当前位置:文档之家› 热力学第一定律总结

热力学第一定律总结

热力学第一定律总结
热力学第一定律总结

热一定律总结

一、 通用公式

ΔU = Q + W

绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V

恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) → ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0

焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV )

典型例题:3.11思考题第3题,第4题。

二、 理想气体的单纯pVT 变化

恒温:ΔU = ΔH = 0

变温:

或 如恒容,ΔU = Q ,否则不一定相等。如恒压,ΔH = Q ,否则不一定相等。 C p , m – C V , m = R

双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2

典型例题:3.18思考题第2,3,4题

书2.18、2.19

三、 凝聚态物质的ΔU 和ΔH 只和温度有关

典型例题:书2.15

ΔU = n C V , m d T T 2

T 1 ∫ ΔH =

n C p, m d T T 2

T 1

ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1) ΔU ≈ ΔH = n

C p, m d T T 2

T 1

ΔU ≈ ΔH = nC p, m (T 2-T 1)

四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程)

ΔU ≈ ΔH –ΔnRT

(Δn :气体摩尔数的变化量。如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。

101.325 kPa 及其对应温度下的相变可以查表。 其它温度下的相变要设计状态函数

不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。

典型例题:3.18作业题第3题

五、化学反应焓的计算

其他温度:状态函数法

Δ H m (T ) = ΔH 1 +Δ H m (T 0) + ΔH 3

α β

β α Δ H m (T )

α ΔH 1

ΔH 3

Δ H m (T 0)

α β

可逆相变

298.15 K:

ΔH = Q p = n Δ H m

α

β

Δr H m ? =Δf H ?(生) – Δf H ?(反) = y Δf H m ?(Y) + z Δf H m ?(Z) – a Δf H m ?(A) – b Δf H m ?(B) Δr H m ? =Δc H ?(反) – Δc H ?(生) = a Δc H m ?(A) + b Δc H m ?(B) –y Δc H m ?(Y) – z Δc H m ?(Z)

ΔH = nC p, m (T 2-T 1)

ΔH = n C p, m d T

T 2

T

1

ΔU 和ΔH 的关系:ΔU = ΔH –ΔnRT (Δn :气体摩尔数的变化量。)

典型例题:3.25思考题第2题

典型例题:见本总结“十、状态函数法。典型例题第3题”

六、体积功的计算 通式:δW = -p amb ·d V 恒外压:W = -p amb ·(V 2-V 1)

恒温可逆(可逆说明p amb = p ):W = nRT ·ln(p 2/p 1) = -nRT ·ln(V 2/V 1) 绝热可逆:pV γ

= 常数(γ = C p , m /C V , m )。 利用此式求出末态温度T 2,则W =ΔU = nC V , m (T 2 – T 1)

或:W = (p 2V 2 – p 1V 1)/( γ–1)

典型例题: 书2.38,3.25作业第1题

七、p -V 图

斜率大小:绝热可逆线 > 恒温线 典型例题:

ΔH (T )

Δr H m

(298.15 K)

ΔH 1

ΔH 3

p

如图,A→B和A→C均为理想气体变化过程,若

B、C在同一条绝热线上,那么?U AB与?U AC的关系是:

(A) ?U AB> ?U AC;(B) ?U AB< ?U AC;

(C) ?U AB= ?U AC; (D) 无法比较两者大小。

八、可逆过程

可逆膨胀,系统对环境做最大功(因为膨胀意味着p amb≤p,可逆时p amb取到最大值p);可逆压缩,环境对系统做最小功。

典型例题:

1 mol理想气体等温(313 K)膨胀过程中从热源吸热600 J,所做的功仅是变到相

同终态时最大功的1/10,则气体膨胀至终态时,体积是原来的___倍。

九、求火焰最高温度:Q p = 0, ΔH = 0

求爆炸最高温度、最高压力:Q V = 0, W = 0 ΔU = 0

典型例题:见本总结“十、状态函数法。典型例题第3题”

十、状态函数法(重要!)

设计途径计算系统由始态到终态,状态函数的变化量。

典型例题:

1、将373.15K及0.5pΘ的水汽100 dm3,可逆恒温压缩到10 dm3,试计算此过程

的W,Q和ΔU。

2、1mol理想气体由2atm、10L时恒容升温,使压力到20 atm。再恒压压缩至体

积为1L。求整个过程的W、Q、ΔU和ΔH。

3、298K时,1 mol H2(g)在10 mol O2(g)中燃烧

H2(g) + 10O2(g) = H2O(g) + 9.5O2(g)

已知水蒸气的生成热Δr H m?(H2O, g) = -242.67 kJ·mol-1, C p,m(H2) = C p,m(O2) =

27.20 J·K-1·mol-1, C p,m(H2O) = 31.38 J·K-1·mol-1.

a)求298 K时燃烧反应的Δc U m;

b)求498 K时燃烧反应的Δc H m;

c)若反应起始温度为298 K,求在一个密封氧弹中绝热爆炸的最高温度。

十、了解节流膨胀的过程并了解节流膨胀是绝热、恒焓过程

典型例题:

1、理想气体经过节流膨胀后,热力学能____(升高,降低,不变)

2、非理想气体的节流膨胀过程中,下列哪一种描述是正确的:

(A) Q = 0,?H = 0,?p < 0 ;

(B) Q = 0,?H < 0,?p < 0 ;

(C) Q > 0,?H = 0,?p < 0 ;

(D) Q < 0,?H = 0,?p < 0 。

十一、其他重要概念

如系统与环境,状态函数,平衡态,生成焓,燃烧焓,可逆过程等,无法一一列举

典型例题:

1、书2.21

2、体系内热力学能变化为零的过程有:

