当前位置:文档之家› 数学建模微分方程的应用举例

数学建模微分方程的应用举例

数学建模微分方程的应用举例
数学建模微分方程的应用举例

第八节 数学建模——微分方程的应用举例

微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 内容分布图示

★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题模型 ★追迹问题 ★返回

内容要点:

一、衰变问题

镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量.

用x 表示该放射性物质在时刻t 的质量, 则dt

dx

表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为

.kx dt

dx

-= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少.

解方程(8.1)得通解.kt

Ce

x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得

,00kt e x C -= 则可得到方程(8.1)特解

,)(00t t k e x x --=

它反映了某种放射性元素衰变的规律.

注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素(U 238

)的半衰期约为50亿年;

通常的镭(Ra 226

)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始

量, 一克

Ra 226

衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是

1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.

二、 逻辑斯谛方程:

逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型.

一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下

来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型.

如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比.

设树生长的最大高度为H (m), 在t (年)时的高度为h (t ), 则有

)]()[()

(t h H t kh dt

t dh -= (8.2) 其中0>k 是比例常数. 这个方程为Logistic 方程. 它是可分离变量的一阶常数微分方程.

下面来求解方程(8.2). 分离变量得

,)

(kdt h H h dh

=-

两边积分

,)(??=-kdt h H h dh

得 ,)]ln([ln 1

1C kt h H h H

+=-- 或

,21k H t H C k H t e C e h

H h

==-+ 故所求通解为

,11)(22kHt

kHt kHt Ce

H e C He C t h -+=+= 其中的???

? ??>==

-01

12H C e C C C 是正常数. 函数)(t h 的图象称为Logistic 曲线. 图8-8-1所示的是一条典型的Logistic 曲线, 由于它的形状, 一般也称为S 曲线. 可以看到, 它基本符合我们描述的树的生长情形. 另外还可以

算得

.)(lim H t h t =+∞

这说明树的生长有一个限制, 因此也称为限制性增长模式.

注: Logistic 的中文音译名是“逻辑斯谛”. “逻辑”在字典中的解释是“客观事物发展的规律性”, 因此许多现象本质上都符合这种S 规律. 除了生物种群的繁殖外, 还有信息的传播、新技术的推广、传染病的扩散以及某些商品的销售等. 例如流感的传染、在任其自然发展(例如初期未引起人们注意)的阶段, 可以设想它的速度既正比于得病的人数又正比于未传染到的人数. 开始时患病的人不多因而传染速度较慢; 但随着健康人与患者接触, 受传染的人越来越多, 传染的速度也越来越快; 最后, 传染速度自然而然地渐渐降低, 因为已经没有多少人可被传染了.

下面举两个例子说明逻辑斯谛的应用.

人口阻滞增长模型 1837年, 荷兰生物学家V erhulst 提出一个人口模型

00)(),(y t y by k y dt

dy

=-= (8.3)

其中b k ,的称为生命系数.

我们不详细讨论这个模型, 只提应用它预测世界人口数的两个有趣的结果.

有生态学家估计k 的自然值是0.029. 利用本世纪60年代世界人口年平均增长率为2%以及1965年人口总数33.4亿这两个数据, 计算得,2=b 从而估计得:

(1)世界人口总数将趋于极限107.6亿. (2)到2000年时世界人口总数为59.6亿.

后一个数字很接近2000年时的实际人口数, 世界人口在1999年刚进入60亿. 新产品的推广模型 设有某种新产品要推向市场, t 时刻的销量为),(t x 由于产品性能良好, 每个产品都是一个宣传品, 因此, t 时刻产品销售的增长率,dt

dx

与)(t x 成正比, 同时, 考虑到产品销售存在一定的市场容量N , 统计表明

dt

dx

与尚未购买该产品的潜在顾客的数量)(t x N -也成正比, 于是有

)(x N kx dt

dx

-= (8.4)

