当前位置:文档之家› 群体遗传结构中的基因流

群体遗传结构中的基因流

群体遗传结构中的基因流
群体遗传结构中的基因流

遗传学名词解释

1 Chromosomal disorders:染色体结构和数目异常而导致的疾病。如Down’s综合征(+21),猫叫综合征(5p-)。 2 Single gene disorders: 由于控制某个性状的等位基因突变导致的疾病称之。 3 Polygenic disorders:一些常见病和多发病的发生由遗传因素和环境因素共同决定,遗传因素中不是一对等位基因,而是多对基因共同作用于同一个性状。 4 Mitochondrial disorders:是指线粒体DNA上的基因突变导致所编码线粒体蛋白质结构和数目异常,导致线粒体病。线粒体是位于细胞质中的细胞器,故随细胞质(母系)遗传。 4 Somatic cell disorders: 体细胞中遗传物质突变导致的疾病。 5 分离律 (Law of segregation)基因在体细胞内成对存在,在生殖细胞形成过程中,同源染色体分离,成对的基因彼此分离,分别进入不同的生殖细胞。细胞学基础:同源染色体的分离。 6 自由组合律(law of independent assortment)在生殖细胞形成过程中,不同的非等位基因,可以相互独立的分离,有均等的机会组合到—个生殖细胞的规律性活动。 7 连锁与互换定律-(law of linkage and crossing over)位于同一染色体上的两个基因,在生殖细胞形成时,如果它们相距越近,一起进入同一生殖细胞的可能性越大;如果相距较远,它们之间可以发生交换。 8 Gene mutation: DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 9 Point mutation:指单个碱基被另一个碱基替代。转换(transition):嘧啶之间或嘌呤之间的替代。颠换(transversion):嘧啶和嘌呤之间的替代。 10 Same sense mutation:碱基替换后,所编码的氨基酸没有改变。多发生于密码子的第三个碱基。 11 Missense mutation:碱基替换后,改变了氨基酸序列。错义突变多发生于密码子的第一、二个碱基 12 Nonsense mutation:碱基替换后,编码氨基酸的密码子变为终止密码子(UAA、UGA、UAG),多肽链合成提前终止。 13 Frame shift mutation:在DNA编码序列中插入或丢失一个或几个碱基,造成插入或缺失点下游的DNA编码框架全部改变,其结果是突变点以后的氨基酸序列发生改变 14 dynamic mutation :人类基因组中的一些重复序列在传递过程中重复次数发生改变导致遗传病的发生,称动态突变。

遗传变异和进化

遗传、变异和进化(1) 1 DNA是主要的遗传物质 1.1 证明遗传物质是DNA的经典实验:(物质的提取、分离和鉴定的实验技术) 肺炎双球菌的转化实验:从F.Griffith到O.Avery 噬菌体侵染细菌的实验:放射性同位素35S和32P标记法的应用 1.2 RNA也是遗传物质(烟草花叶病毒的重建实验) 2 DNA的分子结构和复制 简介:生命科学史上的划时代突破——沃森-克立克模型的建立 2.1 DNA的双螺旋结构 两条长链,反向平行,碱基配对,互为补充;氢键的遗传学意义碱基互补配对原则及变式理解: 例1:已知某DNA分子一条链上,其互补链上和整个DNA分子中,的值分别为多少? 例2:已知某DNA分子一条链上,其互补链上和整个DNA分子中,的值分别为多少? DNA分子的多样性和特异性(碱基序列的千变万化与特定序列) 2.2 DNA分子的自我复制 复制的概念、时期、过程要点 DNA半保留复制的实验——DNA梯度离心实验 3 基因的表达 4.1 基因的概念——具有遗传效应DNA片段 4.3 基因控制蛋白质的合成:遗传信息的转录和翻译 遗传信息流动的规律——中心法则 4 基因的结构 4.1 原核细胞的基因结构:包括分为非编码区(调控序列)和编码区(编码序列呈连续性)4.2 真核细胞的基因结构 非编码区:有调控作用的核苷酸序列(如RNA聚合酶结合位点) 编码区:具有不连续性,含有若干个外显子和内含子 4.3 人类基因组研究——人类“生命天书”的解读 人类基因组包含24条染色体(22条常染色体和X、Y染色体)上约30亿个碱基对,估计3~4万个蛋白质编码基因(只占整个基因组的2%)。 需要绘制4张图:遗传图、物理图、序列图和转录图。 4.4 人类基因组研究的重大意义 5 基因工程简介 5.1 基因操作的基本工具 工具酶:限制性内切酶(基因“剪刀”的专一性)、DNA连接酶(基因的“针线”)运载体(常用的是细菌质粒;必备的3个条件)