(A) 等温等压下的可逆相变过程

(B) 理想气体的绝热膨胀过程

(C) 不同理想气体在等温等压下的混合过程

(D) 恒容绝热体系的任何过程

十二、本章重要英语单词

system 系统surroundings 环境

state function 状态函数equilibrium 平衡态

open/closed/isolated system 开放/封闭/隔离系统

work 功heat 热energy 能量

expansion/non-expansion work 体积功/非体积功

free expansion 自由膨胀vacuum 真空

thermodynamic energy/internal energy 热力学/内能

perpetual motion machine 永动机

The First Law of Thermodynamics热力学第一定律

heat supplied at constant volume/pressure 恒容热/恒压热

adiabatic 绝热的diathermic 导热的exothermic/endothermic 放热的/吸热的isothermal 等温的isobaric 等压的

heat capacity 热容

heat capacity at constant volume/pressure 定容热容/定压热容

enthalpy 焓

condensed matter 凝聚态物质

phase change 相变sublimation 升华vaporization 蒸发fusion 熔化reaction/formation/combustion enthalpy反应焓/生成焓/燃烧焓

extent of reaction 反应进度Kirchhoff’s Law 基希霍夫公式reversible process 可逆过程

Joule-Thomson expansion 焦耳-汤姆逊膨胀/节流膨胀isenthalpic 恒焓的

物理化学热力学第一定律总结

热一定律总结 一、 通用公式 ΔU = Q + W 绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V 恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) → ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0 焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV ) 典型例题:3.11思考题第3题,第4题。 二、 理想气体的单纯pVT 变化 恒温:ΔU = ΔH = 0 变温: 或 或 如恒容,ΔU = Q ,否则不一定相等。如恒压,ΔH = Q ,否则不一定相等。 C p , m – C V , m = R 双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2 典型例题:3.18思考题第2,3,4题 书2.18、2.19 三、 凝聚态物质的ΔU 和ΔH 只和温度有关 或 典型例题:书2.15 ΔU = n C V , m d T T 2 T 1 ∫ ΔH = n C p, m d T T 2 T 1 ∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1) ΔU ≈ ΔH = n C p, m d T T 2 T 1 ∫ ΔU ≈ ΔH = nC p, m (T 2-T 1)

四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程) ΔU ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。 101.325 kPa 及其对应温度下的相变可以查表。 其它温度下的相变要设计状态函数 不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。 或 典型例题:3.18作业题第3题 五、化学反应焓的计算 其他温度:状态函数法 Δ H m (T ) = ΔH 1 +Δ H m (T 0) + ΔH 3 α β β α Δ H m (T ) α β ΔH 1 ΔH 3 Δ H m (T 0) α β 可逆相变 298.15 K: ΔH = Q p = n Δ H m α β Δr H m ? =Δf H ?(生) – Δf H ?(反) = y Δf H m ?(Y) + z Δf H m ?(Z) – a Δf H m ?(A) – b Δf H m ?(B) Δr H m ? =Δc H ?(反) – Δc H ?(生) = a Δc H m ?(A) + b Δc H m ?(B) –y Δc H m ?(Y) – z Δc H m ?(Z) ΔH = nC p, m (T 2-T 1) ΔH = n C p, m d T T 2 T 1 ∫

热力学第一定律练习题

第2章 《热力学第一定律》练习题 一、思考题 1. 理想气体的绝热可逆和绝热不可逆过程的功,都可用公式V W C T =?计算,那两种过程所做的功是否一样 2. 在相同的温度和压力下,一定量氢气和氧气从四种不同的途径生成水:(1)氢气在氧气中燃烧,(2)爆鸣反应, (3)氢氧热爆炸,(4)氢氧燃料电池。在所有反应过程中,保持反应方程式的始态和终态都相同,请问这四种变化途径的热力学能和焓的变化值是否相同 3. 在298 K , kPa 压力下,一杯水蒸发为同温、同压的气是一个不可逆过程,试将它设计成可逆过程。 二、填空题 1. 封闭系统由某一始态出发,经历一循环过程,此过程的_____U ?=;_____H ?=;Q 与W 的关系是______________________,但Q 与W 的数值________________________,因为_________________________。 2. 状态函数在数学上的主要特征是________________________________。 3. 系统的宏观性质可分为___________________________________,凡与系统物质的量成正比的物理量均称为___________________________。 4. 在300K 的常压下,2mol 的某固体物质完全升华过程的体积功_________e W =。 5. 某化学反应:A(l) + (g) → C(g)在500K 恒容条件下进行,反应进度为1mol 时放热10kJ ,若反应在同样温度恒容条件下进行,反应进度为1mol 时放热_____________________。 6. 已知水在100℃的摩尔蒸发焓40.668ap m H ν?=kJ·mol -1,1mol 水蒸气在100℃、条件下凝结为液体水,此过程的_______Q =;_____W =;_____U ?=;_____H ?=。 7. 一定量单原子理想气体经历某过程的()20pV ?=kJ ,则此过程的_____U ?=;_____H ?=。 8. 一定量理想气体,恒压下体积工随温度的变化率____________e p W T δ?? = ????。 9. 封闭系统过程的H U ?=?的条件:(1) 对于理想气体单纯pVT 变化过程,其条件是_____________________; (2)对于有理想气体参加的化学反应,其条件是______________________________________。 10. 压力恒定为100kPa 下的一定量单原子理想气体,其_____________p H V ???= ????kPa 。 11. 体积恒定为2dm 3的一定量双原子理想气体,其_______________V U p ???= ????m 3 。

(完整word版)热力学第一定律复习题(13,10)

