当前位置:文档之家› 量子力学数学形式表述的由来和特点

量子力学数学形式表述的由来和特点

量子力学数学形式表述的由来和特点
量子力学数学形式表述的由来和特点

量子力学数学形式表述的由来和特点

量子力学是用数学语言来调和两种对立的经典概念波和粒子应用到原子现象上描写同一微观客体的佯谬(表观矛盾)的。波概念的用场在于通过波动的各部分振幅的(线性)叠加引起加强削弱的所谓干涉效应来说明原子现象在空间时间上的强弱分布;粒子概念的用场在于说明原子过程的单个性特色。

尽管这两者在表观上是矛盾的,事实表明,两种概仿可借助作用量量子充当调停者的角色对应起来,写出如下两种等式:

普朗克(1900)——爱因斯坦(1905)——玻尔(1913)关系:

能量/h=频率;

爱因斯坦(1909)——德布罗意(1923)——薛定谔(1926)关系:

动量/h=波数

两式的左边由粒子概念组成,右边由波概念组成。象玻恩所说,等式本身就完全不合理。何以有这种对应到今仍是个谜。但是玻恩也认为,如果放弃物理学一向接受的决定论原理,这种等式就通过量子力学的建立而合理化了。

可以认为,为了解释原子现象在表观上的二得性,物理学家面临的问题是要把经典物理学作一个合理的推广,以便把作用量量子以合理的方式合并进去。这一困难任务终于通过引进合适的数学抽象完成了。完成的过程及其特点大致如下:

推导量子论的数学结构,不管用粒子图景还是用波图景,都靠两个来源:经验事实和玻尔的对应原理。但是,这种推导并不是数学意义上的推导,因为所得各方程本身就是所建立理论的假定。虽然这些假定看来很合理,最后的证明还得看它们的预言和实验符合得怎样。

(一)矩阵力学

1925——

26年海森堡发起,随后经玻恩和约旦协助,从粒子类似出发,在“试图解开原子谜,必须只考虑可观察的数量”这个观念指导下,试图推出量子力学的数学结构。出发点仍是经典力学的数学结构,即哈密顿的正则运动方程。根据原子物理学中公认的经验事实(里德堡——

里兹原子光谱线并合规则,分立的原子能量值的存在,玻尔频率关系),在对应原理的指引下,他们发出原子稳定态的理论要求电子坐标、动量及其函数都可用(厄米)矩阵来表示。这个稳定态理论构成量子力学的初始阶段,在其中分立能量值的存在是通过把多周期性振动这个经典运动固定下来而得到的。

他们不考虑原子内部是否有观察不到的电子轨道的存在,离开在空间时间上的客观过程这个观念,只用和光谱线联系的频率和振幅这两种直接可观测的数值来组成原子内部电子运动的力学量的表示,从而找到了能综合原子光谱线经验事实、确定原子稳定态的量子条件。这个条件相当于位置矩阵q和动量矩阵p的乘积次序不能随意对调的一个神秘方程,即所谓的对易关系:

-

i

qp=

pq

这个计算规则被认为反映着与q、p相应的测量操作的不可对易性。接受这个规则,

稳定态力学性质,包括能量确定值和其他量的平均值,以及两稳定态之间量子跃迁过程发生的几率(相对次数)就都能推算出来,而不带任何任意性。这就是矩阵力学的功效。实际上也就是整个量子力学能办到的那类功效。玻尔认为这是对应原理的第一次定量表述。由于把物理量看成是具有不连续结构的矩阵,把量子跃迁过程看成不能用传统概念(即不能作为空间时间上的过程)来描写或抗拒任何描写的不连续过程,所以矩阵力学在形式上强调了原子可观测量的不连续性和原子客体象粒子的这一面。

(二) 波力学

1923年德布罗意根据类比提出电子也和光子一样有其波粒二得性,认为和电子连在一起有个导航波在指导电子的行动,并发现可按前述第二个关系(动量和波数的关系)用驻波解释原子中稳定的玻尔电子轨道。德布罗意的导航波理论经哥派的泡里(1927)举出一个不能和事实符合的碰撞例子给否决了。

1926年初,薛定谔把电子看作实质上是一团带电物理作松紧振动的实体波,并据此从经典力学类似出发,试图建立原子发光理论。他也按上述第二个关系发出这个物质波的振幅服从一个微分方程(薛定谔方程)。它是物质波随时间在空间上演变的因果规律。解此方程,可以计算原子中电子的驻波式振动频率(相对于玻尔的稳态能量),并用经典电动力学计算以拍频率放出的辐射频率及强度。这样,他就从完全新的方式(不用不连续的代数法,恢复连续的微积分法)算出和矩阵力学一致的结果,但其运算远比矩阵力学简便。他在一不假定有分立能级存在,二不假定有量子跃迁,三不假定稳态方程的本征值有频率以外的任何其也意义的坚定信念下,得到了如同玻尔的量子假定都成立那样的相同结果。他认为物质波完全可以经作象电磁波、声波那样在时空上的过程,这立刻排除了象量子跃迁那样含糊的观念,原子发光就象无线电发射器的天线发出无线电波那样容易地理解,细锐光谱线的存在不再视为怪事。

哥派接受波力学方程这个数学形式,认为它是从波类似出发得出的量子论在形式表述上的新进展,对数学上的澄清和简化作出了莫大的贡献。但是,他们不能接受薛定谔完全放弃粒子图景,把电子看成一团带电物质的连续分帽或一个波包实体这一观点。他们论证了这一观点不但不能保持下去,并且认为也无助于解释普朗克辐射律。他们特别指出,爱因斯坦对普朗克律的推导不可避免地要求原子能量应取分立数值,并随时作不连续的突变。此外,哥派认为薛定谔

