当前位置:文档之家› 物理化学热力学第一定律总结

物理化学热力学第一定律总结

物理化学热力学第一定律总结
物理化学热力学第一定律总结

热一定律总结

一、 通用公式

ΔU = Q + W

绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V

恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) → ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0

焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV )

典型例题:3.11思考题第3题,第4题。

二、 理想气体的单纯pVT 变化

恒温:ΔU = ΔH = 0

变温:

或 如恒容,ΔU = Q ,否则不一定相等。如恒压,ΔH = Q ,否则不一定相等。 C p , m – C V , m = R

双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2

典型例题:3.18思考题第2,3,4题

书2.18、2.19

三、 凝聚态物质的ΔU 和ΔH 只和温度有关

或 典型例题:书2.15

四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程)

U ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。

101.325 kPa 及其对应温度下的相变可以查表。

ΔU = n C V , m d T T 2

T 1

∫ ΔH = n C p, m

d T T

2 T

1

∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1)

ΔU ≈ ΔH = n

C p, m d T T 2

T 1

ΔU ≈ ΔH = nC p, m (T 2-T 1)

ΔH = Q p = n Δ H m α

β

其它温度下的相变要设计状态函数

不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m

计算。

典型例题:3.18作业题第3题 五、化学反应焓的计算

其他温度:状态函数法

ΔU 和ΔH 的关系:ΔU = ΔH –ΔnRT (Δn :气体摩尔数的变化量。)

典型例题:3.25思考题第2题

典型例题:见本总结“十、状态函数法。典型例题第3题” 六、体积功的计算 通式:δW = -p amb ·d V 恒外压:W = -p amb ·(V 2-V 1)

恒温可逆(可逆说明p amb = p ):W = nRT ·ln(p 2/p 1) = -nRT ·ln(V 2/V 1)

Δ H m (T ) = ΔH 1 +Δ H m (T 0) + ΔH 3

α β

β α Δ H m (T )

α β

ΔH

1

ΔH 3

Δ H m (T 0)

α β

可逆相变

298.15 K:

ΔH = nC p, m (T 2-T 1)

ΔH = n C

p, m d T

T 2 T

1

物理化学热力学第一定律总结

热一定律总结 一、 通用公式 ΔU = Q + W 绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V 恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) → ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0 焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV ) 典型例题:3.11思考题第3题,第4题。 二、 理想气体的单纯pVT 变化 恒温:ΔU = ΔH = 0 变温: 或 或 如恒容,ΔU = Q ,否则不一定相等。如恒压,ΔH = Q ,否则不一定相等。 C p , m – C V , m = R 双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2 典型例题:3.18思考题第2,3,4题 书2.18、2.19 三、 凝聚态物质的ΔU 和ΔH 只和温度有关 或 典型例题:书2.15 ΔU = n C V , m d T T 2 T 1 ∫ ΔH = n C p, m d T T 2 T 1 ∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1) ΔU ≈ ΔH = n C p, m d T T 2 T 1 ∫ ΔU ≈ ΔH = nC p, m (T 2-T 1)

四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程) ΔU ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。 101.325 kPa 及其对应温度下的相变可以查表。 其它温度下的相变要设计状态函数 不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。 或 典型例题:3.18作业题第3题 五、化学反应焓的计算 其他温度:状态函数法 Δ H m (T ) = ΔH 1 +Δ H m (T 0) + ΔH 3 α β β α Δ H m (T ) α β ΔH 1 ΔH 3 Δ H m (T 0) α β 可逆相变 298.15 K: ΔH = Q p = n Δ H m α β Δr H m ? =Δf H ?(生) – Δf H ?(反) = y Δf H m ?(Y) + z Δf H m ?(Z) – a Δf H m ?(A) – b Δf H m ?(B) Δr H m ? =Δc H ?(反) – Δc H ?(生) = a Δc H m ?(A) + b Δc H m ?(B) –y Δc H m ?(Y) – z Δc H m ?(Z) ΔH = nC p, m (T 2-T 1) ΔH = n C p, m d T T 2 T 1 ∫

大学物理化学公式集

电解质溶液 法拉第定律:Q =nzF m = M zF Q dE r U dl ++ = dE r U dl --= t +=-+I I =-++r r r +=-+U U U ++=∞∞ +Λm ,m λ=() F U U F U ∞∞+∞+-+ r +为离子移动速率,U +( U -)为正(负)离子的电迁移率(亦称淌度)。 近似:+∞+≈,m ,m λλ +∞ +≈,m ,m U U m m Λ≈Λ∞ (浓度不太大的强电解质溶液) 离子迁移数:t B = I I B =Q Q B ∑B t =∑+t +∑-t =1 电导:G =1/R =I/U =kA/l 电导率:k =1/ρ 单位:S ·m -1 莫尔电导率:Λm =kV m =k/c 单位S ·m 2·mol -1 cell l R K A ρ ρ== cell 1K R kR ρ== 科尔劳乌施经验式:Λm =() c 1 m β-∞Λ 离子独立移动定律:∞Λm =()m,m,+U U F λλ∞∞∞∞ +-- +=+ m U F λ∞∞+,+= 奥斯特瓦儿德稀释定律:Φc K =() m m m 2 m c c ΛΛΛΛ∞∞Φ - 平均质量摩尔浓度:±m =() v 1v v m m - - ++ 平均活度系数:±γ=() 1v v -- +γγ+ 平均活度:±a =() v 1v v a a - - ++=m m γ± ± Φ 电解质B 的活度:a B =v a ±=v m m ?? ? ??Φ±±γ +v v v B + a a a a ± -- == m +=v +m B m -=v -m B ( ) 1 v v v B m v v m +±+-- = 离子强度:I = ∑i 2i i z m 21 德拜-休克尔公式:lg ±γ=-A|z +z --|I