其中k 为比例系数. 分离变量积分, 可以解得

kNt

Ce

N

t x -+=

1)( (8.5)

,)

1()1(,)1(2322222kNt kNt kNt kNt kNt Ce Ce e N Ck dt x d Ce ke CN dt dx -----+-=+= 当N t x <)(*

时, 则有,0>dt dx 即销量)(t x 单调增加. 当2)(*

N t x =时, ;022=dt x d 当2)(*

N t x >时, ;022

x

d 当2)(*N t x <时, 即当销量达到最大需求量N 的一半时, 产品最为

畅销, 当销量不足N 一半时, 销售速度不断增大, 当销量超过一半时, 销售速度逐渐减少.

国内外许多经济学家调查表明. 许多产品的销售曲线与公式(8.5)的曲线(逻辑斯谛曲线)十分接近. 根据对曲线性状的分析, 许多分析家认为, 在新产品推出的初期, 应采用小批量生产并加强广告宣传, 而在产品用户达到20%到80%期间, 产品应大批量生产; 在产品用户超过80%时, 应适时转产, 可以达到最大的经济效益.

三、价格调整模型

在本章第一节例3已经假设, 某种商品的价格变化主要服从市场供求关系. 一般情况下,商品供给量S 是价格P 的单调递增函数, 商品需求量Q 是价格P 的单调递减函数, 为简单起见, 分别设该商品的供给函数与需求函数分别为

P P Q bP a P S βα-=+=)(,)( (8.6)

其中βα,,,b a 均为常数, 且.0,0>>βb

当供给量与需求量相等时, 由(8.6)可得供求平衡时的价格

b

a

P e +-=

βα 并称为均衡价格.

一般地说, 当某种商品供不应求, 即Q S <时, 该商品价格要涨, 当供大于求, 即

Q S >时, 该商品价格要落. 因此, 假设t 时刻的价格)(t P 的变化率与超额需求量S Q -成

正比, 于是有方程

)]()([P S P Q k dt

dP

-= 其中,0>k 用来反映价格的调整速度.

将(8.6)代入方程, 可得

)(P P dt

dP

e -=λ (8.7) 其中常数,0)(>+=k b βλ方程(8.7)的通解为

t e Ce P t P λ-+=)(

假设初始价格,)0(0P P =代入上式, 得,0e P P C -=于是上述价格调整模型的解为

t e e e P P P t P λ--+=)()(0

由于0>λ知, +∞→t 时, .)(e P t P →说明随着时间不断推延, 实际价格)(t P 将逐渐趋近均衡价格.

四、人才分配问题模型

每年大学毕业生中都要有一定比例的人员留在学校充实教师队伍, 其余人员将分配到国民经济其他部门从事经济和管理工作. 设t 年教师人数为),(1t x 科学技术和管理人员数目

为),(2t x 又设1外教员每年平均培养个毕业生, 每年人教育、科技和经济管理岗位退休、死亡或调出人员的比率为βδδ),10(<<表示每年大学生毕业生中从事教师职业所占比率

),10(<<δ于是有方程

111

x x dt dx δαβ-= (8.8) 212

)1(x x dt

dx δβα--= (8.9)

方程(8.8)有通解

t e C x )(11δαβ-=

(8.10)

若设,)0(101x x =则,1

01x C =于是得特解

t

e

x x )(101δαβ-= (8.11) 将(8.11)代入(8.9)方程变为

t

e x x dt

dx )(1022)1(δαββαδ--=+ (8.12) 求解方程(8.12)得通解

t t

e x e

C x )(1

22)1(δαβδβ

β---+

= (8.13)

若设,)0(2

02x x =则,11

02

02x x C ???

?

??--=ββ于是得特解 t

t e

x e x x x )(101020211δαβδββββ--???? ??-+?????