医学遗传学整理复习资料

第四章单基因病 单基因病:由某一等位基因突变所引起的疾病 遗传方式:常染色体显性遗传性染色体:X连锁显性遗传从性遗传限性遗传 隐性遗传X连锁隐性遗传 Y连锁遗传 常染色体显性遗传:某种性状或疾病受显性基因控制,这个基因位于常染色体上,其遗传方式为AD 常染色体显性遗传病的系谱特点: ①患者双亲之一有病,多为杂合子 ②男女发病机会均等 ③连续遗传 完全显性:杂合子的表现型与显性纯合子相同 不完全显性(中间型显性、半显性):杂合子的表现型介于显性纯合子与隐性纯合子之间 共显性:杂合子的一对等位基因彼此间无显、隐之分,两者的作用都同时得以表现。 复等位基因(I A、I B 、i ):在群体中,同一同源染色体上同一位点的两个以上的基因。不规则显性:带致病基因的杂合子在不同的条件下,可以表现正常或表现出不同的表现型。 不外显(钝挫型):具显性致病基因但不发病的个体 外显率:一定基因型个体所形成的相应表现型比率 不同表现度:同一基因型的不同个体性状表现程度的差异 表现度:指在不同遗传背景和环境因素的影响下,相同基因型的个体在性状或疾病的表现程度上产生的差异 延迟显性:带显性致病基因的杂合子在个体发育的较晚时期,显性基因的作用才表现出来。-------------------------------------------------------------------------------------------------------------------------------- 常染色体隐性遗传:某种性状或疾病受隐性基因控制,这个基因位于常染色体上,其遗传方式为 AR 常染色体隐性遗传病的系谱特点:①患者的双亲无病,为携带者 ②男女发病机会均等 ③散发 X 连锁显性遗传:某种性状或疾病受X染色体上的显性基因所控制,其遗传方式为XD。XD遗传病系谱特点:①患者双亲之一有病,多为女性患者 ②连续遗传 ③交叉遗传(男性患者的女儿全发病) X 连锁隐性遗传:某种性状或疾病受X染色体上的隐性基因所控制,其遗传方式为XR。 交叉遗传:男性X染色体上的致病基因只能来自母亲,也必定传给女儿 XR遗传病系谱特点:①患者双亲无病②多为男性患者。③交叉遗传 从性遗传:位于常染色体上的一类基因,基因的效应随着个体性别的不同而有差异(即杂合子的表型在不同性别个体中表现不同) 限性遗传:常染色体或性染色体上的一类基因,由于性别限制,只在一种性别中表达。 (即男性表达,女性不表达。或反之。)

遗传学名词解释

1、原核细胞:没有核膜包围的核细胞,其遗传物质分散于整个细胞或集中于某一区域形成拟核。如:细菌、蓝藻等。 2、真核细胞:有核膜包围的完整细胞核结构的细胞。多细胞生物的细胞及真菌类。单细胞动物多属于这类细胞。 3、染色体:在细胞分裂时,能被碱性染料染色的线形结构。在原核细胞内,是指裸露的环状DNA分子。 4、姊妹染色单体:一条染色体(或DNA)经复制形成的两个分子,仍由一个着丝粒相连的两条染色单体。 5、同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 6、染色体组:在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体。或者说是指细胞内一套形态、结构、功能各不相同,但在个体发育时彼此协调一致,缺一不可的染色体。 7、一倍体:具有一个染色体组的细胞或个体,如,雄蜂。 8、单倍体:具有配子(精于或卵子)染色体数目的细胞或个体。如,植物中经花药培养形成的单倍体植物。 9、二倍体:具有两个染色体组的细胞或个体。绝大多数的动物和大多,数植物均属此类 10、二价体:一对同源染色体在减数分裂时联会配对的图象。 11、联会:在减数分裂过程中,同源染色体建立联系的配对过程。 12、染色质或染色体:指细胞间期核内能被碱性染料(洋红、苏木精等)染色的纤细网状物质,现在是指真核细胞间期核中DNA、组蛋白、非组蛋白、以及少量RNA组成的一串念珠状的复合体。当细胞分裂时,核内的染色质便螺旋化形成一定数目和形状的染色体。 13、超数染色体:有些生物的细胞中出现的额外染色体。也称为B染色体。 14、联会复合体:是同源染色体联会过程中形成的非永久性的复合结构,主要成分是碱性蛋白及酸性蛋白,由中央成分(central element)向两侧伸出横丝,使同源染色体固定在一起。 15、姊妹染色单体:二价体中一条染色体的两条染色单体,互称为姊妹染色单体。 16、反应规范:遗传型对环境反应的幅度(某一基因型在不同环境条件下反应的范围。) 17、交叉的端化:交叉向二价体的两端移动,并且逐渐接近于末端的过程叫做交叉端化。 18、受精:雄配子(精子)与雌配子(卵细胞)融合为1个合子过程。 19、双受精: 1个精核(n)与卵细胞(n)受精结合为合子(2n),将来发育成胚。另1精核(n)与两个极核(n+n)受精结合为胚乳核(3n),将来发育成胚乳的过程。 20、胚乳直感:在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状,这种现象称为胚乳直感或花粉直感。 21、果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状,则另称为果实直感。 22、无融合生殖:雌雄配子不发生核融合的一种无性生殖方式。认为是有性生殖的一种特殊方式或变态。 23、细胞周期:从一次有丝分裂结束到下一次有丝分裂开始的时期。 25、无性生殖:通过亲本营养体的分割而产生许多后代个体,这一方式也称为营养体生殖。例如,植物利用块茎、鳞茎、球茎、芽眼和枝条等营养体产生后代,后代与亲代具有相同的遗传组成。 26、性状:生物体所表现的形态特征和生理特性。 27、单位性状:把生物体所表现的性状总体区分为各个单位,这些分开来的性状称为。 28、显性性状:当两个具有相对性状的纯合亲本杂交时,子一代出现的一个亲本性状。