大学 物理化学 笔记总结

第一章 物理化学的定义,相变化(物质在熔点沸点间的转化) 物理化学的基本组成:1化学热力学(方向限度)2化学动力学(速率与机理)3结构化学 物理化学的研究方法、热力学方法、动力学方法、量子力学方法 系统、环境的定义。系统的分类:开放系统,封闭系统,隔离系统 系统的性质:强度性(不可加),广延性(可加)。系统的状态 状态函数及其性质:1单值函数2仅取决于始末态3全微分性质。 热力学能、热和功的定义 热分:潜热,显热。功分:膨胀功、非膨胀功。 热力学第一定律的两类表述:1第一类永动机不可制成。2封闭体系:能量可从一种形式转变为另一种形式,但转变过程中能量保持不变。、 恒容热、恒压热,焓的定义。PV U H def +≡ 恒容热:①封闭系统② W f =0 ③W e =0 恒压热:①封闭系统②W f =0 ③d p =0 理想气体的热力学能和焓是温度的函数。 C, C V , C V ,m , C P , C P,m 的定义。 △u =n C V ,m (T 2-T 1) △H=n C P,m (T 2-T 1) C V ,m =a+bT+cT 2+…/ a+bT -1+cT -2 +… 单原子分子C V ,m = 23R C P ,m =25R 双原子分子C V ,m =25R C P ,m =2 7R γ单= 35 γ双=5 7 C P,m - C V ,m =R R=8.3145J ·mol -1·k -1 可逆过程定义及特点:①阻力与动力相差很小量②完成一个循环无任何功和热交换③膨胀过程系统对环境做最大功,压缩过程环境对系统做最小功 可逆过程完成一个循环 △u=0 ∑=0W ∑=0Q W 、 Q 、△u 、△H 的计算 ①等容过程:W =0 Q =△u △u=n C V ,m (T 2-T 1) △H=n C P,m (T 2-T 1) ②等压过程:W =-Pe(V 2-V 1) Q=△H △u=n C V ,m (T 2-T 1) △H=n C P ,m (T 2-T 1) ③等温过程:W=-nRTln 1 2V V Q=-W △u=△H=0 ④绝热可逆过程:W=n C V ,m (T 2-T 1) /?? ? ???? ?-??? ? ??--1112111γγv v v p Q=0 △u=n C V ,m (T 2-T 1) △H=n C P ,m (T 2-T 1) 21p p =(12v v )γ 21T T =(12v v )1-γ 21T T =(2 1p p ) γ γ1 - 相变化过程中△H 及△u 的计算△u=△H-P △V=△H-nRT 见书1-10 化学计量系数ν 化学反应进度??= B νB n ?(必与指定的化学反应方程对应) 化学反应热效应定义, 盖斯定律:一个化学反应,不管是一步完成或是经数步完成,反应的总标准摩尔焓变是相同的,即盖斯定律。 标准摩尔反应焓变:)(H m T r θ ?= ∑B B θν m H (B ,,β T ) 化学反应θ m H r ?的计算:1 )(H m T r θ ?= ∑?B B θν m f H (B ,,β T ) θ m f H ?:在温度为T ,

大学物理化学试题及答案

物理化学 试卷一 一、选择题 ( 共15题 30分 ) 1. 下列诸过程可应用公式 dU = (Cp- nR)dT进行计算的是: ( C ) (A) 实际气体等压可逆冷却 (B) 恒容搅拌某液体以升高温度 (C) 理想气体绝热可逆膨胀 (D) 量热弹中的燃烧过程 2. 理想气体经可逆与不可逆两种绝热过程: ( B ) (A) 可以从同一始态出发达到同一终态因为绝热可逆ΔS = 0 (B) 从同一始态出发,不可能达到同一终态绝热不可逆S > 0 (C) 不能断定 (A)、(B) 中哪一种正确所以状态函数 S 不同 (D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定故终态不能相同 3. 理想气体等温过程的ΔF。 ( C ) (A)>ΔG (B) <ΔG (C) =ΔG (D) 不能确定 4. 下列函数中为强度性质的是: ( C ) (A) S (B) (G/p)T (C) (U/V)T 容量性质除以容量性质为强度性质 (D) CV 5. 273 K,10p下,液态水和固态水(即冰)的化学势分别为μ(l) 和μ(s),两者的关系为:( C ) (A) μ(l) >μ(s) (B) μ(l) = μ(s) (C) μ(l) < μ(s) (D) 不能确定