第二章 热力学第一定律 、 恒压条件下,△H =Q p 。 系 统状 态变化 时,计算系 统与环境间交换 的能 量 ) m dT

1. 当理想气体冲入一真空绝热容器后,其温度将 (a) 升高(b) 降低 (c) 不变(d) 难以确定 (答案) c (△U=Q+W, ∵p外=0 , ∴W=0 ,又∵绝热,∴Q=0,所以△U=0) 因为是真空故不做功,又因为是绝热故无热交换,故△U=0。温度不变。 2. 当热力学第一定律写成d U = δQ–p d V时,它适用于 (a). 理想气体的可逆过程(b). 封闭体系的任一过程 (c). 封闭体系只做体积功过程(d). 封闭体系的定压过程 (答案) c (W=W体+W非,当W非=0时,W体= -pdV) 3.对热力学可逆过程,下列说法中正确的是 (a) 过程进行的速度无限慢 (b) 没有功的损失 (c) 系统和环境可同时复原 (d) 不需环境做功 (答案) c 可逆过程: 体系经过某一过程从状态(1)变到状态(2)之后,如果能够使体系和环境都恢复到原来的状态而未留下任何永久性的变化,则该过程称为热力学可逆过程。否则为不可逆过程 特征: ①状态变化时推动力与阻力相差无限小,体系与环境始终无限接近于平衡态; ②过程中的任何一个中间态都可以从正、逆两个方向到达; ③体系变化一个循环后,体系和环境均恢复原态,变化过程中无任何耗散效应; ④等温可逆过程中,体系对环境作最大功,环境对体系作最小功。 ⑤在可逆过程中,由于状态变化时推动力与阻力相差无限小,所以完成过程所需的时间为无限长。 4.对于封闭体系来说,当过程的始态与终态确定后,下列各项中哪一个无确定值 (a) Q (b) Q + W (c) W (当Q = 0时) (d) Q (当W = 0时) (答案) a (△U=Q+W) 5.对于孤立体系中发生的实际过程,下列关系中不正确的是 (a) W = 0 (b) Q = 0 (c) ΔU= 0 (d) ΔH = 0 (答案) d (孤立体系?△U=Q+W) 6.对于内能是体系状态的单值函数概念,错误理解是 (a) 体系处于一定的状态,具有一定的内能 (b) 对应于某一状态,内能只能有一数值不能有两个以上的数值

2.2热力学第一定律对理想气体的应用

§2.2 热力学第一定律对理想气体的应用 2.2.1、等容过程 气体等容变化时,有=T P 恒量,而且外界对气体做功0=?-=V p W 。根据 热力学第一定律有△E=Q 。在等容过程中,气体吸收的热量全部用于增加内能,温度升高;反之,气体放出的热量是以减小内能为代价的,温度降低。 p V i T C n E Q V ???= ??=?=2 式中 R i T E v T Q C V ?=??=?=2)(。 2.2.1、等压过程 气体在等压过程中,有=T V 恒量,如容器中的活塞在大气环境中无摩擦地自 由移动。 根据热力学第一定律可知:气体等压膨胀时,从外界吸收的热量Q ,一部分用来增加内能,温度升高,另一部分用于对外作功;气体等压压缩时,外界对气体做的功和气体温度降低所减少的内能,都转化为向外放出的热量。且有 T nR V p W ?-=?-= T nC Q p ?= V p i T nC E v ??=?=?2 定压摩尔热容量p C 与定容摩尔热容量V C 的关系有R C C v p +=。该式表明:1mol 理想气体等压升高1K 比等容升高1k 要多吸热8.31J ,这是因为1mol 理想气体等压膨胀温度升高1K 时要对外做功8.31J 的缘故。 2.2.3、等温过程 气体在等温过程中,有pV =恒量。例如,气体在恒温装置内或者与大热源想

接触时所发生的变化。 理想气体的内能只与温度有关,所以理想气体在等温过程中内能不变,即△E =0,因此有Q=-W 。即气体作等温膨胀,压强减小,吸收的热量完全用来对外界做功;气体作等温压缩,压强增大,外界的对气体所做的功全部转化为对外放出的热量。 2.2.4、绝热过程 气体始终不与外界交换热量的过程称之为绝热过程,即Q=0。例如用隔热良好的材料把容器包起来,或者由于过程进行得很快来不及和外界发生热交换,这些都可视作绝热过程。 理想气体发生绝热变化时,p 、V 、T 三量会同时发生变化,仍遵循=T pV 恒 量。根据热力学第一定律,因Q=0,有 )(21122V p V p i T nC E W v -=?=?= 这表明气体被绝热压缩时,外界所作的功全部用来增加气体内能,体积变小、温度升高、压强增大;气体绝热膨胀时,气体对外做功是以减小内能为代价的,此时体积变大、温度降低、压强减小。气体绝热膨胀降温是液化气体获得低温的重要方法。 例:0.020kg 的氦气温度由17℃升高到27℃。若在升温过程中,①体积保持不变,②压强保持不变;③不与外界交换热量。试分别求出气体内能的增量,吸收的热量,外界对气体做的功。 气体的内能是个状态量,且仅是温度的函数。在上述三个过程中气体内能的增量是相同的且均为: J T nC E v 6231031.85.15=???=?=?

练习思考-热力学第一定律

第一章 热力学第一定律 首 页 难题解析 学生自测题 学生自测答案 难题解析 [TOP] 例 1-1 某会场开会有1000人参加,若每人平均每小时向周围散发出400kJ 的热量。试求: (1) 如果以礼堂中空气和椅子等为系统,则在开会时的30分钟内系统的热力学能增加了多少? (2) 如果以礼堂中的空气、人和其他所有的东西为系统,则其热力学能的增加又为多少? 解:(1)开会30分钟时产生的热量为: ()J 100.260 3010400100083?=? ??=Q 此为恒容系统,故0=W 根据热力学第一定律: ()J 100.28?=+=?W Q U (2) 因为此为孤立系统,所以:0=?U 例 1-2 2 mol 单原子理想气体在298K 时,分别按下列三种方式从15.00dm 3膨胀到40.00 dm 3: (1)自由膨胀; (2)恒温可逆膨胀; (3)恒温对抗100kPa 外压下膨胀。 求上述三种过程的Q 、W 、ΔU 和ΔH 。 解:(1)自由膨胀过程,0)(0)(1212e ===V V V V p W -?-- 因为理想气体的热力学能和焓都只是温度的函数,而理想气体自由膨胀过程温度不变,所以:ΔU =ΔH =f (T )=0 0=-?=W U Q