遗传学名词解释大全

autoregulation 自我调节:基因通过自身的产物来调节转录。 autosome 常染色体:性染色体以外的任何染色体。 auxotroph 营养缺陷型:微生物的一种突变体,它不能合成生长所需的物质,培养时必须在培养基中加入此物质才能生长。 back mutation 回复突变:见reversion bacteriophage (phage) 一种感染细菌的病毒。 balance model 平衡模型:关于遗传变异比例的一种模型,它认为自然选择维持了群体中大量遗传变异的存在。 balanced polymorphism 平衡多态现象:稳定的遗传多态现象是由自然选择来维持的。 Barr body 巴氏小体:在正常雌性哺乳动物的核中有一个高度凝聚的染色质团,它是一个失活的X染色体。 base analog 碱基类似物:一种化学物质,其分子结构和DNA的碱基相似,在DNA的代谢过程中有时会取代正常碱基,结果使DNA的碱基发生突变。 bead theory 串珠学说:已被否定的学说,认为基因附着在染色体上,就象项链上的串珠。它既是突变单位又是重组单位。 binary fission 二分分裂:一个细胞分裂为大小相近的两个子细胞的过程。binomial distribution 二项分布:具有两种可能结果的 biparental zygote 双亲合子:又称双亲遗传(biparental inheriance),衣藻(chlamydomonas) 的合子含有来自双亲的DNA。这种细胞一般很少见。 biochemical mutation 生化突变,见自发突变(autotrophic mutation)。bivalent 二价体:在第一次减数分裂时彼此联合的一对同源染色体。bottleneck effect 瓶颈效应:一种类型的漂变。当群体很小时产生这种效应,结果使基因座中有的基因丢失了。 branch-point sequence 分支点顺序:在哺乳动物细胞中的保守顺序:YNCURAY(Y: 嘧啶,R:嘌呤, N:任何碱基),位于核mRNA内含子和II 类内含子3'端附近,其中的A可通过5'-2'连接的方式和内含子5'端相连接,在剪接时形成套马索状结构。 broad-sense heritability 广义遗传力:表型方差中所含遗传方差的百分比。cotplot 浓度时间乘积图:一个样本单位单链DNA分子复性动力学曲线。以结合为双链的量为纵坐标,以DNA浓度和时间的乘积为横坐标作出的DNA复性动力学曲线 C value C值:生物单倍体基因所含的DNA总量。 CAAT element CAAT元件:真核启动子上游元件之一,常位于上游-80bp附近,其功能是控制转录起始频率,保守顺序是 5'-GGCCAATCT-3'。 cancer 癌:恶性肿瘤,细胞失控,异常分裂且在生物体内可播散。 5'-capping -5'加帽:在 mRNA加工的过程中在前体 mRNA分子的5'端加上甲基核苷酸的“帽子”。 catabolite repression (glucose effect) 分解代谢物阻遏(糖效应):当糖存在时能诱发细菌操纵子的失活,即使操纵子的诱导物存在也是如此。 cDNA 互补DNA:以mRNA为模板,以反转录酶催化合成的DNA的拷贝。 cDNA clone cDNA分子克隆:将cDNA片段装在载体上转化细菌扩增出多克隆的过程,最终可建立cDNA文库。

遗传学名词解释

一、名词解释:(每小题3分,共18分) 1、外显子:把基因内部的转译部分即在成熟mRNA中出现的序列叫外显子。 2、复等位基因:在种群中,同源染色体的相同座位上,可以存在两个以上的等位基因,构成一个等位基因系列,称为复等位基因。 3、F因子:又叫性因子或致育因子,是一种能自我复制的、微小的、染色体外的环状DNA分子,大约为大肠杆菌全长的2%,F因子在大肠杆菌中又叫F质粒。 4、F'因子:把带有部分细菌染色体基因的F因子叫F∕因子。 5、母性影响:把子一代的表型受母本基因型控制的现象叫母性影响。 6、伴性遗传:在性染色体上的基因所控制的性状与性别相连锁,这种遗传方式叫伴性遗传。 7、杂种优势:指两个遗传组成不同的亲本杂交产生的杂种一代在生长势、生活力、繁殖力、抗逆性以及产量和品质等性状上比双亲优越的现象。 8、隔裂基因:真核类基因的编码顺序由若干非编码区域隔开,使阅读框不连续,这种基因称为隔裂基因,或者说真核类基因的外显子被不能表达的内含子一一隔开,这样的基因称为隔裂基因。 9、细胞质遗传:在核外遗传中,其中由细胞质成分如质体、线粒体引起的遗传现象叫细胞质遗传。 10、同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 11、跳跃基因(转座因子):指细胞中能改变自身位置的一段DNA序列。 12、基因工程:狭义的遗传工程专指基因工程,更确切的讲是重组DNA技术,它是指在体外将不同来源的DNA进行剪切和重组,形成镶嵌DNA分子,然后将之导入宿主细胞,使其扩增表达,从而使宿主细胞获得新的遗传特性,形成新的基因产物。 13、性导:利用F∕因子形成部分二倍体叫做性导(sex-duction)。 14、转导:以噬菌体为媒介,将细菌的小片断染色体或基因从一个细菌转移到另一细菌的过程叫转导。 15、假显性:(pseudo-dominant):一个显性基因的缺失致使原来不应显现出来的一个隐性等位基因的效应显现了出来,这种现象叫假显性。 16、核外遗传:由核外的一些遗传物质决定的遗传方式称核外遗传或非染色体遗传。 17、常染色质与异染色质:着色较浅,呈松散状,分布在靠近核的中心部分,是遗传的活性部位。着色较深,呈致密状,分布在靠近核内膜处,是遗传的惰性部位。又分结构异染色质或组成型异染色质和兼性异染色质。前者存在于染色体的着丝点区及核仁组织区,后者在间期时仍处于浓缩状态. 18、等显性(并显性,共显性):指在F1杂种中,两个亲本的性状都表现出来的现象。 19、限性遗传与从性遗传:限性遗传:是指位于Y染色体(XY型)或W染色体(ZW型)上的基因所控制的遗传性状只限于雄性或雌性上表现的现象。从性遗传:指常染色体上的基因控制的性状在表型上受个体性别影响的现象。 20、连锁群:存在于一个染色体上的各个基因经常表现相互联系,并同时遗传于后代,这种存在于一个染色体上在遗传上表现一定程度连锁关系的一群基因叫连锁群。 21、核型与核型分析:通常把有丝分裂中期染色体的形态、大小和数目称为核型,通过细胞学观察,取得分散良好的细胞分裂照片,就可测定染色体数目、长度、着丝粒位置、臂比、随体有无等特征,对染色体进行分类和编号,这种测定和分析称为核型分析。 22、位置效应:基因由于变换了在染色体上的位置而带来的表型效应改变的现象。 23、平衡致死品系:两个连锁的隐性致死基因,以相斥相的形式存在于一对同源染色体上,由于倒位抑制交换作用,永远以杂合状态保存下来,表型不发生分离的品系叫做平衡致死品系,也叫永久杂种。24、基因突变:是染色体上一个座位内的遗传物质的变化,从一个基因变成它的等位基因。也称点突变。从分子水平上看,基因突变则为DNA分子上具有一定遗传功能的特定区段内碱基或碱基顺序的变化所引起的突变,最小突变单位是一个碱基对的变化,是产生新基因的源泉,生物进化的重要基础,诱变育种的理论依据。 25、部分二倍体:含一个亲本的全部基因组和另一亲本部分基因组的合子叫部分二倍体或部分合子。 26、移码突变:在DNA复制中发生增加或减少一个或几个碱基对所造成的突变。 27、镶嵌显性:指在杂种的身体不同部位分别显示出显性来的现象. 28、表型模写(拟表型):有时环境因子引起的表型改变和某基因突变引起的表现型改变很相似,这叫表型模拟或拟表型。 29、等位基因:等位基因是指位于同源染色体上,占有同一位点,但以不同的方式影响同一性状发育的两个基因。