6. 在恒温抽空的玻璃罩中封入两杯液面相同的糖水 (A) 和纯水 (B)。经历若干

时间后,两杯液面的高度将是(μ(纯水)>μ(糖水中水) ,水从(B) 杯向(A) 杯转移 ) ( A ) (A) A 杯高于 B 杯 (B) A 杯等于 B 杯 (C) A 杯低于 B 杯 (D) 视温度而定 7. 在通常情况下,对于二组分物系能平衡共存的最多相为: ( D ) (A) 1 (B) 2 (C) 3 (D) 4 * Φ=C+2-f=2+2-0=4 8. 硫酸与水可形成H2SO4·H2O(s)、H2SO4·2H2O(s)、H2SO4·4H2O(s)三种水合物,问在 101325 Pa 的压力下,能与硫酸水溶液及冰平衡共存的硫酸水合物最多可有多少种? ( C ) (A) 3 种 (B) 2 种 (C) 1 种 (D) 不可能有硫酸水合物与之平衡共存。 * S = 5 , R = 3 , R' = 0,C= 5 - 3 = 2 f*= 2 -Φ+ 1 = 0, 最大的Φ= 3 , 除去硫酸水溶液与冰还可有一种硫酸水含物与之共存。 9. 已知 A 和 B 可构成固溶体,在 A 中,若加入 B 可使 A 的熔点提高,则B 在此固溶体中的含量必 _______ B 在液相中的含量。 ( A ) (A) 大于 (B) 小于 (C) 等于 (D)不能确定 10. 已知反应 2NH3= N2+ 3H2在等温条件下,标准平衡常数为 0.25,那么,在此条件下,氨的合成反应 (1/2) N2+(3/2) H2= NH3 的标准平衡常数为: ( C ) (A) 4 (B) 0.5 (C) 2 K (D) 1 * $p(2) = [K $p(1)]= (0.25)= 2 11. 若 298 K 时,反应 N2O4(g) = 2NO2(g) 的 K $p= 0.1132,则: (1) 当 p (N2O4) = p (NO2) = 1 kPa 时,反应将 _____( B )_____; (2) 当 p (N2O4) = 10 kPa,p (NO2) = 1 kPa 时,反应将 ____( A )____ 。

(完整word版)大学物理化学公式大全,推荐文档

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 1 21 T T T - 焦汤系数: μJ -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

物理化学的心得体会

物理化学心得体会 经过对物理化学的学习,感觉很系统,很科学,我对这门课程有了进一步的了解与熟悉。物理化学的研究内容是:热力学、动力学、和电化学等,它是化学中的数学、哲学,学好它必须用心、用脑,无论是用眼睛看,用口读,或者用手抄写,都是作为辅助用脑的手段,关键还在于用脑子去想。 学习物理化学应该有自己的方法:一、勤于思考,十分重视教科书,把其原理、公式、概念、应用一一认真思考,不粗枝大叶,且眼手并用,不放过细节,如数学运算。对抽象的概念如熵领悟其物理意义,不妨采用形象化的理解。适当地与同学老师交流、讨论,在交流中摒弃错误。二、勤于应用,在学习阶段要有意识地应用原理去解释客观事物,去做好每一道习题,与做物化实验一样,“应用”对加深对原理的理解有神奇的功效,有许多难点是通过解题才真正明白的。做习题不在于多,而在于精。对于典型的题做完后一定要总结和讨论,力求多一点“觉悟”。三、勤于对比与总结,这里有纵横二个方面,就纵向来说,一个概念原理总是经历提出、论证、应用、扩展等过程,并在课程中多次出现,进行总结定会给你豁然开朗的感觉。就横向来说,一定存在相关的原理,其间一定有内在的联系,如熵增原理、Gibbs自由能减少原理、平衡态稳定性等,通过对比对其相互关系、应用条件等定会有更深的理解,又如把许多相似的公式列出对比也能从相似与差别中感受其意义与功能。在课堂上做笔记,课下进行总结,并随时记下自己学习中的问题及感悟,书本上的、课堂上的物化都不属于自己,只有经历刻苦学习转化为自己的“觉悟”才是终身有用的。 第二、三章是热力学部分的核心与精华,在学习和领会本章内容中,有几个问题要作些说明以下几点:1. 热力学方法在由实践归纳得出的普遍规律的基础上进行演绎推论的一种方法。热力学中的归纳,是从特殊到一般的过程,也是从现象到本质的过程。拿第二定律来说,人们用各种方法制造第二类永动机,但都失败了,因而归纳出一般结论,第二类永动机是造不出来的,换句话说,功变为热是不可逆过程。第二定律抓住了所有宏观过程的本质,即不可逆性。热力学的整个体系,就是在几个基本定律的基础上,通过循环和可逆过程的帮助,由演绎得出的大量推论所构成。有些推论与基本定律一样具有普遍性,有些则结合了一定的条件,因而带有特殊性。例如从第二定律出发,根据可逆过程的特性,证明了卡诺定理,并得出热力学温标,然后导出了克劳修斯不等式,最终得出了熵和普遍的可逆性判据。以后又导出一些特殊条件下的可逆性判据。这个漫长的演绎推理过程,具有极强的逻辑性,是热力学