(2)因为理想气体等温过程,所以:ΔU =ΔH =0 J 486000.1500.40ln 298314.82ln 12-=???-=-V V nRT W = J 4860=-=W Q (3)同理,ΔU =ΔH =0 J 250010)00.1500.40(100000)(312e -=?-?-=--=-V V p W J 2500=-=W Q 例 1-3 具有无摩擦活塞的绝热气缸内有5mol 双原子理想气体,压力为1013.25kPa ,温度为298.2K 。 (1)若该气体绝热可逆膨胀至101.325kPa ,计算系统所做的功。 (2)若外压从1013.25kPa 骤减至101.325kPa ,系统膨胀所做的功为多少? 解:(1) R C V 25m ,=,R C p 27m ,=,4.1/m ,m ,==V p C C γ K p T =-γγ1, γγγ--=121112/p p T T 4.154)110298(4.1/14.04.04.12=??=-T K 绝热 0=Q , )(12m ,T T nC U W V -=?= kJ 94.14)2.2984.154(314.82 55-=-???=W (2)对抗恒定外压101.325kPa 绝热膨胀,0=Q ,U W ?= ???? ??--=--=112 2e 12e )(p nRT p nRT p V V p W ??? ??-??-=102.298314.852T )2.298(314.82 55)(212m ,-???=-=?T T T nC U V K 5.2212=T kJ 97.7)10 2.2985.221(314.85-=-??-=W 学生自测题 [TOP]

物理化学知识点总结(热力学第一定律)

物理化学知识点总结 (热力学第一定律) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热力学第一定律 一、基本概念 1.系统与环境 敞开系统:与环境既有能量交换又有物质交换的系统。 封闭系统:与环境只有能量交换而无物质交换的系统。(经典热力学主要研究的系统) 孤立系统:不能以任何方式与环境发生相互作用的系统。 2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度 T、压强p、体积V等。根据状态函数的特点,我们 把状态函数分成:广度性质和强度性质两大类。 广度性质:广度性质的值与系统中所含物质的量成 正比,如体积、质量、熵、热容等,这种性质的函数具 有加和性,是数学函数中的一次函数,即物质的量扩大 a倍,则相应的广度函数便扩大a倍。 强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。 注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律 热力学第一定律的数学表达式: 对于一个微小的变化状态为: dU= 公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。或者说dU与过程无关而δQ和δW却与过程有关。这里的W既包括体积功也包括非体积功。 以上两个式子便是热力学第一定律的数学表达式。它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。 三、体积功的计算 1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。将一 定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气

第二章 热力学第一定律(总复习题)

1 第二章 热力学第一定律 一、 选择题 1、下列叙述中不具状态函数特征的是:( ) (A)系统状态确定后,状态函数的值也确定 (B)系统变化时,状态函数的改变值只由系统的初终态决定 (C)经循环过程,状态函数的值不变 (D)状态函数均有加和性 2、下列叙述中,不具可逆过程特征的是:( ) (A)过程的每一步都接近平衡态,故进行得无限缓慢 (B)沿原途径反向进行时,每一小步系统与环境均能复原 (C)过程的初态与终态必定相同 (D)过程中,若做功则做最大功,若耗功则耗最小功 3、如图,将CuSO4水溶液置于绝热箱中,插入两个铜电极, 以蓄电池为电源进行电解,可以看作封闭体系的是:( ) (A)绝热箱中所有物质 (B)两个铜电极 (C)蓄电池和铜电极 (D) CuSO 4水溶液 5、在下列关于焓的描述中,正确的是( ) (A)因为ΔH=QP,所以焓是恒压热 (B)气体的焓只是温度的函数 (C)气体在节流膨胀中,它的焓不改变 (D)因为ΔH=ΔU+Δ(PV),所以任何过程都有ΔH>0的结 论 6、在标准压力下,1mol 石墨与氧气反应生成1mol 二氧化碳的 反应热为Δr H ,下列哪种说法是错误的? ( ) (A) ΔH 是CO2(g)的标准生成热 (B) ΔH =ΔU (C) ΔH 是石墨的燃烧热 (D) ΔU <ΔH 7、在标准状态下,反应C 2H 5OH (l )+3O 2(g) →2CO 2(g)+3H 2O(g)的反应焓为Δr H m θ, ΔC p >0, 下列说法 中正确的是( ) (A)Δr H m θ是C 2H 5OH (l )的标准摩尔燃烧焓 (B)Δr H m θ〈0 (C)Δr H m θ=Δr Um θ (D)Δr H m θ不随温度变化而变化 8、下面关于标准摩尔生成焓的描述中,不正确的是( ) (A)生成反应中的单质必须是稳定的相态单质 (B)稳态单质的标准摩尔生成焓被定为零 (C)生成反应的温度必须是298.15K (D)生成反应中各物质所达到的压力必须是100Kpa 9、在一个绝热钢瓶中,发生一个放热的分子数增加的化学反应, 那么:( ) (A) Q > 0,W > 0,?U > 0 (B)Q = 0,W = 0,?U < 0 (C) Q = 0,W = 0,?U = 0 (D) Q < 0,W > 0,?U < 0 10、非理想气体进行绝热自由膨胀时,下述答案中哪一个是错误 的? ( ) (A) Q =0 (B) W =0 (C) ΔU =0 (D) ΔH =0 11、下列表示式中正确的是 ( ) (A)恒压过程ΔH=ΔU+pΔV (B)恒压过程 ΔH=0 (C)恒压过程ΔH=ΔU+VΔp (D)恒容过程 ΔH=0 12、理想气体等温反抗恒外压膨胀,则 ( ) (A)Q>W (B)Q△H 2 W 1W 2 (C)△H 1=△H 2 W 1W 2 14、当理想气体从298K ,2×105Pa 经历(1)绝热可逆膨胀 和(2)等温可逆膨胀到1×105Pa 时,则( ) (A)△H 1<△H 2 W 1>W 2 (B)△H 1>△H 2 W 1△H 2 W 1>W 2 15、对于封闭体系,在指定始终态间的绝热可逆途径可以有: ( ) (A) 一条 (B) 二条 (C) 三条 (D) 三条以上 16、实际气体绝热恒外压膨胀时,其温度将: ( ) (A) 升高 (B) 降低 (C) 不变 (D) 不确定 17、功的计算公式为W=nC v,m (T 2-T 1),下列过程中不能用此 式的是( ) (A)理想气体的可逆绝热过程 (B)理想气体的绝热恒外压过程 (C)实际气体的绝热过程 (D)凝聚系统的绝热过程 18、凡是在孤立体系中进行的变化,其ΔU 和ΔH 的值一定是: ( ) (A) ΔU > 0 , ΔH > 0 (B) ΔU = 0 , ΔH = 0 (C) ΔU < 0 , ΔH < 0 (D) ΔU = 0 , ΔH 大于、小于或等于零不确定 19、 一定量的理想气体从同一始态出发,分别经 (1) 等温压缩, (2) 绝热压缩到具有相同压力的终态,以H 1,H 2分别表示两个 终态的焓值,则有:( ) (A) H 1> H 2 (B) H 1= H 2 (C) H 1< H 2 (D) H 1>=H 2