????? ??--= (8.14) (8.11)式和(8.14)式分别表示在初始人数分别为)0(),0(21x x 情况, 对应于的取值, 在t 年教师队伍的人数和科技经济管理人员人数. 从结果看出, 如果取,1=β即毕业生全部留在教育界, 则当∞→t 时, 由于,δα>必有+∞→)(1t x 而,0)(2→t x 说明教师队伍将迅速增加. 而科技和经济管理队伍不断萎缩, 势必要影响经济发展, 反过来也会影响教育的发展. 如果将接近于零. 则,0)(1→t x 同时也导致,0)(2→t x 说明如果不保证适当比例的毕业生充实教师选择好比率, 将关系到两支队伍的建设, 以及整个国民经济建设的大局.

五、追迹问题 设开始时甲、乙水平距离为1单位, 乙从A 点沿垂直于OA 的直线以等速向正北行走; 甲从乙的左侧O 点出发, 始终对准乙以)1(0>n mv 的速度追赶. 求追迹曲线方程, 并问乙行多远时, 被甲追到.

建立如图8-8-2所示的坐标系, 设所求追迹曲线方程为).(x y y =经过时刻t , 甲在追迹曲线上的点为),,(y x P 乙在点).,1(0t v B 于是有

,1tan 0x

y

t v y --=

'=θ (8.15) 由题设, 曲线的弧长OP 为

,100

2t nv dx y x

='+?

解出代入(8.15), 得

.11)1(02

?'+=

+'-x dx y n

y y x 两边对x 求导, 整理得

.11

)1(2y n

y x '+=

''- 这就是追迹问题的数学模型.

这是一个不显含y 的可降阶的方程, 设p y x p y ''=''='),(, 代入方程得

211

)1(p n

p x +=

'- 或 ,)

1(12

x n dx

p dp -=

+

两边积分, 得

|,|ln |1|ln 1

)1ln(12C x n

p p +--=++

即 .111

2

n

x

C p p -=

++ 将初始条件00||==='x x p y 代入上式, 得.11=C 于是

,11

12n

x

y y -=

'++' (8.16) 两边同乘,12

y y '+-'并化简得

,112n x y y --='+-' (8.17)

(8.16)与(8.17)式相加, 得

,11121??

? ??---='n n x x y

两边积分, 得

.)1(1

)

1(1

21211C x n n x n n

y n

n n

n +??

?

???-++---=+- 代入初始条件0|0==x y 得,1

2

2-=

n n

C 故所求追迹曲线方程为 ),1(11)1(1)1(221

1>-+????

??????+--+-=-+n n n n x n x n y n n n n

甲追到乙时, 即曲线上点P 的横坐标,1=x 此时.12-=n n y 即乙行走至离A 点1

2-n n

个单位距离时被甲追到.

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

数学建模例题及解析

。 例1差分方程—-资金的时间价值 问题1:抵押贷款买房——从一则广告谈起 每家人家都希望有一套(甚至一栋)属于自己的住房,但又没有足够的资金一次买下,这就产生了贷款买房的问题。先看一下下面的广告(这是1991年1月1日某大城市晚报上登的一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心的是:如果一次付款买这栋房要多少钱呢?银行贷款的利息是多少呢?为什么每个月要付1200元呢?是怎样算出来的?因为人们都知道,若知道了房价(一次付款买房的价格),如果自己只能支付一部分款,那就要把其余的款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说的房子作出决策了。现在我们来进行数学建模。由于本问题比较简单无需太多的抽象和简化。 a。明确变量、参数,显然下面的量是要考虑的: 需要借多少钱,用记; 月利率(贷款通常按复利计)用R记; 每月还多少钱用x记; 借期记为N个月。 b.建立变量之间的明确的数学关系。若用记第k个月时尚欠的款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总的欠款为 k=0,1,2,3, 而一开始的借款为.所以我们的数学模型可表述如下 (1) c. (1)的求解。由