大学物理化学必考公式总结

物理化学期末重点复习资料

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ =常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=1 21T T T - 焦汤系数: μ J -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ? ??? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

物理化学(下)总结

物理化学(下)总结 (南京大学第五版)总结第八章电解质溶液 一、基本概念与定义 1、离子迁移数t电解质溶液导电时,溶液中的i离子运载的 电流Ii与总电流之比(即i离子所承担的导电任务的分数)。 2、离子电迁移率(离子淌度)ui:单位电位梯度时离子的运 动速率。 3、电导与电导率电导G(W-1):电阻R的倒数。a电导率 k(W-1m-1):电阻率r的倒数。电导池常数Kcell:Kcell = L/A L: 电极之间的距离;A:电极的面积 4、摩尔电导率Lm(Sm2mol-1)含1mol电解质的溶液置于相距单位距离的2个平行电极之间的电导池所具有的电导。 5、电解质的平均活度和平均活度因子对于任意价型的强电解 质Mn+Bn-平均活度因子 g =[ (g+)n+ (g-)n-]1/(n+ + n- )a = mgm =[ (m+)n+ (m-)n-]1/(n+ + n- )m+ = n+m;m- = n-m电解质活度a = (a)(n+ + n- ) 6、离子强度I 7、离子氛电解质溶液中环绕在某一离子B周围电荷与B相反、电荷数量与B相等的异号离子构成的球体。 8、基本摩尔单元发生1mol电子转移电极反应的物质的量 1/zMn+ + e1/z M

二、基本公式 1、Faraday电解定律往电解池通电,在电极上发生化学反应 的物质的量与通入的电量成正比。Q = It = znFz:电极反应Mn+ + ze M中电子转移的计量数。n:析出的M的量; 2、离子独立运动定律对于电解质Mn+Bn-的无限稀释溶液,有: 3、离子迁移数ti = n迁移/n电解 (希脱夫法,界面移动法) 4、 Debye-Hckel 极限公式 (A = 0、509) 三、电导测定的应用 1、求弱电解质的解离度和电离常数 2、求难溶盐的溶解度 3、水的纯度 4、电导滴定第九、章原电池与电解池 1、原电池与电解池的比较原电池电解池化学能电能负极(阳极),正极(阴极),电池中电极的极性取决于组成电池的电极氧化 还原电势。E端 = E可逆 h阴zF E可逆 < 0, E可逆 > 0电能化学能负极(阴极),正极(阳极)电解池中电极的极性取决于外加电 源的极性。E分解 = E可逆 + h阳 + h阴 +IRDGT, p = Wf, R > 0 在可逆条件下,h阳 = 0; h阴 = 0; IR = 0对于原电池,I0, 电极反应可逆,电池中其他过程也可逆(如液界电势0),电池为可逆电池E端 = E可逆 = j +,R,R (电池电动势的测定采用对消 法)Weston battery(cell): Cd(Hg)|CdSO4(饱和)|

(完整版)物理化学上热力学第一定律知识框架图总结.doc

第一章,热力学第一定律各知识点架构纲目图如下: 系统:隔离系统;封闭系统;敞开系统 环境:在系统以外与系统密切相关部分 状态:系统的所有物理性质和化学性质的综合体现系统及状态及状态函数类型:广度量;强度量 状态状态函数 (热力学性质 ) 特性:①改变值只与始、末态有关而与具体途径无关; ②不同状态间的改变值具有加和性。 即殊途同归,值变相等;周而复始,其值不变。热力学平衡:热平衡;力学平衡;相平衡;化学平衡 单纯的 pTV 变化 状态变化 溶解及混合 及过程 相变化 化学变化 系 统 状 态 变 简单的化 时 pTV 变化, 计 算 系 统 与 环 境 系统与环境 间 交间交换能量 换 的计算 (封闭 的 能 恒压过程 (p 始 =p 终 =p 环 ) 恒温过程 (T 始=T 终=T 环 ) 恒容过程 (V 始=V 终) 绝热过程 (Q = 0) 节流过程 (H = 0) 理想气体 (IG) 系统:U T2 C V ,m dT ; H n T2 n C p,m dT T2 T1 T1 Q p =△ H= n C p ,m dT ;W=-p外(V2-V1); 恒压过程:T1 △U=△ H -p△ V ( 常压下,凝聚相: W ≈ 0;△ U≈△ H) 理想气体焦尔实验: (1)结论: (?U/?V) T=0; (2)推论: U IG=f ( T); H IG=g (T) 恒温过程 △U=△H=0; W=-Q = V2 nRT lnV2 /V1 (可逆 ) V pdV 1 恒容过程:W=0; Q V =△ U= T2 n C V ,m dT ; T1 绝热过程: Q=0;△ U= W 不可逆(恒外压):nC V,m( T2 -T1)=- p2(V2-V1) 可逆:p1V1 1 1 T1 ) ( nC V , m (T2 1 1 1 ) >0 V 2 V1 致冷 节流膨胀: Q=0 ;△H=0;J-T=(d T/dp) H =0 T 不变 ( 例如理想气体 ) <0 致热 量系统, W 非 =0) 相变化Q p =△ H; W=-p△V △U= △H- p△ V =-nRT (气相视为IG) ≈0,△ U≈△ H (常压下凝聚态间相变化) 相变焓与温度关系:T2 H m (T2 )H m (T1 ) C p,m dT T1 热力学第一定律及焓函数 反应进度定义、标准摩尔生成焓和标准摩尔燃烧焓的定义。 摩尔反应焓的定义:△r H m=△ r H/△ 化学变化 标准摩尔反应焓的计算: ! B ! r H m (T1 ) f H m (B, T ) 恒压反应热与恒容反应热的关系:△r H m=△ r U m+∑νB(g)RT ! T2 基希霍夫公式:( r H m ) C ; H ! (T ) H ! (T ) C dT p r r r p, m T r p ,m m 2 m 1 T1 热(Q):系统与环境间由于温差而交换的能量。是物质分子无序运动的结果。是过程量。功 (W) :除热以外的,在系统与环境间交换的所有其它形式的能量。是物质分子有序运动的 结果,是过程量。 热力学能 (U):又称为内能,是系统内部能量的总和。是状态函数,且为广度量,但绝对值不知道。 热力学第一定律数学表达式:△ U=Q+W,在封闭系统, W 非 =0,恒容条件下,△ U=Q V。 焓函数 (H):定义, H≡ U+pV, 是状态函数,且为广度量,但绝对值不知道。在封闭系统, 1 W非 =0,恒压条件下,△H=Q p。