力景无法直接观测证实,并且许多事实证明不能放弃电子类似于粒子的一面。 人们曾试图跟随薛定谔把2ψm 作为物质分布密度,把2ψe 当作电荷分布密度,

而玻恩则首先于1926年底站在粒子的立场上,把2ψ看成r

处t 时找到这个电子的几率

密度。这是对波函数作出的一个统计性解释,或者说非决定论的解释。这个解释不久就得到哥派的一致承认。他们把ψ看成仅是几率知识波,而不是客体存在的实体,即ψ不代表实在,而只代表人们对实在的不完备的知识。

按哥派的解释,一原子的物理场合的特征得由其波函数ψ业表示,它使我们能表示出任何一个力学量(可观测量)在它的各个可能有的数值上分布的几率定律。服从薛定谔方程的ψ圆满的描写出任何时刻的物理状况,即它能用一个几率性的统计说明来答复

在经典概念上关于状况的一切有意义的问题。

(三) 整套量子力学(变换理论或表象理论)

1926-

1927年间狄拉克和约旦发展出概括矩阵力学和波力学的普遍量子力学理论,即普遍的表象理论或变换理论。基本观念是从矩阵力学和波力学找出共同特色,连成一个体系,借助于这个体系得到量子论的各种不同形式,它们适合于在不同的特殊问题中使用,各有各的方便之处。这就说明了矩阵力学和波力学有其完全的等效笥,这个等效性最早由薛定谔本人证明了。

量子力学认为关于原子体系的一切信息都是以测量结果的形式

得到的,所以原子体系的运动状态决定于对它所做的各个测量。任何时刻体系都处于一定的运动状态上,这个态可看成是体系的可观察性质的总和。量子力学的特征之一是把一体系的几个不同状态叠加起来构造出一个新状态,正象很多具有一定单个频率的平面波叠加起来组成声波光波那样。即在量子力学中体系的动力学状态有个怪特征,即服从线性叠加大原理。根据这个叠加原理可以建立量子论的更为普遍的表示方式(表象),它可被应用到没有经典类似的那些新的量子化体系上。

线性叠加原理说的是同一客体可以存在于同时有两个以上的状态组成的线性叠加态,即同一客体的任两个态可组合成组合态2211ψ+ψc c 。这就迫使人们认为原子客体的任何状态ψ都不等同于客体,它只表达关于客体的信息或知识。这一原理可上某种操作步骤来实现。在观测之前,客体处于2211ψ+ψc c 态上被说成是客体同时部分地处于1ψ,部分地处于2ψ态上,客体的这两种性质在统计上共存。我们不能说在观测之前客体就已经处于1ψ或2ψ,因为在这个组合态上多次测量某个可观察量的平均值含有1ψ和2ψ的干涉项,它的存在只能被测量中客体和仪器的相互作用破坏。

线性叠加原理这个基本假定允许用数学的线性空间——希尔伯特空间——

的(复数)矢量来代表原子客体的状态。这个空间对应于波力学中客体体系的位形空间的(复数)波函数,因为这种空间也有完备性特征,即任何一组合用的波函数的线性组合都收敛到另一个合用的波函数。在希尔伯特空间中线性独立矢量为数无限多,即这个空间的维数是无限大,但其子空间的维数则可以是有限的。希尔伯特空间的任何矢量都等于一组线性独立矢量即“基矢”的线性组合。这些基矢组成希尔伯特空间的坐标轴。

和状态联系着的位置和动量的函数都算是体系的可观察量。在量子力学中任何可观察量都用一个(厄米)算符来表示,它代表一个测量。可观察量的算符作用于状态上一般就把这个态变为另一个态。能同时有确定值的两个可观察量的算符对易;不同同时有确定值的两个可观察量的算符不可对易。成对的所谓共轭量A 及B 的对易关系是:

i BA AB =-

体系的任一可观察量在这个量的本征态上才有其确定值,这个确定值叫这个量的本征值

。可对易量有共同本征态,所以可同时有确定值,不可对易量则否。任何可观察量的一组本征态在希尔伯特空间中是一组线性独立矢量,可取为希尔伯特空间的基矢。

对有经典类似的问题来说,用经典力学的哈密顿函数H,在正则方程的启示下,得以建立原子体系的可观察量的统计平均值随时间演变的因果律方程。但这个因果律不是原子客体本身在空间时间上行动的因果律,而只是确定几率振幅的统计知识的因果律。所以量子力学本质上是几率振幅的理论。薛定谔

主程仅系其形式的一种,是在能量已知后求位置分布的几率振幅的理论。在其他表示形式上,已知量可以不是能量,所求的可以不是位置禁上的分布,命名

如可以是动量坐标上分布的几率振幅。这些普遍性问题都能用变换理论来解出。

变换理论反映了原子现象测量的特色。以叠加原理为基础的这个统计理论,不但预言测量结果的各个可能数值,也预言在测量活动中某特殊数值出现的几率。实验安排可制备出某力学量A的本征态,随后测量另一不与之对易的力学量B时,政府只能预言多次等同实验所测得B的各个可能结果的几率分布,即各种结果发生的相对次数。它由原态按叠加原理用B的各个本征态展开,各态的系数作为几率振幅而给出。这个系数就是希尔伯特空间中原态矢量 和B的相应本征态的标量积,即原态在这个本征矢上的投影。但当这个观察已被做出且明确得到某值时,就不得不认为测量以前的原有状态立刻不连续的突变到量B的该本征态上。很多人不能接受测量活动导致的这种状态突变即状态收缩。它使知识因果律在测量时不能与此后的知识因果律连结上。

这个必然要有的状态突变或因果律中断的结论反映着“观察本身不连续地改变了几率函数,它人一切可能事件中挑选出实际上发生的那一个。因为通过观察,我们对体系的知识不连续地改变了,其数学表示也发生了不连续的改变,所以就有个“量子跳跃”。海森堡强调,我们的知识肯定能突然改变,这个事实就是用“量子跳跃”这个词的根据。所以,从“可能的”跃迁到“实在的”跃迁是在观测活动中发生的;可以说,一旦客体和测量装备发生了相互作用,从“可能的”到“实在的”这个跃迁也随即发生。显然,哥派的这一解释完全是主观的。