微生物的遗传和变异

第五章微生物的遗传和变异 本章要点: 1.遗传变异的物质基础。 2.基因突变的特点和机制。 3.菌种如何选育及如何诱变育种? 4.基因重组。 5.基因工程的原理和操作步骤。 6.如何保藏菌种? 5.1 基因对遗传性状的控制 5.1.1遗传和变异的物质基础DNA 遗传变异的物质基础曾是生物学中激烈争论的重大问题。1944年Avery等人以微生物为研究对象进行的三个经典实验有力地证实了核酸是遗传物质,基因是其信息单位,染色体是其存在形式。 一.证明核酸是遗传变异的物质基础的经典实验 1.转化实验 转化指A品系的生物吸收了来自B品系生物的遗传物质从而获得B品系的遗传性状的现象。转化现象是格里菲斯(Griffith)于1928年研究肺炎链球菌感染小白鼠的实验中发现,后经艾弗里(Avery)等于1944年证实的。 2.噬菌体感染实验 1952年,侯喜(A.D.Hershey)和蔡斯(M.Chase)为了证实噬菌体的遗传物质是DNA,用放射性同位素标记大肠杆菌T2噬菌体进行实验(图5-1)。 图5-1 噬菌体感染实验

3.植物病毒重建实验 1956年Fraenkel-Conrat等用含RNA的烟草花叶病毒进行了病毒(TMV)重建实验(图5-2),证实了RNA是遗传物质。 图5-2 TMV重建实验 5.1.2 DNA的结构与复制 一.DNA的化学组成 DNA是一种大分子化合物,由4种核苷酸组成。每一种核苷酸又由碱基、脱氧核糖和磷酸3部分构成。4种核苷酸的差异仅在于碱基不同。在DNA中,4种碱基是;腺嘌呤 (adenine,A)、鸟嘌呤(guanine,G)、胞嘧啶(cytosine,C)和胸腺嘧啶(thymine,T)。脱氧核糖1位上的碳原子与嘌呤9位上的氮原子相连,5位上的碳原子与磷酸相连,就构成了4种不同的核苷酸。 二.DNA的双螺旋结构模型 1953年美国遗传学家沃森(James Deway Watson)和英国物理学家克里克( Francis Harry Compton Crick)根据英国晶体衍射专家维尔金斯(Maurice Hugh Frederick Wilkins)对脱氧核糖核酸的X射线衍射资料,以及碱基含量分析、键长键角资料、酸碱滴定数据等,提出了像麻花、油条一样扭在一起的DNA双螺旋结构模型(图5-3、5-4)。

遗传学名词解释及复习解答(部分)

名词解释 染色体chromosome是指细胞分裂过程中,由染色质聚缩而呈现为一定数目和形态的复合结构 细胞周期cell cycle是细胞分裂增殖的周期,细胞从上一次分裂结束到下一次分裂结束所经历的时期减数分裂miosis是性母细胞成熟时,配子形成过程中发生的一种特殊形式的有丝分裂,所形成的配子染色体数减半。 生活周期life cycle即个体发育过程或称生活史,有性生殖的动植物生活周期是指从合子到个体成熟再到死亡所经历的一系列发育阶段 半保留复制semiconservative replicationDNA复制时,形成的新链DNA分子一链来自原来的亲本DNA分子,一链来自于新合成的DNA分子,这种复制方式称为半保留复制 性状character是指生物体所表现的形态特征和生理特征的总称 测交test cross是指被测验个体与隐性纯合个体间的杂交 等位基因allele控制一对相对性状位于同源染色体上对应位点的两个基因 基因互作interaction of gene不同对基因间相互作用共同决定同一单位性状表现结果的现象 连锁遗传linkage指在统一同源染色体上的非等位基因连在一起而遗传的现象 连锁群linkage group存在于同一染色体上的基因群 基因突变gene mutation指基因内部发生了化学性质的变化,与原来的基因形成对性关系 野生型wild type自然群体中最常见的类型 整倍体euploid 染色体数目是x整数倍的个体或细胞 非整倍体aneuploid正常染色体数(2n)的基础上增加或减少1条或若干染色体的个体或细胞 基因组genome指一个生物单倍体的染色体的数目即生物体全部遗传物质的总和 数量性状quantitative trait表现连续变异的性状 遗传率heritability指遗传方差在总方差(表型方差)中所占的比值,可以作为杂种后代进行选择的一个指标。 近亲繁殖inbreeding指血统或亲缘关系相近的两个个体间的交配,其极端类型为自交 轮回亲本recurrent parent被用来连续回交的亲本 杂种优势heterosis指两个遗传组成不同的亲本杂交产生的杂种一代,在生长势、生活力、繁殖力、产量和品质上比其亲本优越的现象 细胞质遗传cytoplasmic inheritance由细胞内的基因即细胞质基因所决定的遗传现象和遗传规律 干细胞stem cell是一类具有自我复制能力的多潜能细胞,在一定条件下,它可以分化成多种功能细胞 孟德尔群体mendelian group在一个的群体内,个体间随机交配,遗传因子以各种不同的方式从一代传递到下一代,这种群体称为孟德尔群体 遗传漂变genetic drift在一个小群体内由于抽样误差造成的群体金银频率随机波动的现象 交换值crossing-over value指同源染色体的非姊妹染色单体间有关基因的染色体片段发生交换的频率 简答题: 1、有丝分裂和减数分裂的过程,遗传学意义。 有丝分裂的遗传学意义:P20 减数分裂的遗传学意义:P23-24 细胞有丝分裂的遗传学意义:(1)每个染色体准确复制分裂为二,为形成两个子细胞在遗传组成上与母细胞完全一样提供了基础。(2)复制的各对染色体有规则而均匀地分配到两个子细胞中去,使两个细胞与母细胞具有同样质量和数量的染色体。 细胞减丝分裂的遗传学意义:(1)雌雄性细胞染色体数目减半,保证了亲代与子代之间染色体数目