大学物理化学核心教学方案计划教案第二版(沈文霞)课后标准参考答案第4章

第四章多组分系统热力学 一.基本要求 1.了解混合物的特点,熟悉多组分系统各种组成的表示法。 2.掌握偏摩尔量的定义和偏摩尔量的加和公式及其应用。 3.掌握化学势的狭义定义,知道化学势在相变和化学变化中的应用。 4.掌握理想气体化学势的表示式,了解气体标准态的含义。 5.掌握Roult定律和Henry定律的含义及用处,了解它们的适用条件和不同之处。 6.了解理想液态混合物的通性及化学势的表示方法,了解理想稀溶液中各组分化学势的表示法。 7.了解相对活度的概念,知道如何描述溶剂的非理想程度,和如何描述溶质在用不同浓度表示时的非理想程度。 8.掌握稀溶液的依数性,会利用依数性来计算未知物的摩尔质量。 二.把握学习要点的建议 混合物是多组分系统的一种特殊形式,各组分平等共存,服从同一个经验规律(即Rault定律),所以处理起来比较简单。一般是先掌握对混合物的处理方法,然后再扩展到对溶剂和溶质的处理方法。先是对理想状态,然后扩展到对非理想的状态。 偏摩尔量的定义和化学势的定义有相似之处,都是热力学的容量性质在一定的条件下,对任一物质B的物质的量的偏微分。但两者有本质的区别,主要体现在“一定的条件下”,即偏微分的下标上,这一点初学者很容易混淆,所以在学习时一定要注意它们的区别。偏摩尔量的下标是等温、等压和保持除B以外的其他组成不变(C B )。化学势的下标是保持热力学函数的两个特征变量和保持除B以外的其他组成不变。唯独偏摩尔ibbs自G由能与狭义化学势是一回事,因为Gibbs自由能的特征变量是,T p,偏摩尔量的下标与化学势定义式的下标刚好相同。 多组分系统的热力学基本公式,比以前恒定组成封闭系统的基本公式,在 d n时所引起的相应热最后多了一项,这项表示某个组成B的物质的量发生改变 B

物理化学(下)总结

《物理化学》(下) (南京大学第五版)总结 第八章 电解质溶液 一、基本概念与定义 1. 离子迁移数t 电解质溶液导电时,溶液中的i 离子运载的电流I i 与总电流之比(即i 离子所承担的导电任务的分数)。 1i i i i i i i i Q I u t t Q I u = ===∑∑ 2. 离子电迁移率(离子淌度)u i :单位电位梯度时离子的运动速率。 3. 电导与电导率 电导G(Ω-1 ):电阻R 的倒数。a 电导率κ(Ω-1 ·m -1 ):电阻率ρ的倒数。 电导池常数K cell :K cell = L/A L: 电极之间的距离;A:电极的面积 4. 摩尔电导率Λm (S ·m 2 ·mol -1 ) 含1mol 电解质的溶液置于相距单位距离的2个平行电极之间的电导池所具有的电导。 m c κ Λ= 5.电解质的平均活度和平均活度因子 对于任意价型的强电解质M ν+B ν- 平均活度因子 γ± =[ (γ+)ν+ (γ-)ν-] 1/(ν + + ν- ) a ± = m ±γ± m ± =[ (m +)ν+ (m -)ν-] 1/(ν + + ν- ) m + = ν+m ;m - = ν-m 电解质活度a = (a ±)( ν+ + ν- ) 6. 离子强度I 21 2i i i I m z = ∑ 7. 离子氛 电解质溶液中环绕在某一离子B 周围电荷与B 相反、电荷数量与B 相等的异号离子构成的球体。 8. 基本摩尔单元 发生1mol 电子转移电极反应的物质的量1/zM n+ + e → 1/z M 二、基本公式 1. Faraday 电解定律 往电解池通电,在电极上发生化学反应的物质的量与通入的电量成正比。 Q = It = znF z :电极反应M n+ + ze → M 中电子转移的计量数。