由以上可观,在量子力学里原子客体的状态可改变的方式有二:其一,在未受观察的干扰时,在严密的因果律支配着;其二,在对处于某状态上的客体做可观察量Q的测量时刻,这个状态立刻收缩到Q的某一个本征态上,观察到这一结果的几率由原态按态叠加原理所作的展开式中这个本征成的系数决定。后一种改变是不连续的突变,其过程本身量子力学不能描写(这点爱因斯坦很反对,他要求量子力学应该能描写在一切量子跃迁过程里粒子究竟干了些什么),这被认为是无决定性的因果律可循。这就意味着,量子力学定律只能提供对一原子体系相断做观测所得结果之间的几率联系。整个量子力学只不过是从某一时刻的一个实验结果计算后一时刻实验结果所发生的几率的一种方法。哥派认为,量子力学只能做到这一点,不能象经典力学中那样可以用客观实在来表述。由此可知,在相继做出的两个实验之间的时期内不必要求量子力学的状态函数(波函数)有任何物理意义。

在形式上强调波和连续性方面的波力学和在形式上强调粒子和不连续性方面的矩阵力学是整套量子力学中各种等效形式的两个极端。不管哪一形式都有着描写关于原子客体的知识随时间演变的严格数学定律。但是,这个因果律却不是描述客体本身在空间时

间上行动的因果律,并且这个知识因果律也不能贯彻到底,因为每次观测都打断知识工事件的连续演变程序,并突然引进新的起始条件。这正是量子力学的特色。这个状态突变或因果链中断既然是由测量引起的,它就被认为起因于在每次观测时必然出现的客体和量具之间的相互作用,这个相互作用在原则上不能客观的描写,它是个抗拒任何描述的量子跃迁过程。

可以体会,上述量子力学数学结构概貌已包括了前已申述的有h存在的各个直接后果。玻尔说过:“只要把作用量量子h看作为没有通常解释的要素,这个数学形式表示可被当作经典物理学概念结构的合理的推广。”而这个表示指的是:“在量子力学里,基本物理量已由符号算子所代替,这些符号受特设计算规则的支配,这些规则涉及到作用量量子,并反映着与这些量相就的测量操作的不能调换性。”

曾谨言量子力学(卷I)第四版(科学出版社)2007年1月...

曾谨言《量子力学》(卷I )第四版(科学出版社)2007年1月摘录 第三版序言 我认为一个好的高校教师,不应只满足于传授知识,而应着重培养学生如何思考问题、提出问题和解决问题。 这里涉及到科学上的继承和创新的关系。“继往”中是一种手段,而目的只能是“开来”。 讲课虽不必要完全按照历史的发展线索讲,但有必要充分展开这种矛盾,让学生自己去思考,自己去设想一个解决矛盾的方案。 要真正贯彻启发式教学,教师有必要进行教学与科学研究。而教学研究既有教学法的研究,便更实质性的是教学内容的研究。从教学法来讲,教师讲述一个新概念和新原理时,应力求符合初学者的认识过程。在教学内容上,至少对于像量子力学这样的现代物理课程来讲,我信为还有很多问题并未搞得很清楚,很值得研究。 量子力学涉及物质运动形式和规律的根本变革.20世纪前的经典物理学(经典力学、电动力学、热力学与统计物理学等),只适用于描述一般宏观 从物质波的驻波条件自然得出角动量量子化的条件及自然理解为什么束缚态的能量是量子化的:P17~18; 人类对光的认识的发展历史把原来人们长期把物质粒子看作经典粒子而没有发现错误的启发作用:P18; 康普顿实验对玻尔电子轨道概念的否定及得出“无限精确地跟踪一个电子是不可能的”:P21; 在矩阵力学的建立过程中,玻尔的对应原理思想起了重要的作用;波动力学严于德布罗意物质波的思想:P21; 微观粒子波粒二象性的准确含义:P29; 电子的双缝衍射实验对理解电子波为几率波的作用:P31 在非相对论条件下(没有粒子的产生与湮灭),概率波正确地把物质粒子的波动性与粒子性联系起来,也是在此条件下,有波函数的归一化及归一化不随时间变化的结果:P32; 经典波没有归一化的要领,这也是概率波与经典波的区别之一:P32; 波函数归一化不影响概率分布:P32 多粒子体系波函数的物理意义表明:物质粒子的波动性并不是在三维空间中某种实在的物理量的波动现象,而一般说来是多维的位形空间中的概率波。例如,两个粒子的体系,波函数刻画的是六维位形空间中的概率波。这个六维空间,只不过是标志一个具有6个自由度体系的坐标的抽象空间而已。 动量分布概率: 1 波包的频谱分析 具有一定波长的平面波可表示为: ()e x p ()k x i k x ψ= (A1.1) 波长2/k λπ=,其特点是是波幅(或强度)为常数.严格的平面波是不存在的,实际问题中碰到的都是波包,它们的强度只在空间有限区域不为0.例如,高斯波包 221()exp()2x a x ψ=- (A1.2) 其强度分布222()exp()x a x ψ=-,如图A.1所示.可以看出,波包主要集中在1 x a < 区域中. 所以波包宽度可近似估计为:

量子力学的概率解释

引言:黑体辐射等实验的研究以及光谱实验的诞生,促使了人们对微观世界的不断认识。经典力学的局限性也日益显著,所面临的一些棘手的问题也越来越多。因此迫使我们不得不抛弃经典力学,而重新建立一个全新的力学体系——量子力学。该力学体系描绘了微观世界中,微观粒子的运动行为及其力学特性。 题目:量子力学的概率解释 内容摘要:在经典力学中,我们知道物体的运动可由牛顿第二定律描述: 22(((),(),()))d r F m r x t y t z t dt ==r u r r ;方程的解即为物体的动力学方程。由此方程的解: ((),(),())r x t y t z t =r ;在给定的初始条件下我们即可以知道任意时刻物体在空间所处的位 置。而在微观领域中,微观粒子的运动并不适用于上述的方程所描述。实验证明他们在某一 时刻出现在空间的哪一点上是不确定的。应该用方程μH E ψ=ψ来描述。比如电子的衍射现象,海森堡的不确定性关系,还有薛定谔为批评哥本哈根学派对量子论的观点而提出的一 个思维实验(薛定谔猫)。本文利用概率与统计的相关概念对量子力学做出一些相关的阐明,并对一些相关的问题(衍射,薛定谔猫等)进行说明。对单电子体系薛定谔方程作出较为详细的讨论,并加以例题进行进一步说明。 关键词:量子力学、概率与统计、电子衍射现象、薛定谔猫、薛定谔方程 概率统计理论的简单介绍: 随机变量X :X 是定义在样本空间Ω上的实值函数;对面门一样本点ω,()X ω是一个实数。X 离散取值时,为离散随机变量。X 连续取值时,为连续型随机变量。本文只介绍连续型随机变量。 概率密度函数:当X 为连续型随机变量时,例如一条直线AB 如图:A 0 1 B 假设现在有一个点落到了AB 上,我们是否能问该点恰好落在0.5x =处的概率是多少?显然这是毫无意义的问题,因为该点恰好落在任意一点上的概率均为零。(基本事件的个数为无穷) 我们只能问该店落在某一区间[,]a b 上的概率是多少?例如[,][0,0.5]a b =;此时概率 10.5/12 p == 。 因此设X 是一随机变量,如果存在非负函数()f x 使得对任意满足a b -∞≤≤+∞的,a b 有 ()()b a p a X b f x dx ≤≤=?;就称()f x 是随机变量X 的概率密度函数。 显然()f x 应该具有如下性质: (1) ()1f x dx +∞ -∞ =? ;(量子力学中波函数的归一化性质) (2)()0.p X a ==于是()()()p a X b p a X b p a X b ≤≤==≤p p p ; (3)对于数集,()()A A p X A f x dx ∈= ?;

量子力学初步-作业(含答案)

量子力学初步 1. 设描述微观粒子运动的波函数为(),r t ψ ,则ψψ*表示______________________________________;(),r t ψ 须满足的条件是_______________________________; 其 归 一 化 条 件 是 _______________________________. 2. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将_______________________________. (填入:增大D 2倍、增大2D 倍、增大D 倍或不变) 3. 粒子在一维无限深方势阱中运动(势阱宽度为a ),其波函数为 ()()30x x x a a πψ= << 粒子出现的概率最大的各个位置是x = ____________________. 4. 在电子单缝衍射实验中,若缝宽为a =0.1 nm (1 nm = 10-9 m),电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量y p ?= _________N·s. (普朗克常量h =6.63×10-34 J·s) 5. 波长λ= 5000 ?的光沿x 轴正向传播,若光的波长的不确定量λ?= 10-3 ?,则利用不确定关系式x p x h ??≥可得光子的x 坐标的不确定量至少为_________. 6. 粒子做一维运动,其波函数为 ()00 x Axe x x x λψ-≥= ≤ 式中λ>0,粒子出现的概率最大的位置为x = _____________. 7. 量子力学中的隧道效应是指______________________________________ 这种效应是微观粒子_______________的表现. 8. 一维无限深方势阱中,已知势阱宽度为a ,应用测不准关系估计势阱中质量为m 的粒子的零点能量为____________. 9. 按照普朗克能量子假说,频率为ν的谐振子的能量只能为_________;而

量子力学选择题1

量子力学选择题 (1)原子半径的数量级是: A.10-10cm; B.10-8m C. 10-10m D.10-13m (2)若氢原子被激发到主量子数为n的能级,当产生能级跃迁时可能发生的所有谱线总条数应为: A.n-1 B .n(n-1)/2 C .n(n+1)/2 D .n (3)氢原子光谱赖曼系和巴耳末系的系线限波长分别为: A.R/4 和R/9 B.R 和R/4 C.4/R 和9/R D.1/R 和4/R (4)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为: A.3Rhc/4 B. Rhc C.3Rhc/4e D. Rhc/e (5)氢原子基态的电离电势和第一激发电势分别是: A.13.6V和10.2V; B –13.6V和-10.2V; C.13.6V和3.4V; D. –13.6V和-3.4V (6)根据玻尔理论,若将氢原子激发到n=5的状态,则: A.可能出现10条谱线,分别属四个线系 B.可能出现9条谱线,分别属3个线系 C.可能出现11条谱线,分别属5个线系 D.可能出现1条谱线,属赖曼系 (7)欲使处于激发态的氢原子发出Hα线,则至少需提供多少能量(eV)? A.13.6 B.12.09 C.10.2 D.3.4 (8)氢原子被激发后其电子处在第四轨道上运动,按照玻尔理论在观测时间内最多能看到几条线? A.1 B.6 C.4 D.3 (9)氢原子光谱由莱曼、巴耳末、帕邢、布喇开系…组成.为获得红外波段原子发射光谱,则轰击基态氢原子的最小动能为: A .0.66 eV B.12.09eV C.10.2eV D.12.75eV (10)用能量为12.75eV的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋); A.3 B.10 C.1 D.4 (11)按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的: A.1/10倍 B.1/100倍 C .1/137倍 D.1/237倍 (12)已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的

