学中的一种基本却很重要的思想。深究起来,转化两字中包含着截然不同的两种思想,即转换和化归。这两者其实表达了不同的思想方法,可以说是思维方式与操作方法的区别。 一、 转换思想 (1)转换思想的内涵 转换思想是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。 (2)转换思想在同一学科中的应用 转换思想可以是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。 比如,函数、方程、不等式是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其他模块的各类问题。不等式恒成立问题可以转换到用函数图象解决,或者是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。再比如,数列问题用函数观点来解释,那更是我们数学课堂中一再强调的问题了。 看这样一个问题: 已知:11122=-+-a b b a ,求证:12 2=+b a 。 [分析] 这是一个纯粹的代数证明问题,条件的变形是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点 令人望而生畏。 再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。 [解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα 化简得1cos cos sin sin =+αααα 所以0sin ≥=αa ,0cos ≥=αb 则 1cos sin 2 222=+=+ααb a [小结] 本题的解决了是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设和结论中都没有出现 三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还是比较棘手的。 转换思想对思维要求确实很高,但这一点还是能够做到的。因为各学科都有对知识模块的介绍,同时也有对各知识模块之间横向纵向的对比联系的研究。典型的例子就是数与形之间的思维转换,因为学生已经在初中老师的指导下

相关主题
文本预览
相关文档 最新文档