大学物理化学知识点归纳

第一章气体的pvT关系 一、理想气体状态方程 pV=(m/M)RT=nRT (1.1) 或pV m =p(V/n)=RT (1.2) 式中p、V、T及n的单位分别为 P a 、m3、K及mol。V m =V/n称为气 体的摩尔体积,其单位为m3·mol。R=8.314510J·mol-1·K-1称为摩尔气体常数。 此式适用于理想,近似于地适用于低压下的真实气体。 二、理想气体混合物 1.理想气体混合物的状态方程(1.3) pV=nRT=(∑ B B n)RT pV=mRT/M mix (1.4) 式中M mix 为混合物的摩尔质量,其可表示为 M mix def ∑ B B y M B (1.5) M mix =m/n=∑ B B m/∑ B B n (1.6) 式中M B 为混合物中某一种组分B 的摩尔质量。以上两式既适用于各种 混合气体,也适用于液态或固态等均 匀相混合系统平均摩尔质量的计算。 2.道尔顿定律 p B =n B RT/V=y B p (1.7) P=∑ B B p (1.8) 理想气体混合物中某一种组分B 的分压等于该组分单独存在于混合气 体的温度T及总体积V的条件下所具 有的压力。而混合气体的总压即等于 各组分单独存在于混合气体的温度、 体积条件下产生压力的总和。以上两 式适用于理想气体混合系统,也近似 适用于低压混合系统。

3.阿马加定律 V B *=n B RT/p=y B V (1.9) V=∑V B * (1.10) V B *表示理想气体混合物中物质B 的分体积,等于纯气体B在混合物的温度及总压条件下所占有的体积。理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。 三、临界参数 每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把 这个温度称为临界温度,以T c 或t c 表 示。我们将临界温度T c 时的饱和蒸气 压称为临界压力,以p c 表示。在临界温度和临界压力下,物质的摩尔体积 称为临界摩尔体积,以V m,c 表示。临 界温度、临界压力下的状态称为临界 状态。 四、真实气体状态方程 1.范德华方程 (p+a/V m 2)(V m -b)=RT (1.11) 或(p+an2/V2)(V-nb)=nRT (1.12) 上述两式中的a和b可视为仅与 气体种类有关而与温度无关的常数, 称为范德华常数。a的单位为Pa·m 6·mol,b的单位是m3mol.-1。该方 程适用于几个兆帕气压范围内实际气 体p、V、T的计算。 2.维里方程 Z(p,T)=1+Bp+Cp+Dp+… (1.13) 或Z(V m, ,T)=1+B/V m +C / V m 2 +D/ V m 3 +… (1.14)

物理化学总结

物理化学总结 基本解释 Q:代表热,由于系统和环境之间存在温差而产生能量交换称为热。这定义可证明绝热可逆过程中,Q=0.在物质相变时,温度虽然恒定,但系统还吸收或放出热量,这种热称为潜热。显热是没有化学变化和相变的单纯升温降温过程系统吸收放出的热,由此可知在计算相变时会有过程I到II虽然温度不变 W:功是系统和环境之间能量交换的另一种形式。物理化学中功分为体积功和非体积功,其中体积功专指系统反抗外压力导致△V而做的功,这时,系统消耗自身的能量,W=-P△V 恒压过程:W=-P△V 恒温过程:恒温自由膨胀中W=-nRTlnV 2/V 1 自由膨胀:W=0 U内能:一个系统内部的能量总和。结合热力学第一定律:孤立系统的总能量不变可为其它量的计算建立联系。物理化学中,△U=Q-W。值得注意的是,如果系统的始,终态确定后,经过不同的途径完成,Q和W会有不同,但是△U不变,即Q-W的值不变。 △U=nC v,m (T 2 -T 1 ) H焓:焓是物体的一个热力学能状态函数H=U+PV(流动的内能+推动功),焓的变化值只取决于系统的始终态。焓的物理意义可以理解为恒压和只做体积功的特殊条件下,Q=ΔH,即反应的热量变化。 定义式:H=U+PV 恒压下△U=Q 其它情况包括恒压下,△H=nC p,m (T 2- T 1 ) 热容 针对理想气体 理想气体 C p,m -C v,m =R 单原子C v,m =3/2*R C p,m =5/2*R 双原子C v,m =5/2*R C p,m =7/2*R 相变:气体的相是气相,液体的相是液相,相变又称物态变化。 特征:恒压恒温 可逆相变:Q=△H=M(相对分子质量)*△H(蒸发焓,融化焓,升华焓) 若告诉蒸发热,融化热,升华热则不用上述公式,直接用△H=Q 不可逆相变:过冷水结冰,不可以用△S=△H/T 热温商:Q/T 熵:△S状态函数,是反应体系的混乱程度,但是熵变只等于可逆过程的热温商,不可逆循环热温商代数和小于零。 恒温过程:△S=Q/T;Q=W=nRTlnV 2/V 1 =nRTlnP 1 /P 2 △S=nRlnV 2 /V 1 =nRlnP 1 /P 2 恒压变温过程:△H=Q△S=Q/T=△H/T=nC p,m ln(T2/T1) 恒容变温过程:体积功为零,Q=U △S=nC v,m ln(T2/T) PVT均改变设计分解为上述几个过程,熵是状态函数,只与始末状态有关 A:亥姆霍兹函数A=U-TS,A也为状态函数 恒温过程△A=△U-T△S=△G=-nRTlnV2/V1=-nRTlnP1/P2 G:吉布斯函数G=H-TS=U+PV-TS=A+PV △G=△U+△(PV)-TS 恒温过程△G=△H-T△S 作用:判断恒温恒压且非体积功为零条件下,若系统发生不可逆过程则△G<0,且此时是自发的过程(不可逆);若过程可逆则△G=0,且系统处于平衡态 恒温过程,ΔH=△U=0;