《物理化学》第二章热力学第一定律练习题(含答案)

第二章练习题 一、填空题 1、根据体系和环境之间能量和物质的交换情况,可将体系分成、、 。 2、强度性质表现体系的特征,与物质的数量无关。容量性质表现 体系的特征,与物质的数量有关,具有性。 3、热力学平衡状态同时达到四种平衡,分别是、、 、。 4、体系状态发生变化的称为过程。常见的过程有、 、、、。 5、从统计热力学观点看,功的微观本质是,热的微观本质是 。 6、气体各真空膨胀膨胀功W= 0 7、在绝热钢瓶中化学反应△U= 0 8、焓的定义式为。 二、判断题(说法对否): 1、当体系的状态一定时,所有的状态函数都有一定的数值。(√) 2、当体系的状态发生变化时,所有的状态函数的数值也随之发生变化。(χ)3.因= ΔH, = ΔU,所以与都是状态函数。(χ) 4、封闭系统在压力恒定的过程中吸收的热等于该系统的焓。(χ) 错。只有封闭系统不做非膨胀功等压过程ΔH=Q P 5、状态给定后,状态函数就有定值;状态函数确定后,状态也就确定了。(√) 6、热力学过程中W的值应由具体过程决定( √ ) 7、1mol理想气体从同一始态经过不同的循环途径后回到初始状态,其热力学能

不变。( √ ) 三、单选题 1、体系的下列各组物理量中都是状态函数的是( C ) A 、T、P、V、Q B 、m、W、P、H C、T、P、V、n、 D、T、P、U、W 2、对于内能是体系的单值函数概念,错误理解是( C ) A体系处于一定的状态,具有一定的内能 B对应于某一状态,内能只能有一数值不能有两个以上的数值 C状态发生变化,内能也一定跟着变化 D对应于一个内能值,可以有多个状态 3下列叙述中不具有状态函数特征的是(D ) A体系状态确定后,状态函数的值也确定 B体系变化时,状态函数的改变值只由体系的始终态决定 C经循环过程,状态函数的值不变 D状态函数均有加和性 4、下列叙述中正确的是( A ) A物体温度越高,说明其内能越大B物体温度越高,说明其所含热量越多C凡体系温度升高,就肯定是它吸收了热 D凡体系温度不变,说明它既不吸热也不放热 5、下列哪一种说法错误( D ) A焓是定义的一种具有能量量纲的热力学量 B只有在某些特定条件下,焓变△H才与体系吸热相等 C焓是状态函数 D焓是体系能与环境能进行热交换的能量

(完整版)物理化学上热力学第一定律知识框架图总结.doc

第一章,热力学第一定律各知识点架构纲目图如下: 系统:隔离系统;封闭系统;敞开系统 环境:在系统以外与系统密切相关部分 状态:系统的所有物理性质和化学性质的综合体现系统及状态及状态函数类型:广度量;强度量 状态状态函数 (热力学性质 ) 特性:①改变值只与始、末态有关而与具体途径无关; ②不同状态间的改变值具有加和性。 即殊途同归,值变相等;周而复始,其值不变。热力学平衡:热平衡;力学平衡;相平衡;化学平衡 单纯的 pTV 变化 状态变化 溶解及混合 及过程 相变化 化学变化 系 统 状 态 变 简单的化 时 pTV 变化, 计 算 系 统 与 环 境 系统与环境 间 交间交换能量 换 的计算 (封闭 的 能 恒压过程 (p 始 =p 终 =p 环 ) 恒温过程 (T 始=T 终=T 环 ) 恒容过程 (V 始=V 终) 绝热过程 (Q = 0) 节流过程 (H = 0) 理想气体 (IG) 系统:U T2 C V ,m dT ; H n T2 n C p,m dT T2 T1 T1 Q p =△ H= n C p ,m dT ;W=-p外(V2-V1); 恒压过程:T1 △U=△ H -p△ V ( 常压下,凝聚相: W ≈ 0;△ U≈△ H) 理想气体焦尔实验: (1)结论: (?U/?V) T=0; (2)推论: U IG=f ( T); H IG=g (T) 恒温过程 △U=△H=0; W=-Q = V2 nRT lnV2 /V1 (可逆 ) V pdV 1 恒容过程:W=0; Q V =△ U= T2 n C V ,m dT ; T1 绝热过程: Q=0;△ U= W 不可逆(恒外压):nC V,m( T2 -T1)=- p2(V2-V1) 可逆:p1V1 1 1 T1 ) ( nC V , m (T2 1 1 1 ) >0 V 2 V1 致冷 节流膨胀: Q=0 ;△H=0;J-T=(d T/dp) H =0 T 不变 ( 例如理想气体 ) <0 致热 量系统, W 非 =0) 相变化Q p =△ H; W=-p△V △U= △H- p△ V =-nRT (气相视为IG) ≈0,△ U≈△ H (常压下凝聚态间相变化) 相变焓与温度关系:T2 H m (T2 )H m (T1 ) C p,m dT T1 热力学第一定律及焓函数 反应进度定义、标准摩尔生成焓和标准摩尔燃烧焓的定义。 摩尔反应焓的定义:△r H m=△ r H/△ 化学变化 标准摩尔反应焓的计算: ! B ! r H m (T1 ) f H m (B, T ) 恒压反应热与恒容反应热的关系:△r H m=△ r U m+∑νB(g)RT ! T2 基希霍夫公式:( r H m ) C ; H ! (T ) H ! (T ) C dT p r r r p, m T r p ,m m 2 m 1 T1 热(Q):系统与环境间由于温差而交换的能量。是物质分子无序运动的结果。是过程量。功 (W) :除热以外的,在系统与环境间交换的所有其它形式的能量。是物质分子有序运动的 结果,是过程量。 热力学能 (U):又称为内能,是系统内部能量的总和。是状态函数,且为广度量,但绝对值不知道。 热力学第一定律数学表达式:△ U=Q+W,在封闭系统, W 非 =0,恒容条件下,△ U=Q V。 焓函数 (H):定义, H≡ U+pV, 是状态函数,且为广度量,但绝对值不知道。在封闭系统, 1 W非 =0,恒压条件下,△H=Q p。