量子力学讲义

量子力学的通俗讲座 一、粒子和波动 我们对粒子和波动的概念来自直接的经验。和粒子有关的经验对象:小到石子大到天上的星星等;和波动有关的经验对象:最常见的例子是水波,还有拨动的琴弦等。但这些还不是物理中所说的模型,物理中所谓粒子和波动是理想化的模型,是我们头脑中抽象的对象。 1.1 粒子的图像 在经典物理中,粒子的概念可进一步抽象为:大小可忽略不计的具有质量的对象,即所谓质点。质量在这里是新概念,我们可将其定义为包含物质量的多少,一个西瓜,比西瓜仔的质量大,因为西瓜里包含的物质的量更大。 为叙述的简介,我们现在可把粒子等同于质点。要描述一个质点的运动状态,我们需要知道其位置和质量(x,m ),这是一个抽象的数学表达。 但我们漏掉了时间,时间也是一个直观的概念,这里我们可把时间描述为一个时钟,我们会发现当指针指到不同位置时,质点的位置可能不同,于是指针的位置就定 义了时刻t 。有了时刻 t ,我们对质点的描述就变成了(x,t,m ),由此可定义速度v ,现在我们对质点运动状态的描述是(x,v,t,m )。 在日常经验中我们还有相互作用或所谓力的概念,我们在地球上拎起不同质量物体时肌肉的紧张程度是不同的,或者说弹簧秤拎起不同质量物体时弹簧的拉伸程度是不同的。 以上我们对质量、时间、力等的定义都是直观的,是可以操作的。按照以上思路进行研究,最终诞生了牛顿的经典力学。这里我们可简单地用两个公式:F=ma (牛顿第二定律) 和 2 GMm F x (万有引力公式) 来代表牛顿力学。前者是质点的运动方程,用数学的语言说是一个关于位置x 的二阶微分方程,所以只需要知道初始时刻t=0时的位置x 和速度v 即可求出以后任意时刻t 质点所处的位置,即x(t),我们称之为轨迹。 需要强调的是一旦我们知道t=0时x 和v 的精确值(没任何误差),x(t)的取值也是精确的,即我们得到是对质点未来演化的精确预测,并且这个求 解对t<0也精确成立,这意味着我们还可精确地反演质点的历史。这些结论都是由数学理论严格保证的,即轨迹是一根理想的线。 经典的多粒子系统

量子力学引发的哲学争论

量子力学引发的哲学争论 哲学史上唯物论和唯心论的斗争,大都集中在关于物质的概念和物质与意识的关系这两个问题上。在20世纪的中叶,随着量子力学的兴起和发展,哲学上关于物质概念的问题的争论也随之变得激烈和尖锐,而这场哲学争论正是由量子力学的不确性定原理引出的。 不确定性原理是量子力学的一个基本原理。若通过位置和动量来确定物质的运动,在宏观世界中,根据经典力学,一个质点的位置和动量是可以同时确定的。而在微观世界里,根据量子力学的不确定性原理,粒子的位置与动量不可同时被确定,位置的不确定性与动量的不确定性遵守不等式 若进行实验测量,如果精确地测定粒子在某一时刻所处的位置,那么运动就会遭到破坏,以至于以后不可能重新找到该粒子。反之如果精确地测出其速度,那么它的位置图像就会模糊不清。除了坐标和动量,方位角和角动量,能量和时间等也都是成对的不确定量。 不确定性原理对于哲学上关于物质概念的思考和研究无疑是一次冲击和挑战。面对微观物质,当我们不能精确地描述出它的运动时,通过宏观世界所得出的物质概念是否还适用呢? 物理学家海森堡在提出不确定性原理后,又用哲学观点对这种现象进行了解释。他认为:量子论的出发点是将世界区分为“研究对象和世界的其余部分;这“世界的其余部分”,物质是客观存在的,而作为“研究对象”的部分(即微观客体的部分)的运动特性,主要依赖于科学仪器的作用,依赖于观察者的作用,由此,他提出了主客观不可分的哲学命题。 第一流物理学家的这种哲学观,在哲学界引起了轩然大波。许多学派纷纷发表了与海森堡相类似的哲学观点,其中最具代表性的是“物质的非物质化”的哲学观。美国哲学家汉生在《物质的非物质化》一文中认为:量子力学的理论表明“物质已经非物质化了”,牛顿可以通过精确测定的状态、点的形式、绝对固体性等,表示物质的性质,而电子并没有这种性质。量子理论排除了构成一个电子的粒子状态的协和概念的绝对可能性。对于电子,我们不能同时精确地说出它的位置和动量,这是“物质的非物质化”的证据。 辨证唯物主义哲学家们和物理学家中的唯物主义者们,对于这一争论自然不会袖手旁观。物理学家冯劳厄对“物质的非物质化”论有过严厉的批评,他认为,不仅是原子,甚至基本粒子也同外在世界的其他事物一样,具有完全的实在性。这场争论在日本的哲学界,反响也十分强烈。为了批判“物质的非物质化”这种唯心主义的哲学观,现代日本物理学界名流武谷三男通过发表《量子力学的观测问题》等文章,指出:“哲学家把在量子力学的观测中主观作用于客观的情况说成是引起不确定的原因是对这种情况的曲解。”武谷三男认为,引起不确定性原理的原因不在于“我”,而依然在于“客体的物”,他从如下两个方面对这种哲学观点进行了批判: 一、不确定性原理所描述的情况是客观存在的粒子本身所具有的特性在科学仪器 中的反映。 武谷三男认为,“不确定性原理所描述的关于电子的位置和速度不可能同时精 确地加以测量的情况,是电子本身具有波粒二象性这一客观存在的特征的一种 放映。在经典力学中,像太阳系行星的运动那样只要给出某一个物体处于某一 位置和朝着某一方向运动作为初始条件,就能够唯一地确定它以后的运动。然 而,当测量电子时,要说明它处于某一位置,由于电子是波动的,必须用波动 来表述所处的位置情况,为此就要把各种各样的波叠加起来,使波的振幅在某 一位置变大,而在其他位置则趋于零。这样一来,由于所叠加的各种波的运动 方向和运动速度各不相同,所以确定了它处于某一位置,同时便无法确定它的