热力学第二定律总结

第三章 热力学第二定律总结 核心内容: 不可逆或自发 02 1 < > -+ =?+?=?? amb r amb iso T Q T Q S S S δ 可逆或平衡 不可能 对于恒T 、V 、W ˊ=0过程: 不可逆或自发 0)(0,,> < ?-?=-?==?'S T U TS U A W V T 可逆或平衡 反向自发 对于恒T 、p 、W ˊ=0过程: 不可逆或自发 0)(0,,> < ?-?=-?=?='S T H TS H G W p T 可逆或平衡 反向自发 主要内容:三种过程(单纯pVT 变化、相变、化学反应)W 、Q 、ΔU 、ΔH 、△S 、△A 、△G 的计算及过程方向的判断。 一、内容提要 1、热力学第二定律的数学形式 不可逆或自发 ?<>?21T Q S δ 可逆或平衡 不可能 上式是判断过程方向的一般熵判据。将系统与环境一起考虑,构成隔离系统则上式变为: 不可逆或自发 02 1 < > -+ =?+?=?? amb r amb iso T Q T Q S S S δ 可逆或平衡 不可能

上式称为实用熵判据。在应用此判据判断过程的方向时,需同时考虑系统和环境的熵变。 将上式应用于恒T 、V 、W ˊ=0或恒T 、p 、W ˊ=0过程有: 不可逆或自发 0)(0,,> < ?-?=-?==?'S T U TS U A W V T 可逆或平衡 反向自发 此式称为亥姆霍兹函数判据。 不可逆或自发 0)(0,,> < ?-?=-?=?='S T H TS H G W p T 可逆或平衡 反向自发 此式称为吉布斯函数判据。 熵判据需同时考虑系统和环境,而亥姆霍兹函数判据和吉布斯函数判据只需考虑系统本身。熵判据是万能判据,而亥姆霍兹函数判据和吉布斯函数判据则是条件判据(只有满足下角标条件时才能应用)。 此外,关于亥姆霍兹函数和吉布斯函数,还有如下关系: r T W A =? r V T W A '=?, r p T W G '=?, 即恒温可逆过程系统的亥姆霍兹函数变化等于过程的可逆功;恒温恒容可逆过程系统的亥姆霍兹函数变化等于过程的可逆非体积功;恒温恒压可逆过程系统的吉布斯函数变化等于过程的可逆非体积功。 下面将△S 、△A 和△G 的计算就三种常见的过程进行展开。 2、三种过程(物质三态pVT 变化、相变、化学反应)△S 、△A 和△G 的计算 (1)物质三态(g 、l 或s 态)pVT 变化(无相变、无化学反应)

物理化学下册总结

第七章 1. 法拉第定律:Q =zFξ 2. 迁移数计算++++-+- = = ++I Q t I I Q Q 【例】用铜电极电解CuSO 4溶液,通电一定时间后测得银电量计中析出0.7512g 银,并测得阳极区溶液中CuSO 4质量增加0.3948g 。试求CuSO 4溶液中离子的迁移数t(Cu 2+)和t(SO 42- )。 (已知摩尔质量M (Ag) = 107.868 g·mol -1,M (CuSO 4) =159.604 g·mol -1。) 解:电量计中析出银的物质的量即为通过总电量:n (电) =0.7512g/M(Ag)= 6.964×10-3 mol 阳极区对Cu 2+ 进行物料衡算:n (原) + n (电)-n (迁出) = n (后) n (迁出) = n (原) -n (后) + n (电) n (迁出) =-+0394812 07512.().()g C u S O g A g 4M M =-?+?-(...)0394821596046964103mol =2.017× 10- 3 mol t (Cu 2+ ) = ()() n n 迁出电=??--201710 6 9641033 .. =0.2896 t (SO 42- ) =1-t (Cu 2+) = 0.7164 3. 电导(G ):=1G /R ,电导率1l G A R =?=?cell s κK ,摩尔电导率:/m m V c κκΛ== 【例】已知25℃时 KCl 溶液的电导率为0.2768 S·m -1。一电导池中充以此溶 液,在25 ℃时测得其电阻为453Ω。在同一电导池中装入同样体积的质量浓度为0.555g.dm -3的CaCl 2溶液,测得电阻为1050Ω。计算(1)电导池系数;(2)CaCl 2溶液的电导率;(3)CaCl 2溶液的摩尔电导率。 解:(1)电导池系数为 (2)CaCl 2溶液的电导率 (3)CaCl 2溶液的摩尔电导 4. 离子独立运动定律∞ ∞ ∞ ++--=+m m m ,,ΛνΛνΛ 【例】已知25℃时0.05mol.dm -3CH 3COOH 溶液的电导率为3.8?10-2S.m -1。计算CH 3COOH 的解离度α及解离常数K θ。4 2 1 ()349.8210..,m H S m mol ∞ + --Λ=? 4213-(CH COO )40.910..m S m mol ∞--Λ=?