热力学第二定律总结

第三章 热力学第二定律总结 核心内容: 不可逆或自发 02 1 < > -+ =?+?=?? amb r amb iso T Q T Q S S S δ 可逆或平衡 不可能 对于恒T 、V 、W ˊ=0过程: 不可逆或自发 0)(0,,> < ?-?=-?==?'S T U TS U A W V T 可逆或平衡 反向自发 对于恒T 、p 、W ˊ=0过程: 不可逆或自发 0)(0,,> < ?-?=-?=?='S T H TS H G W p T 可逆或平衡 反向自发 主要内容:三种过程(单纯pVT 变化、相变、化学反应)W 、Q 、ΔU 、ΔH 、△S 、△A 、△G 的计算及过程方向的判断。 一、内容提要 1、热力学第二定律的数学形式 不可逆或自发 ?<>?21T Q S δ 可逆或平衡 不可能 上式是判断过程方向的一般熵判据。将系统与环境一起考虑,构成隔离系统则上式变为: 不可逆或自发 02 1 < > -+ =?+?=?? amb r amb iso T Q T Q S S S δ 可逆或平衡 不可能

上式称为实用熵判据。在应用此判据判断过程的方向时,需同时考虑系统和环境的熵变。 将上式应用于恒T 、V 、W ˊ=0或恒T 、p 、W ˊ=0过程有: 不可逆或自发 0)(0,,> < ?-?=-?==?'S T U TS U A W V T 可逆或平衡 反向自发 此式称为亥姆霍兹函数判据。 不可逆或自发 0)(0,,> < ?-?=-?=?='S T H TS H G W p T 可逆或平衡 反向自发 此式称为吉布斯函数判据。 熵判据需同时考虑系统和环境,而亥姆霍兹函数判据和吉布斯函数判据只需考虑系统本身。熵判据是万能判据,而亥姆霍兹函数判据和吉布斯函数判据则是条件判据(只有满足下角标条件时才能应用)。 此外,关于亥姆霍兹函数和吉布斯函数,还有如下关系: r T W A =? r V T W A '=?, r p T W G '=?, 即恒温可逆过程系统的亥姆霍兹函数变化等于过程的可逆功;恒温恒容可逆过程系统的亥姆霍兹函数变化等于过程的可逆非体积功;恒温恒压可逆过程系统的吉布斯函数变化等于过程的可逆非体积功。 下面将△S 、△A 和△G 的计算就三种常见的过程进行展开。 2、三种过程(物质三态pVT 变化、相变、化学反应)△S 、△A 和△G 的计算 (1)物质三态(g 、l 或s 态)pVT 变化(无相变、无化学反应)

(完整版)物理化学上热力学第一定律知识框架图总结

1 第一章, 热力学第一定律 各知识点架构纲目图如下: 及过程 溶解及混合 化学变化 相变化 热(Q ):系统与环境间由于温差而交换的能量。是物质分子无序运动的结果。是过程量。 功(W ):除热以外的,在系统与环境间交换的所有其它形式的能量。是物质分子有序运动的 结果,是过程量。 热力学能 (U ):又称为内能,是系统内部能量的总和。是状态函数,且为广度量,但绝对值 不知道。 热力学第一定律数学表达式:△U =Q +W ,在封闭系统,W 非=0,恒容条件下,△U =Q V 。 焓函数(H ):定义,H ≡U +pV , 是状态函数,且为广度量,但绝对值不知道。在封闭系统, W 非=0,恒压条件下,△H =Q p 。 热力学第 一定律及 焓函数 系统与环境 间交换能量 的计算(封闭 系统,W 非=0) 简单的pTV 变化 理想气体(IG)系统:2211 ,,;T T V m p m T T U n C dT H n C dT ?=?=?? 理想气体 恒温过程 焦尔实验:(1)结论:(?U /?V)T =0; (2)推论:U IG =f (T ); H IG =g (T ) △U =△H =0; W =-Q =2121ln /V V pdV nRT V V -=-? (可逆) 恒容过程:W =0;Q V =△U= 21 ,;T V m T n C dT ? 绝热过程:Q =0;△U = W 不可逆(恒外压):nC V ,m (T 2-T 1)=-p 2(V 2-V 1) 可逆: 11,21 11 2111()()1V m p V nC T T V V γ γγγ---=-- Q p =△H =2 1 ,;T p m T n C dT ?W =-p 外(V 2-V 1); △U =△H -p △V (常压下,凝聚相:W ≈0;△U ≈△H ) 恒压过程: 节流膨胀:Q =0;△H =0;μJ-T =(d T /d p )H =0 T 不变(例如理想气体) <0致热 >0 致冷 相变化 △U =△H -p △V Q p =△H ; W =-p △V ≈0,△U ≈△H (常压下凝聚态间相变化) =-nRT (气相视为IG) 相变焓与温度关系:21 21,()()T m m p m T H T H T C dT ββαα?=?+?? 化学变化 摩尔反应焓的定义:△r H m =△r H /△ξ 恒压反应热与恒容反应热的关系:△r H m =△r U m +∑νB (g)RT 标准摩尔反应焓的计算:1B ()(B,)r m f m H T H T ν?=∑?!! 反应进度定义、标准摩尔生成焓和标准摩尔燃烧焓的定义。 基希霍夫公式:21 ,21,();()()T r m p r p m r m r m r p m T H C H T H T C dT T ??=??=?+???! !! 系 统状态变化时,计算系统与环境间交换的能量