遗传学名词解释94257

遗传学名词解释 amitosis无丝分裂:细胞核拉长呈哑铃状分裂,中部缢缩形成2个相似的子细胞。分裂中无染色体和纺锤体形成。如:纤毛虫、原生生物、特化的动物组织。 mitosis有丝分裂:即体细胞分裂,通过分裂产生同样染色体数目的子细胞。在分裂中出现纺锤体。 a sexual reproduction无性生殖:通过有丝分裂,从一共同的细胞或生物繁殖得到的基因型完全相同的细胞 或生物。也即克隆(clone)。 sexual reproduction有性生殖:减数分裂和受精有规则地交替进行,产生子代的生殖方式。 endomitosis内源有丝分裂:即间期细胞的染色体复制后,但不发生核分裂,着丝点也不分裂。结果形成多线染色体。或染色体复制后着丝点分裂,但细胞核未分裂,则核内染色体成倍性增加,成为内源多倍体。 meiosis减数分裂:是一种特殊方式的细胞分裂,是在配子形成过程中发生的,包括两次连续的核分裂,但染色体只复制一次,因而在形成的四个子细胞核中,每个核只含有单倍数的染色体,即染色体数减少一半,所以把它叫做减数分裂。 alternation of generations世代交替:生活周期包括一个有性世代和一个无性世代,这样二者交替发生就称为世代交替。 allele等位基因:载荷在同源染色体对等的位点上的二个基因,这二个成对的基因称为等位基因。additive effect加性效应:是指各个基因位点上纯合基因型对基因型总效应的贡献的大小,这部分效应一般是累加性的。 dominant effect显性效应:是指同一基因位点内相对等位基因间的交互作用对基因型总效应的贡献。autopolyploid同源多倍体:指增加的染色体组来自同一物种,一般是由二倍体的染色体直接加倍得到。allopolyploid 异源多倍体:指增加的染色体组来自不同物种,一般是由不同种、属间的杂交种染色体加倍形成的。 apomixis无融合生殖:不经过雌雄配子融合而能产生种子的一种生殖方式,根据无融合生殖最后形成胚。aneuploid非整倍体:指体细胞核内的染色体不是染色体组的完整倍数,比该物种正常合子(2n)多或少一个以至若干个的现象。 atavism返祖遗传:在杂种后代重现祖先的某些性状,即为返祖遗传。 complementary effect互补作用:两对独立基因分别处纯合显性或杂合状态时,共同决定一种性状的发育。 当只有一对基因是显性,或两对基因都是隐性时,则表现为另一种性状,这种作用称为互补作用。(9:7)