物理化学知识点总结(热力学第一定律)

热力学第一定律 一、基本概念 1.系统与环境 敞开系统:与环境既有能量交换又有物质交换的系统。 封闭系统:与环境只有能量交换而无物质交换的系统。(经典热力学主要研究的系统) 孤立系统:不能以任何方式与环境发生相互作用的系统。 2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度T、压强p、 体积V等。根据状态函数的特点,我们把状态函数分成:广度性质和强度性质两大类。 广度性质:广度性质的值与系统中所含物质的量成正 比,如体积、质量、熵、热容等,这种性质的函数具有加 和性,是数学函数中的一次函数,即物质的量扩大a倍, 则相应的广度函数便扩大a倍。 强度性质:强度性质的值只与系统自身的特点有关, 与物质的量无关,如温度,压力,密度,摩尔体积等。 注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律 热力学第一定律的数学表达式: ?U=Q+W 对于一个微小的变化状态为: dU=δQ+δW 公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。或者说dU与过程无关 而δQ和δW却与过程有关。这里的W既包括体积功也包括非体积功 。 以上两个式子便是热力学第一定律的数学表达式。它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。 三、体积功的计算 1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。将一定量的气体装 入一个带有理想活塞的容器中,活塞上部施加外压p 外 。当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气体克服外力所做的功等于作用在活塞上推力F与活塞上移距离dl的乘积δW=?Fdl 因为我们假设活塞没有质量和摩擦,所以此活塞实际上只代表系统与环境 之间可以自由移动的界面。因此推力F实际上是作用于环境,而由p 外 产生的外力则作用于系统,两者属于作用力与反作用力,若A代表活塞的体积,则δW= ?p 外Adl=?p 外 dV,积分得到 2 1 外 d V V W p V =-? 2.如果系统体积膨胀对环境做功,则W<0。环境对系统做功体积压缩,则W>0。 3.若膨胀过程分为无穷多步完成,其中每一步都可以看成是一个平衡态,则可逆膨胀做功计算公式为: W=?∫pdV= V2 V1?∫ nRT V dV=?nRT ln V2 V1 V2 V1

大学物理化学汇总..

物理化学习题汇总 一、填空题 1.一定量的某理想气体,经过节流膨胀,此过程的ΔU =0 ,ΔH =0,ΔS >0,ΔG <0.(填>,<,=0或无法确定) 热力学第三定律可表示为:在绝对0K,任何物质完美晶体的熵值为零。 2.理想气体状态方程的适用条件:理想气体;高温低压下的真实气体。 3.可逆膨胀,体系对环境做最大功;可逆压缩。环境对体系做最小功。 4.可逆相变满足的条件:恒温,恒压,两相平衡。 5.可逆循环的热温商之和等于零,可逆过程的热温商 = dS. 6.自发过程都有做功的能力,反自发过程需环境对系统做功,自发过程的终点是平衡态。 10.理想气体在等温条件下反抗恒定外压膨胀,该变化过程中系统的熵变ΔSsys > 0 及环境的熵变ΔSsur < 0 。 (理想气体等温膨胀,体积增加,熵增加,但要从环境吸热,故环境的熵减少。)11.在50℃时,液体A的饱和蒸汽压是液体B的饱和蒸汽压的3倍,A和B两液体形成理想液态混合物,达气液平衡时,液相中A的摩尔分数为0.5,则气相中B的摩尔分数yB为______。 0.25yB=PB/P=PB*xB/(PA*xA+PB*xB) 13.道尔顿定理的内容:混合气体的总压力等于各组分单独存在于混合气体的温度体积条件下所产生压力的总和。 14.热力学第二定理表达式 ds ≧ &Q / T 。 15.熵增原理的适用条件绝热条件或隔离系统。 16.353.15K时苯和甲苯的蒸气压分别为100KPa和38.7KPa二者形成混合物,其平衡气相的组成Y苯为0.30,则液相的组成X苯为 0.142 。 17.在室温下,一定量的苯和甲苯混合,这一过程所对应的DH大约为 0 。 18.反应能否自发进行的判据。 答案:dS条件是绝热体系或隔离系统,(dA)T,V,Wf=o0,(dG)T,P,Wf。 20.节流膨胀的的定义。 答案:在绝热条件下气体的的始末态压力分别保持恒定不变情况下的膨胀过程。

相关主题
文本预览
相关文档 最新文档