量子力学考试题

量子力学考试题

量子力学考试题 (共五题,每题20分) 1、扼要说明: (a )束缚定态的主要性质。 (b )单价原子自发能级跃迁过程的选择定则及其理论根据。 2、设力学量算符(厄米算符)∧ F ,∧ G 不对易,令∧K =i (∧F ∧G -∧G ∧ F ),试证明: (a )∧ K 的本征值是实数。 (b )对于∧ F 的任何本征态ψ,∧ K 的平均值为0。 (c )在任何态中2F +2 G ≥K 3、自旋η/2的定域电子(不考虑“轨道”运动)受到磁场作用,已知其能量算符为 S H ??ω= ∧ H =ω∧ z S +ν∧ x S (ω,ν>0,ω?ν) (a )求能级的精确值。 (b )视ν∧ x S 项为微扰,用微扰论公式求能级。 4、质量为m 的粒子在无限深势阱(0

' 11 H =0,'22 H =0,'12H ='21 H =ν η21 E 1=E 1(0)+'11H +)0(2)0(12 '21 E E H -=-ωη21+0-ωνηη2241=-ωη21-ων241η E 2=E 2 (0) +' 22H + )0(1)0(22'12 E E H -=ωη21 +ων241η 4、E 1=2 22 2ma ηπ,)(1x ψ=?????0sin 2a x a π a x x a x ≥≤<<,00 x =dx x a ?021ψ=2sin 20 2a dx a x x a a =?π x p =-i η?=a dx dx d 011ψψ-i ?=a a x d a 020)sin 21(2πη x xp =-i η??-=a a a x d a x x a i dx dx d x 00 11)(sin sin 2ππψψη = ?-a a x xd a i 02) (sin 1πη =0sin [12a a x x a i πη--?a dx a x 0 2]sin π =0+?=a i dx ih 0 2 122ηψ 四项各5分 5、(i ),(ii )各10分 (i )s =0,为玻色子,体系波函数应交换对称。 ),(21→ →r r ψ有:)(1→ r a ψ→ )(2r a ψ,)(1→ r b ψ→ )(2r b ψ,)(1→ r c ψ→ )(2r c ψ, )] ()()()([21 2121→ →→→+r r r r a b b a ψψψψ a c c a b c c b 共6种。 (ii )s =21 ,单粒子态共6种: ? ?????0 1a ψ, ? ?????1 0a ψ, ? ?????0 1b ψ, ? ?????1 0b ψ, ? ?????0 1c ψ, ? ?????1 0c ψ。

量子力学总结

量子力学总结 第一部分 量子力学基础(概念) 量子概念 所谓“量子”英文的解释为:a fixed amount (一份份、不连续),即量子力学是用不连续物理量来描述微观粒子在微观尺度下运动的力学,量子力学的特征简单的说就是不连续性。 描述对象:微观粒子 微观特征量 以原子中电子的特征量为例估算如下: ○1“精细结构常数”(电磁作用常数), 1371~ 10297.73 2-?==c e α ○ 2原子的电子能级 eV a e me c e mc E 27~~02242 2 2==??? ? ?? 即:数10eV 数量级 ○ 3原子尺寸:玻尔半径: 53.0~2 2 0me a =?,一般原子的半径1?

○4速率:26 ~~ 2.210/137 e c V c m s c ?-? ○5时间:原子中外层电子沿玻尔轨道的“运行”周期 秒 160 0105.1~2~-?v a t π 秒 角频率16 102.4~~?a v c ω, 即每秒绕轨道转1016圈 (电影胶片21张/S ,日光灯频率50次/S ) ○6角动量: =??2 2 20~~e m me mv a J 基本概念: 1、光电效应 2、康普顿效应 3、原子结构的波尔理论 波尔2个假设: 定态轨道 定态跃迁 4、物质波及德布洛意假设(德布洛意关系)

“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P 的动量运动时,则伴随有波长为λ的波动。 P h =λ,h 为普朗克常数 同时满足关系ω ==hv E 因为任何物质的运动都伴随这种波动,所以称这种波动为物质波(或德布罗意波)。 称P h h E v ==λ 德布罗意波关系 例题:设一个粒子的质量与人的质量相当,约为50kg ,并以12秒的百米速度作直线运动,求粒子相应的德布罗意波长。说明其物理意义。 答:动量v p μ= 波长m v h p h 3634101.1)1250/(1063.6)/(/--?=??===μλ 晶体的晶格常数约为10-10m ,所以,题中的粒子对应的德布罗意波长<<晶体的晶格常数,因此,无法观测到衍射现象。 5、波粒二象性 (1)电子衍射实验 1926年戴维逊(C ·J ·Davisson )和革末(L ·H ·Gevmer )第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性,求出电子的波长λ