遗传学名词解释

遗传学名词解释 11、性状:生物体或其组成部分所表现的形态、生理或行为特征称为性状(character/trait) 13、相对性状:不同生物个体在单位性状上存在不同的表现,这种同一单位性状的相对差异 称为相对性状 14、显性(dominate)性状:在子一代中出现来的某一亲本的性状。 15、隐性 (recessive)性状:在子一代中未出现来的某一亲本的性状。 17、基因型(genotype):指生物个体基因组合,表示生物个体的遗传组成,又称遗传型; 18、表现型(phenotype):指生物个体的性状表现,简称表型。 19、纯合基因型:具有一对相同基因的基因型称为纯合基因型(homozygous genotype),如 CC和cc;这类生物个体称为纯合体(homozygote)。 ●显性纯合体(dominant homozygote), 如:CC. ●隐性纯合体(recessive homozygote), 如:cc. 21、基因的分离定律:一对等位基因在杂合体中各自保持其独立性,在配子形成时,彼此分 开,随机地进入不同的配子,在一般情况下:F1杂合体的配子分离比 为1:1,F2表型分离比是3:1,F2基因型分离比为1:2:1 22、测交(test cross)法:即把被测验的个体与隐性纯合亲本杂交,根据侧交子代(Ft)的 表现型和比例测知该个体的基因型。 23、独立分配定律:支配两对(或两对以上)不同性状的等位基因,在杂合状态时保持其独 立性。配子形成时,各等位基因彼此独立分离,不同对的基因自由组合。 24、系谱分析法:用图解表明一个家族中某种性状(或遗传疾病)发生的情况,进而判断该 性状(或遗传疾病)的遗传方式。 27、外显率(penetrance):指在特定环境中,某一基因型(常指杂合子)个体显示出预期表型 的频率(以百分比表示)。就是说同样的基因型在一定的环境中有的 个体表达了,而有的个体可能没有表达,这样外显率就小于100% ——不完全外显。外显率为100%——完全外显 28、表现度(expressivity):是指具有相同基因型的个体之间基因表达的变化程度。 29、共显性/并显性:一对等位基因的两个成员在杂合体中都表达的遗传现象。 30、镶嵌显性:由于等位基因的相互作用,双亲的性状在子代同一个体的不同部位表现的镶 嵌图式。 31、隐性致死基因:在杂合时不影响个体的生活力,但在纯合时有致死效应的基因。 32、显性致死基因(dominant lethal gene):在杂合状态下即表现致死作用的致死基因 33、复等位基因:在群体中占据某同源染色体同一座位的两个以上的决定同一性状的基因 34、基因互作:基因在决定同一生物性状表现时,所表现出来的相互作用。 35、互补基因:两对非等位的显性基因同时存在并影响生物的某同一性状时才使之表现该性 状,其中任一基因发生突变都会导致同一突变性状出现,这类基因称为互补基因。 37、叠加效应:不同基因对性状产生相同影响,只要两对等位基因中存在一个显性基因,表 现为一种性状;双隐性个体表现另一种性状;F2产生15:1的性状分离比例。 这类作用相同的非等位基因叫做叠加基因 38、上位效应:影响同一性状的两对非等位基因中的一对基因(显性或隐性)掩盖另一对显 性基因的作用时,所表现的遗传效应称为上位效应,其中的掩盖者称为上位 基因,被掩盖者称为下位基因。 39、显性上位:在上位效应中,起掩盖作用的是一个显性基因,使另一个显性基因的表型被 抑制,孟德尔F2表型比率被修饰为12:3:1

遗传学名词解释

名词解释: 1、遗传与变异:生物通过繁殖的方式来繁衍种族,保持生命在世代间的连续,保持子代与亲代的相似与类同,这种现象叫遗传,遗传的本质就是遗传物质通过不断地复制和传递,保持亲代与子代间的相似与类同,与此同时,亲代与子代之间,子代个体之间总存在着不同程度的差异,包括环境差异与遗传物质差异,这种差异就是变异。 2、遗传变异:变异不一定都能遗传,只有由遗传物质改变导致的变异可以传递给后代,这种变异叫遗传变异。 3、遗传学: 经典定义:研究生物的遗传和变异现象及其规律的一门学科。 现代定义: (1)在生物的群体、个体、细胞和基因等层次上研究生命信息(基因)的结构、组成、功能、变异、传递(复制)和表达规律与调控机制的一门科学--基因学。 (2)研究基因和基因组的结构与功能的学科。 名词解释: 1、性状:在遗传学上,把生物表现出来的形态特征和生理特征统称为性状。 2、相对性状:同一性状的两种不同表现形式叫相对性状。 3、显性性状:孟德尔把F1表现出来的性状叫显性性状,F1不表现出来的性状叫隐性性状。 4、性状分离现象:孟德尔把F2中显现性状与隐性性状同时表现出来的现象叫做性状分离现象。 5、等位基因与非等位基因:等位基因是指位于同源染色体上,占有同一位点,但以不同的方式影响同一性状发育的两个基因。非等位基因指位于不同位点上,控制非相对性状的基因。 6、自交:F1代个体之间的相互交配叫自交。 7、回交:F1代与亲本之一的交配叫回交。 8、侧交:F1代与双隐性个体之间的交配叫侧交。 9、基因型和表型 基因型是生物体的遗传组成,是性状得以表现的内在物质基础,是肉眼看不到的,要通过杂交试验才能检定。如cc,CC,Cc。 表型是生物体所表现出来的性状,是基因型和内外环境相互作用的结果,是肉眼可以看到的。如花的颜色性状。 10、纯合体、杂合体 由两个同是显性或同是隐性的基因结合的个体,叫纯合体,如CC,cc。由一个显性基因与一个隐性基因结合而成的个体,叫杂合体,如Cc。 11、真实遗传 指纯合体的物种所产生的子代表型与亲本表型相同的现象。纯合体所产生的后代性状不发生分离,能真实遗传,杂合体自交产生的后代性状要发生分离,它不能真实遗传。 名词解释: 1、染色体与染色质:是指核内易于被碱性染料着色的无定形物质,是由DNA、组蛋白、非组蛋白及少量RNA组成的复合体,以纤丝状存在于核膜内面。当细胞分裂时,核内的染色质便螺旋化形成一定数目和形状的染色体。两者是同一物质在细胞分裂过程中表现的不同形态。核内遗传物质就集中在这染色体上。 2、常染色质与异染色质:着色较浅,呈松散状,分布在靠近核的中心部分,是遗传的活性部位。着色较深,呈致密状,分布在靠近核内膜处,是遗传的惰性部位。又分结构异染色质或组成型异染色质和兼性异染色质。前者存在于染色体的着丝点区及核仁组织区,后者在间期时仍处于浓缩状态, 3、核小体:是染色质的基本结构单位,直径10nm,其核心是由四种组蛋白(H2A、H2B、H3、H4各2分子共8分子)构成的扁球体。 4、同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 5、联会:分别来自父母本的同源染色体逐渐成对靠拢配对,这种同源染色体的配对称为联会。

遗传学名词解释.