第一章热力学第一定律练习题

第一章 热力学第一定律练习题 一、判断题(说法对否): 1.道尔顿分压定律,对理想气体和实际混合气体来说关系式PB=Nb(RT/V)都成立。 2.在两个封闭的容器中,装有同一种理想气体,压力、体积相同,那么温度也相同。 3.物质的温度越高,则热量越多;天气预报:今天很热。其热的概念与热力学相同。 4.恒压过程也就是恒外压过程,恒外压过程也就是恒过程。 5.实际气体在恒温膨胀时所做的功等于所吸收的热。 6.凡是温度升高的过程体系一定吸热;而恒温过程体系不吸热也不放热。 7.当系统的状态一定时,所有的状态函数都有一定的数值。当系统的状态发生变化时, 所有的状态函数的数值也随之发生变化。 8.体积是广度性质的状态函数;在有过剩NaCl(s) 存在的饱和水溶液中,当温度、压力 一定时;系统的体积与系统中水和NaCl 的总量成正比。 9.在101.325kPa 、100℃下有lmol 的水和水蒸气共存的系统,该系统的状态完全确定。 10.一定量的理想气体,当热力学能与温度确定之后,则所有的状态函数也完全确定。 11.系统温度升高则一定从环境吸热,系统温度不变就不与环境换热。 12.从同一始态经不同的过程到达同一终态,则Q 和W 的值一般不同,Q + W 的值一般也 不相同。 13.因Q P = ΔH ,Q V = ΔU ,所以Q P 与Q V 都是状态函数。 14.封闭系统在压力恒定的过程中吸收的热等于该系统的焓。 15.对于一定量的理想气体,当温度一定时热力学能与焓的值一定,其差值也一定。 16.在101.325kPa 下,1mol l00℃的水恒温蒸发为100℃的水蒸气。若水蒸气可视为理想 气体,那么由于过程等温,所以该过程ΔU = 0。 17.1mol ,80.1℃、101.325kPa 的液态苯向真空蒸发为80.1℃、101.325kPa 的气态苯。已 知该过程的焓变为30.87kJ ,所以此过程的Q = 30.87kJ 。 18.1mol 水在l01.325kPa 下由25℃升温至120℃,其ΔH = ∑C P ,m d T 。 19.因焓是温度、压力的函数,即H = f (T ,p ),所以在恒温、恒压下发生相变时,由于 d T = 0,d p = 0,故可得ΔH = 0。 20.因Q p = ΔH ,Q V = ΔU ,所以Q p - Q V = ΔH - ΔU = Δ(p V) = -W 。 21.卡诺循环是可逆循环,当系统经一个卡诺循环后,不仅系统复原了,环境也会复原。 22.一个系统经历了一个无限小的过程,则此过程是可逆过程。 23.若一个过程中每一步都无限接近平衡态,则此过程一定是可逆过程。 24.若一个过程是可逆过程,则该过程中的每一步都是可逆的。 25.1mol 理想气体经绝热不可逆过程由p 1、V 1变到p 2、V 2, 则系统所做的功为 V p C C V p V p W =--=γγ,11122。 26.气体经绝热自由膨胀后,因Q = 0,W = 0,所以ΔU = 0,气体温度不变。 27.(?U /?V )T = 0 的气体一定是理想气体。 28.因理想气体的热力学能与体积压力无关,所以(?U /?p )V = 0,(?U /?V )p = 0。 29.若规定温度T 时,处于标准态的稳定态单质的标准摩尔生成焓为零,那么该温度下

02章 热力学第一定律及其应用

第二章热力学第一定律及其应用 1. 如果一个体重为70kg的人能将40g巧克力的燃烧热(628 kJ) 完全转变为垂直位移所要作的功 ,那么这点热量可支持他爬多少高度? 2. 在291K和下,1 mol Zn(s)溶于足量稀盐酸中,置换出1 mol H2并放热152 kJ。若以Zn和盐酸为体系,求该反应所作的功及体系内能的变化。 3.理想气体等温可逆膨胀,体积从V1胀大到10V1,对外作了41.85 kJ的功,体系的起始压力为202.65 kPa。 (1)求V1。 (2)若气体的量为2 mol ,试求体系的温度。 4.在101.325 kPa及423K时,将1 mol NH3等温压缩到体积等于10 dm3, 求最少需作多少功? (1)假定是理想气体。 (2)假定服从于范德华方程式。 已知范氏常数a=0.417 Pa·m6·mol-2, b=3.71× m3/mol. 5.已知在373K和101.325 kPa时,1 kg H2O(l)的体积为1.043 dm3,1 kg水气的体积为1677 dm3,水的 =40.63 kJ/mol 。当1 mol H2O(l),在373 K 和外压为时完全蒸发成水蒸气时,求 (1)蒸发过程中体系对环境所作的功。 (2)假定液态水的体积忽略而不计,试求蒸发过程中的功,并计算所得结果的百分误差。 (3)假定把蒸汽看作理想气体,且略去液态水的体积,求体系所作的功。(4)求(1)中变化的和。 (5)解释何故蒸发热大于体系所作的功? 6.在273.16K 和101.325 kPa时,1 mol的冰熔化为水,计算过程中的功。