浅谈量子力学的哲学含义

浅谈量子力学的哲学含义 【摘要】量子力学的产生和发展受到经济生活的多方面影响,量子力学的产生也相应地对于政治、经济生活提供积极因素影响,量子力学中包含的量子场理论和微观粒子的提出,微观世界物质的特性等提出都在一定程度上包含一定的哲学含义。 【关键词】量子力学;哲学含义 1.量子力学的主要表述 量子力学确立了普遍的量子场实在理论。宇宙最基本的物理是量子场,量子场是第一性的,而实物粒子是第二性的。微观粒子没有经典物理学中的决定论表述,只有非决定论论述。量子力学的微观粒子理论中,包含具有叠加态的波函数,秉有波粒二象性和非定论的远程联系。特定的测量方式造成波函数的失落,越来越显露出它的本质特征。量子场实在论证明了宇宙的实在性,不同于德谟克里特所说的宇宙存在,宇宙更多如毕达哥拉斯和柏拉图描述的:宇宙是用数学公式表达的波函数以及所显示的各种图形的组合。 量子力学对于波粒二象性的揭示和微观粒子中反粒子存在的表述,阐释着物质和反物质的辩证存在关系。量子力学的多世界论认为世界大系统由多个平行世界构成,世界论中也存在反世界物质。无论是物质和反物质还是世界论中的反世界物质都表现着哲学中黑格尔和马克思主义哲学的正确性和真理性成分。其中物质与反物质是一对矛盾体,物质相对于反物质而存在。矛盾的普遍性阐释了时时刻刻存在矛盾的真理性。宇宙世界的基本属性是矛盾性和对立统一性。矛盾的特殊性要求必须正确把握主要矛盾和次要矛盾以及矛盾的主要方面和次要方面。主要矛盾的主要方面决定事物的根本性质。然而,在矛盾的哲学理论体系中,矛盾的双方是相对立而存在的,所谓物质和反物质的矛盾性从表象上分析是对立的存在,对立关系就是阐释着物质和反物质的相对应。在某一特殊世界领域中,各种客观实在具有方面上的相对关系。历史经验告诫区分“现实矛盾”和“逻辑矛盾”。 2.量子力学包含的矛盾哲理 其中逻辑矛盾表现在概念提出中的逻辑关系的对立;现实矛盾是隐藏在逻辑矛盾之下更深层次的以客观事实为导向的矛盾。任何话语系统不允许逻辑矛盾,A是B与A是-B同时为真,正如“正粒子”与“反粒子”碰撞,这两个命题是可以互相抵消为无的。然而,现实的矛盾,如“正电荷”和“负电荷”,“正粒子”和“反粒子”的相互矛盾关系,是长期存在的,共同构成了物质世界的矛盾客体。可以说矛盾的存在是世界物质性发展和产生的基本推动力。世界是充满矛盾的世界,矛盾构成了世界的真实存在。矛盾具有同一性和斗争性,在量子力学理论体系中正电荷和负电荷是在同一和斗争中不断转化的,正电荷和负电荷的交汇形成电荷的不带电中和性质,正负电荷在同一的过程中各自改变其特性以适应向新物质存在的客观转化。正负粒子的斗争性体现于正负粒子的正负电子相互碰撞和作用,不

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

量子力学知识点总结(精.选)

1光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= h ν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子 4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大 5戴维逊-革末实验证明了德布罗意波的存在 6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。按照这种解释,描写粒子的波是几率波 7波函数的归一化条件 1),,,( 2 ?∞=ψτd t z y x 8定态:微观体系处于具有确定的能量值的状态称为定态。定

态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。⑵粒子几率流密度不随时间改变。⑶任何不显含时间变量的力学量的平均值不随时间改变 9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。 10厄密算符的定义:如果算符 F ?满足下列等式() ? ?dx F dx F φψφψ**??=,则称F ?为厄密算符。式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。 推论:量子力学中表示力学量的算符都是厄密算符。 11厄密算符的性质:厄密算符的本征值必是实数。厄密算符的属于不同本征值的两个本征函数相互正交。 12简并:对应于一个本征值有一个以上本征函数的情况。简并度:对应于同一个本征值的本征函数的数目。 13量子力学中力学量运动守恒定律形式是: 01=??????+??=H F i t F dt F d ?,?η 量子力学中的能量守恒定律形式是01=??????=H H i dt H d ?,??η 14 15斯特恩-革拉赫实验证明电子存在自旋理由 16黑体辐射揭示了经典物理学的局限性。 17玻尔的量子化条件:在量子理论中,角动量必须是h 的整数 的近似求解方法。 求出,由求出微扰论:由n n n n E E ψψ)0()0(

量子力学诠释问题(一)

量子力学诠释问题(一) 作者:孙昌璞( 中国工程物理研究院研究生院北京北京计算科学研究中心) 1 引言:量子力学的二元结构和其发展的二元状态上世纪二十年代创立的量子力学奠定了 人类认识微观世界的科学基础,成功地解释和预言了各种相关物理效应。然而,关于波函数的意义,自爱因斯坦和玻尔旷世之争以来众说纷纭,并无共识。直到今天,量子力学发展还是处在这样一种二元状态。对此有人以玻尔的“互补性”或严肃或诙谐地调侃之,以“shut up and calculate”的工具主义观点处之以举重若轻。这样一个二元状态主要是由于附加在玻恩几率解释之上的“哥本哈根诠释”之独有的部分:外部经典世界存在是诠释量子力学所必需的,是它产生了不服从薛定谔方程幺正演化的波包塌缩,使得量子力学二元化了。今天,虽然波包塌缩概念广被争议,它导致的后选择“技术”却被广泛地应用于量子信息技术的各个方面,如线性光学量子计算和量子离物传态的某些实验演示。早年,薛定谔曾经写信严厉批评了当时的物理学家们,他在给玻恩的信中写到:“我确实需要给你彻底洗脑……你轻率地常常宣称哥本哈根解释实际上已经被普遍接受,毫无保留地这样宣称,甚至是在一群外行人面前——他们完全在你的掌握之中。这已经是道德底线了……你真的如此确信人类很快就

会屈从于你的愚蠢吗?”1979 年,Weinberg在《爱因斯坦的错误》一文中批评了玻尔对测量过程的不当处理:“量子经典诠释的玻尔版本有很大的瑕疵,其原因并非爱因斯坦所想象的。哥本哈根诠释试图描述观测(量子系统)所发生的状况,却经典地处理观察者与测量的过程。这种处理方法肯定不对:观察者与他们的仪器也得遵守同样的量子力学规则,正如宇宙的每一个量子系统都必须遵守量子力学规则。”“哥本哈根诠释可以解释量子系统的量子行为,但它并没有达成解释的任务,那就是应用波函数演化方程于观察者和他们的仪器。”最近温伯格又进一步强调了他对“标准”量子力学的种种不满。在量子信息领域,不少人不加甄别地使用哥本哈根诠释导致的“后选择”方案,其可靠性令人怀疑!其实,在量子力学幺正演化的框架内,多世界诠释不引入任何附加的假设,成功地描述了测量问题。由于隐变量理论在理论体系上超越了量子力学框架,本质上是比量子力学更基本的理论,所以本文对Bell 不等式不作系统讨论。自上世纪八十年代初,人们先后提出了各种形式迥异的量子力学新诠释,如退相干、自洽历史、粗粒化退相干历史和量子达尔文主义,但实际上都是多世界诠释的拓展和推广。2 哥本哈根诠释及其推论哥本哈根诠释的核心内容是“诠释量子世界,外部的经典世界必不可少”。波函数描述微观系统的状态,遵循态叠加原理,即:如果|?1>