第一章绪论 名词解释 1. 遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。 2. 遗传:是指亲代与子代相似的现象。如种瓜得瓜、种豆得豆。 3. 变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。如高秆植物品种可能产生矮杆植株,一卵双生的兄弟也不可能完全一样。 第二章遗传的细胞学基础 名词解释 1.细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。其中有丝分裂过程分为①DNA合成前期(G1期);②DNA合成期(S期);③DNA合成后期(G2期);④有丝分裂期(M期)。 2.原核细胞:一般较小,约为1~10mm。细胞壁是由蛋白聚糖(原核生物所特有的化学物质)构成,起保护作用。细胞壁内为细胞膜。内为DNA、RNA、蛋白质及其它小分子物质构成的细胞质。细胞器只有核糖体,而且没有分隔,是个有机体的整体;也没有任何内部支持结构,主要靠其坚韧的外壁,来维持其形状。其DNA存在的区域称拟核,但其外面并无外膜包裹。各种细菌、蓝藻等低等生物由原核细胞构成,统称为原核生物。 3.真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。 4.染色质:是指染色体在细胞分裂的间期所表现的形态,呈纤细的丝状结构,含有许多基因的自主复制核酸分子。 .染色体:是指染色质丝通过多级螺旋化后卷缩而成的一定形态结构。细菌的全部基因包容在一个双股环形DNA构成的染色体内。真核生物染色体是与组蛋白结合在一起的线状DNA 双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。(染色体指任何一种基因或遗传信息的特定线性序列的连锁结构。)5.染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。 6.姐妹染色单体:二价体中的同一各染色体的两个染色单体,互称姐妹染色单体,它们是间期同一染色体复制所得。 7.非姐妹染色单体:单体二价体的不同染色体之间的染色单体互称非姐妹染色单体,它们是同源染色体这些间期各自复制所得。 8.联会:减数分裂中,同源染色体的配对过程。 9.同源染色体:生物体中,形态和结构相同的一对染色体,成为同源染色体。 10. 异源染色体:生物体中,形态和结构不同的各对染色体互称为异源染色体。 12. 染色体组:指包含有一套对于生物体的生命活动所不可缺少的,最小限度的基因群的一组染色体。 13. 着丝点:在细胞分裂时染色体被纺锤丝所附着的位置。一般每个染色体只有一个着丝点,少数物种中染色体有多个着丝点,着丝点在染色体的位置决定了染色体的形态。 14. 染色粒:在有丝分裂和减数分裂前期的染色体,由DNA丝局部螺旋化而产生颗粒状结构。 15. 染纽:指某些生物中(玉米、紫苜蓿),位于染色体的末端或中间的特别大的染色

遗传学名词解释

外显子:把基因内部的转译部分即在成熟mRNA中出现的序列叫外显子。 复等位基因:在种群中,同源染色体的相同座位上,可以存在两个以上的等位基因,构成一个等位基因系列,称为复等位基因。 F因子:又叫性因子或致育因子,是一种能自我复制的、微小的、染色体外的环状DNA分子,大约为大肠杆菌全长的2%,F因子在大肠杆菌中又叫F质粒。 母性影响:把子一代的表型受母本基因型控制的现象叫母性影响。 伴性遗传:在性染色体上的基因所控制的形状与性别相连锁,这种遗传方式叫伴性遗传。 杂种优势:指两个遗传组成不同的亲本杂交产生的杂种一代在生长势、生活力、繁殖力、抗逆性以及产量和品质等性状上比双亲优越的现象。 F′因子:把带有部分细菌染色体基因的F因子叫F′因子。 隔裂基因:真核类基因的编码顺序由若干非编码区域隔开,使阅读框不连续,这种基因称为隔裂基因,或者说真核类基因的外显子被不能表达的内含子一一隔开,这样的基因称为隔裂基因。 细胞质遗传:在核外遗传中,其中由细胞质成分如质体、线粒体引起的遗传现象叫细胞质遗传。 同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 转座因子:指细胞中能改变自身位置的一段DNA序列。 基因工程(遗传工程):狭义的遗传工程专指基因工程,更确切的讲是重组DNA技术,它是指在体外将不同来源的DNA进行剪切和重组,形成镶嵌DNA分子,然后将之导入宿主细胞,使其扩增表达,从而使宿主细胞获得新的遗传特性,形成新的基因产物。 常染色质与异染色质:着色较浅,呈松散状,分布在靠近核的中心部分,是遗传的活性部位。着色较深,呈致密状,分布在靠近核内膜处,是遗传的惰性部位。又分结构异染色质或组成型异染色质和兼性异染色质。前者存在于染色体的着丝点区及核仁组织区,后者在间期时仍处于浓缩状态。 等显性(并显性,共显性):指在F1杂种中,两个亲本的形状都表现出来的现象。 限性遗传与从性遗传:限性遗传是指位于Y染色体(XY型)或W染色体(ZW型)上的基因所控制的遗传性状只限于雄性或雌性上表现的现象。从性遗传指常染色体上的基因控制的性状在表型上受个体性别影响的现象。 连锁群:存在于一个染色体上的各个基因经常表现相互联系,并同时遗传于后代,这种存在于一个染色体上在遗传上表现一定程度连锁关系的一群基因叫连锁群。 性导:利用F′因子形成部分二倍体叫做性导。 核型和核型分析:通常把有丝分裂中期染色体的形态、大小和数目称为核型,通过细胞学观察,取得分散良好的细胞分裂照片,就可测

高考生物遗传变异和进化

2009高考生物二轮专题辅导 遗传变异和进化 【命题趋向】 一、直击考点 [知识点] [能力点] Ⅰ.理解能力要求:能阐述本专题所学知识的要点,掌握遗传规律的本质并适用范围。能运用相关知识对遗传问题进行解释、推理、做出合理的判断或得出正确的结论。例如,能正确阐述孟德尔遗传定律的内容和符合孟德尔遗传规律的基因位置。能理解基因与环境对生物性状的影响。 Ⅱ.实验与探究能力要求:能独立完成本专题中的“DNA的粗提取与鉴定”“制作DNA双螺旋结构模型”“性状分离比的模拟实验”。并能对设计实验,探究控制某性状的基因的显隐关系、遗传规律,能对遗传的试验现象和结果进行解释、分析和处理。能对实验方案做出恰当的评价和修订。 Ⅲ.获取信息的能力:会鉴别、选择试题给出的相关生物学信息,能运用信息,结合所学知识解决与遗传和进化有关的知识,能运用提供的新信息补充完善本专题中的问题。能用文字、图表、曲线等形式准确描述相关能力,例如,用遗传图解分析解释说明相应的遗传现