已知在该情况下冰和水的密度分别为917 kg·m-3和1000 kg·m-3。 7.10mol的气体(设为理想气体),压力为1013.25 kPa,温度为300 K,分别求出等温时下列过程的功: (1)在空气中(压力为101.325 kPa)体积胀大1 dm3。 (2)在空气中膨胀到气体压力也是101.325 kPa。 (3)等温可逆膨胀至气体的压力为101.325 kPa。 8.273.2K,压力为5×101.325 kPa的N2气2 dm3,在外压为101.325 kPa下等温膨胀,直到N2气的压力也等于101.325 kPa为止。 求过程中的W,ΔU ,ΔH 和Q。假定气体是理想气体。 9.0.02kg乙醇在其沸点时蒸发为气体。已知蒸发热为858kJ/kg.蒸汽的比容为0.607 m3/kg。 试求过程的ΔU ,ΔH,Q,W(计算时略去液体的体积)。 10. 1× kg水在373K,101.325 kPa压力时,经下列不同的过程变为373 K, 压力的汽,请分别求出各个过程的W,ΔU ,ΔH 和Q 值。 (1)在373K,101.325 kPa压力下变成同温,同压的汽。 (2)先在373K,外压为0.5×101.325 kPa下变为汽,然后加压成373K,101.325 kPa压力的汽。 (3)把这个水突然放进恒温373K的真空箱中,控制容积使终态为101.325 kPa 压力的汽。 已知水的汽化热为2259 kJ/kg。 11. 一摩尔单原子理想气体,始态为2×101.325 kPa,11.2 dm3,经pT=常数的可逆过程压缩到终态为4×101.325 kPa,已知C(V,m)=3/2 R。求: (1)终态的体积和温度。 (2)ΔU 和ΔH 。 (3)所作的功。

热力学第一定律基本概念和重点总结要点

本章内容: 介绍有关热力学第一定律的一些基本概念,热、功、状态函数,热力学第一定律、热力学能和焓,明确准静态过程与可逆过程的意义,进一步介绍热化学。 第一节热力学概论 ?热力学研究的目的、内容 ?热力学的方法及局限性 ?热力学基本概念 一.热力学研究的目的和内容 目的:热力学是研究热和其它形式能量之间相互转换以及转换过程中所应遵循的规律的科学。内容:热力学第零定律、第一定律、第二定律和本世纪初建立的热力学第三定律。其中第一、第二定律是热力学的主要基础。 把热力学中最基本的原理用来研究化学现象和化学有关的物理现象,称为化学热力学。 化学热力学的主要内容是: 1.利用热力学第一定律解决化学变化的热效应问题; 2.利用热力学第二律解决指定的化学及物理变化实现的可能性、方向和限度问题,建 立相平衡、化学平衡理论; 3.利用热力学第三律可以从热力学的数据解决有关化学平衡的计算问题 二、热力学的方法及局限性 方法: 以热力学第一定律和第二定律为基础,演绎出有特定用途的状态函数,通过计算某变化过程的有关状态函数改变值,来解决这些过程的能量关系和自动进行的方向、限度。 而计算状态函数的改变只需要根据变化的始、终态的一些可通过实验测定的宏观性质,并不涉及物质结构和变化的细节。 优点: ?研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。 ?只考虑变化前后的净结果,不考虑物质的微观结构和反应机理,简化了处理方法。局限性: 1.只考虑变化前后的净结果,只能对现象之间的联系作宏观的了解,而不能作微观的 说明或给出宏观性质的数据。 例如:热力学能给出蒸汽压和蒸发热之间的关系,但不能给出某液体的实际蒸汽压的数值是多少。 2.只讲可能性,不讲现实性,不知道反应的机理、速率。 三、热力学中的一些基本概念 1.系统与环境 系统:用热力学方法研究问题时,首先要确定研究的对象,将所研究的一部分物质或空间,从其余的物质或空间中划分出来,这种划定的研究对象叫体系或系统 (system)。 环境:系统以外与系统密切相关的其它部分称环境(surrounding 注意: 1.体系内可有一种或多种物质,可为单相或多相,其空间范围可以是固定或 随过程而变。 2.体系和环境之间有分界,这个分界可以是真实的,也可以是虚构的,既可 以是静止的也可以是运动的。 根据体系与环境的关系将体系区分为三种:

热力学第一定律的内容及应用

目录 摘要 (1) 关键字 (1) Abstract: ...................................................................................... 错误!未定义书签。Key words .................................................................................... 错误!未定义书签。引言 (1) 1.热力学第一定律的产生 (1) 1.1历史渊源与科学背景 (1) 1.2热力学第一定律的建立过程 (2) 2.热力学第一定律的表述 (3) 2.1热力学第一定律的文字表述 (3) 2.2数学表达式 (3) 3.热力学第一定律的应用 (4) 3.1焦耳实验 (4) 3.2热机及其效率 (5) 总结 (7) 参考文献 (7)

热力学第一定律的内容及应用 摘要:热力学第一定律亦即能量转换与守恒定律,广泛地应用于各个学科领域。本文回顾了其建立的背景及经过,它的准确的文字表述和数学表达式,及它在理想气体、热机的应用。 关键字:热力学第一定律;内能定理;焦耳定律;热机;热机效率 引言 在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 1.热力学第一定律的产生 1.1历史渊源与科学背景 人类使用热能为自己服务有着悠久的历史,火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。中国古代就对火热的本性进行了探讨,殷商时期形成的“五行说”——金、木、水、火、土,就把火热看成是构成宇宙万物的五种元素之一。 北宋时刘昼更明确指出“金性苞水,木性藏火,故炼金则水出,钻木而生火。”古希腊米利都学派的那拉克西曼德(Anaximander,约公元前611—547) 把火看成是与土、水、气并列的一种原素,它们都是由某种原始物质形成的世界四大主要元素。恩培多克勒(Empedocles,约公元前500—430)更明确提出四元素学说,认为万物都是水、火、土、气四元素在不同数量上不同比例的配合,与我国的五行说十分相似。但是人类对热的本质的认识却是很晚的事情。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的

相关主题
文本预览
相关文档 最新文档