量子力学基础简答题(经典)【精选】

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在 ψ(,) r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,) r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如 () H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ1 2 ()s z 中, S x 和 S y 的测不准关系( )( )??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量 对应的各简并态的迭加是否仍为定态Schrodinger 方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger 方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1 ?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 0λhc 0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB 2+

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV (D) 12.1 eV,10.2 eV和 3.4 eV [] 9.4241:若 粒子(电荷为2e)在磁感应

量子力学的隐变量解释

量子力学的隐变量解释1935 年 5 月, 在 Physical Review 上 Einstein 和他的两位同事 B. Podolsky和 N. Rosen 共同发表了一篇名为「Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?」 (量子力学对物理世界的描述是完备的吗?) 三个人异口同声地回答:「不!」.在这篇著名的文章中,作者首先阐述了他们对物理理论的看法:一个严谨的物理理论应该要区别「客观实体」(object reality) 以及这个理论运作的观点.客观实体应独立于理论而存在.在判断一个理论是否成功时,我们会问自己两个问题:(1) 这个理论是否正确? (2) 理论的描述是否完备?只有当这两个问题的答案是肯定时,这样的理论才是令人满意的.理论的正确性当由实验来决定.而关于量子力学的描述是否完备则是这篇文章探讨的主题.在进一步讨论理论的完备性之前,我们必须先定义什么是完备性.作者们提出了一项判别完备性的条件:每一个物理实体的要素必须在理论中有一对应物(every element of the physical reality must have a counterpart in the physical theory)因此我们决定了什么是「物理实体的要素」,那么第二个问题就容易回答了.那么,究竟什么是「物理实体的要素」呢? 作者们以为: 「如果,在不以任何方式干扰系统的情况下,我们能准确地预测(即机率为一)某一物理量的值,那么必定存在一个物理实体的要素与这个物理量对应.」他们认为,只要不把这个准则视为一必要条件,而看成是一充分的条件,那么这个判别准则同样适用于古典物理以及量子力学中对实在的概念.举例来说,在一维系统中,一个以波函数φ(x) = exp(ip0x/2πh) (其中 p0是一常数,i 表纯虚数,h 为Planck常数)描述的粒子.其动量的算符为 h d ,p = ------ ---- ,2(Pi)i dx,因此: pFI(x) = p0FI(x),所以动量有一确定的值 p0. 因此在这种情形下动量是一物理实体.反之,对位 置算符 q 而言,qFI = xFI ≠ aFI ,因此粒子的位置并没有一确定的值.它是不可预测的,仅能以实验测定之.然而任何一实验的测定都将干扰到粒子而改变其状态,被测后的粒子将再也不具动量 p0了.对于此情况,我们说当一粒子的动量确定时,它的位置并非一物理 实体.一般来说在量子力学中,对两个不可对易的可观察量(observable)而言,知道其中一个物理量的准确知识将排除对另外一个的准确知识.任何企图决定后者的实验都将改变系统的状态而破坏了对前者的知识.至此,作者们发现我们面临了如下的两难局面: (1)或者,在量子力学中波函数对物理实在的描述是不完备的. (2)或者,两个对应于不可对易算符的物理量不能同时是实在的(即具有确定的值).因为,若两个不可对易的物理量同时具有确定的值,根据作者们对完备性的条件,在波函数的描述中应包含这些值.但事实上并非如此,

量子力学地发展史及其哲学思想

十九世纪末期,物理学理论在当时看来已发展到相当完善的阶段.那时,一般的物理现象都可以从相应的理论中得到说明:物体的机械运动比光速小的多时,准确地遵循牛顿力学的规律;电磁现象的规律被总结为麦克斯韦方程;光的现象有光的波动理论,最后也归结为麦克斯韦方程;热的现象理论有完整的热力学以及玻耳兹曼,吉不斯等人建立的统计物理学.在这种情况下,当时有许多人认为物理现象的基本规律已完全被揭露,剩下的工作只是把这些基本规律应用到各种具体问题上,进行一些计算而已。 这种把当时物理学的理论认作”最终理论”的看法显然是错误的,因为:在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在”绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识具有相对的真理性.”生产力的巨大发展,对科学试验不断提出新的要求,促使科学试验从一个发展阶段进入到另一个新的发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象,例如黑体辐射,光电效应,原子的光谱线系以及固体在低温下的比热等,都是经典物理理论所无法解释的。这些现象揭露了经典物理学的局限性,突出了经典物理学与微观世界规律性的矛盾,从而为发现微观世界的规律打下基础。黑体辐射和光电效应等现象使人们发现了光的波粒二象性;玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。因此更突出了认识微观粒子运动规律的迫切性。直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。

量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。虽然本书中不能详细叙述这个过程。尽管这些新现象在十九世纪末就陆续被发现,而量子力学的诞生却在本世纪二十年代,这中间曾经历一个曲折的途径,说明量子力学这个理论的诞生决不是一帆风顺的更不是靠少数科学家在头脑中凭空想出来的。 爱因斯坦在这次大会上作了题为《论我们关于辐射的本质和组成的观点的发展》的报告,首次提出光具有波粒二象性。爱因斯坦通过对光辐射的统计提醒的精辟分析得出结论:光对于统计平均现象表现为波动,而对于能量张罗现象却表现为粒子,因此,光同时具有波动性和粒子性。爱因斯坦进一步指出,这两者并不是水火不相容的。这样,爱因斯坦的第一次在更深的层次上及时处理光的神秘本性,从而也将他最尊敬的两位前辈——牛顿和麦克斯韦——关于光的理论有机的综合在一起。 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对

量子力学思考题及解答

量子力学思考题 1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于 不能忽略的体系,而经典力学适用于 可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或 可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。 (2)如按这种理解 ),()(),()(),(2211t x t c t x t c t x ψψψ+=

相关主题
文本预览
相关文档 最新文档