象。 [高考热点] 在本专题的考点中,验证DNA是遗传物质的思路与方法、DNA的提取和鉴定原理、遗传基本规律的实质及实践运用。常见遗传图解的书写、计算及实验设计与分析、基因突变、基因重组和染色体变异的概念,以及各种育种方式的方法、原理及流程设计等知识是高考中的热点而且所占分值很高,有逐年增加的趋势。 二、本专题命题方向和应试策略 Ⅰ.关于性状遗传的探究实验仍被看好 高考试题的创新设计正朝着开发性、能力型目标迈进,就本专题的知识特点看,直接考查来源于课本的纯验证性实验考查的越来越少,而源于教材高于教材具有材料背景的新情境探究性实验题已逐渐演变为主流题型,如关于牛有角无角的显隐关系的判断、果蝇体色遗传德判断等。但是,情境新,理不新,考查点,还是课本上介绍的原理和规律。所以,考生在学习本部分知识时,绝对不能陷入仅仅对遗传机率的计算中,而应掌握遗传实验的理念:怎样判断某基因是核遗传还是质遗传、怎样判断某基因是在常染色体上还是在性染色体上、怎样确定一对相对性状的显隐关系等。 Ⅱ.从分子水平考查遗传现象的命题将受重视 值得对于分子水平解释遗传和变异的现象将会在高考中有所体现,例如:DNA分子的结构、复制、基因对生物性状的控制过程以及真、原核生物基因的表达;从减数分裂的角度解释生物的变异和遗传等。 Ⅲ.相关材料分析题会在高考中出现 本专题所涉及的生物学领域近些年发展很快,例如关于生物进化的证据、关于实验室生物进化的速度,关于人类基因组计划、基因工程等等。高考中,这些新发现、新成果无疑是考查学生获取信息的能力的好材料。但是,考查的知识仍会是课本设计的基本概念、原理、过程和方法,同时,也不能忽视材料中所给出新结论,这些新内容也许是对课本知识的补充或者完善。考生在复习时,应该明确,科学知识是可以变化的;并尽量广泛联系课本内的其他章节,尝试用遗传的角度去解决其他的生命现象。 【考点透视】 一、网络构建 [相对性状概念图]

医学遗传学名词解释

第一章绪论 无 第二章遗传的细胞学基础 1.常染色质:间期核纤维折叠盘曲程度小、分散度大、能活跃地进行转录的染 色质。 2.异染色质:间期核纤维折叠盘曲紧密、呈凝聚状态,一般无转录活性的染色 质,又分为结构异染色质和兼性异染色质两大类。 3.兼性异染色质:是在特定细胞的某一发育阶段由原来的常染色质失去转录活 性,转变成凝缩状态的异染色质,二者的转化可能与基因的表达调控有关。 4.Lyon假说:(1)雌性哺乳动物体细胞仅有一条X染色体有活性,其他的X染 色体在间期细胞核中螺旋化而呈异固缩状态的X染色质,在遗传上失去活性。 (2)失活发生在胚胎发育的早期(人胚第16天);在此之前所有体细胞中的X染色体都具有活性。(3)X染色体的失活是随机的,但是是恒定的。 5.剂量补偿:由于正常女性体细胞中的1条X染色体发生了异固缩,失去了转 录活性,这样就保证了男女性个体X染色体上的基因产物在数量上基本一致,这称为X染色体的剂量补偿。 第三章遗传的分子基础 1.外显子和含子:真核生物的基因为断裂基因,即结构基因是不连续排列的, 中间被不编码的插入序列隔开,编码序列称为外显子,编码序列中间的插入序列称为含子。 2.单一序列和高度重复序列:单一序列是在一个基因组中只出现一次或少数几 次,大多数编码蛋白质和酶类的基因即结构基因为单一序列。重复序列是指在基因组中有很多拷贝的DNA序列,有些重复序列与染色体的结构有关。 3.基因突变:是指基因在结构上发生碱基对组成或排列顺序的改变。 4.转换和颠换:转换是指一个嘌呤被另一个嘌呤所取代,或是一个嘧啶被另一 个嘧啶所取代。颠换指嘌呤取代嘧啶,或嘧啶取代嘌呤。 5.同义突变:是指碱基替换使某一密码子发生改变,但改变前后的密码子都编 码同一氨基酸,实质上并不发生突变效应。 6.错义突变:是指碱基替换导致改变后的密码子编码另一种氨基酸,结果使多 肽链氨基酸种类和顺序发生改变,产生异常的蛋白质分子。 7.无义突变:是指碱基替换使原来为某一个氨基酸编码的密码子变成终止密码 子,导致多肽链合成提前终止。 8.终止密码突变:是指碱基替换使原有的一个终止密码子变成编码某个氨基酸 的密码子,导致多肽链继续延长,直到下一个终止密码子出现才停止,结果形成过长的异常多肽链。 9.遗传印记:不同性别的亲本传给子代的同一染色体或基因,当发生改变时可 引起不同的表型,这种现象称为遗传印记。 10.移码突变:是指在DNA编码顺序中插入或缺失一个或几个碱基对(但不是3 个或3的倍数),造成这一位置以后的一系列编码发生移位错误。移码突变的结果使变动部分以下的多肽链氨基酸种类和顺序发生改变,影响蛋白质或酶的生物学功能。

相关主题
文本预览
相关文档 最新文档