(2)这就是之间的显式关系。 d.针对广告中的情形我们来看(1)和(2)中哪些量是已知的。N=5年=60个月,已知;每月还款x=1200元,已知A.即一次性付款购买价减去70000元后剩下的要另外去借的款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策的困难.然而,由(2)可知60个月后还清,即,从而得 (3) A和x之间的关系式,如果我们已经知道银(3)表示N=60,x=1200给定时0 A。例如,若R=0.01,则由(3)可算得行的贷款利息R,就可以算出0 53946元。如果该房地产公司说一次性付款的房价大于70000十53946=123946元的话,你就应自己去银行借款。事实上,利用图形计算器或Mathematica这样的 数学软件可把(3)的图形画出来,从而可以进行估算决策。以下我们进一步考虑下面两个问题。 注1问题1标题中“抵押贷款”的意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子的产权)作抵押,即万一你还不出钱了,就没收你的不动产。 例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清。假设这对

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建 立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对 微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有 所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能 近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性 质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t时刻病人人数() x t连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0 t=时有0x个病人。 +?病人人数增加 建模:t到t t

()()()x t t x t x t t λ+?-=? (1) 0,(0)dx x x x dt λ== (2) 解得: 0()t x t x e λ= (3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型 假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)* λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ= (4) 由于 ()()1s t i t += (5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-= (6)

数学建模——微分方程的应用

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则 dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( U 238)的半衰期约为50亿年;通常的镭( Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t 时刻病人人数()x t 连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。 建模:t 到t t +?病人人数增加 ()()()x t t x t x t t λ+?-=?(1) 0,(0)dx x x x dt λ==(2) 解得: 0()t x t x e λ=(3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型

假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)*λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ=(4) 由于 ()()1s t i t +=(5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-=(6) 解得: 01()111kt i t e i -= ??+- ??? (7) 用Matlab 绘制图1()~i t t ,图2 ~di i dt 图形如下, 结论:在不考虑治愈情况下

扩散问题的偏微分方程模型,数学建模

第七节 扩散问题的偏微分方程模型 物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决. MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程. 本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程. §1 抛物型方程的导出 设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +?时刻这段时间内,通过S 流入Ω的质量为 2 221(cos cos cos )dSd t t t S u u u M a b c t x y z αβγ+????=++???? ??. 由高斯公式得 2222 221222()d d d d t t t u u u M a b c x y z t x y z +?Ω ???=++???? ???. (1) 其中,222,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为 2 2d d d d t t t M k u x y z t +?Ω =? ???, (2) 其中2 k 是衰减系数. 由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -. 换一种角度看,Ω内由于深度之变化引起的质量增加为 3[(,,,)(,,,)]d d d d d d d . (3)t t t M u x y z t t u x y z t x y z u x y z t t Ω +?Ω =+?-?=????? ??? 显然312M M M =-,即

数学建模之差分方程

差分方程模型 ①建立差分方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立差分方程模型。 一阶常系数线性差分方程的一般形式为 1(),(0)t t y ay f t a +-=≠(1) ②求解一阶常系数齐次线性差分方程 10,(0)t t y ay a +-=≠(2) 常用的两种解法 1)迭代法 假设0y 已知,则有 2112210(),n n n n n n y ay a ay a y a y a y ----====== 一般有 0(0,1,2,).t t y a y t == 10t t y ay +-=(3) 2)特征方程法 假设 (0)t Y λλ=≠ 为方程(3)的解,代入(3)得方程的特征方程 10(0),t t a λλλ+-= ≠ 解得特征根:.a λ= 则t t y a =是方程(3)的解,所以齐次方程的通解为 (t t y ca c =为任意常数) 例题: 设某房屋总价为a 元,先付一半可入住,另一半由银行以年利r 贷款, n 年付清,问平均每月付多少元?共付利息多少元? 解:设每月应付x 元,月利率为12 r ,则第一个月应付利息为 1.12224 r a ra y =?=

第二月应付利息为 2111,2121212a r r rx y x y y ????=-+?=+- ? ????? 以此类推得到 11,1212t t r rx y y +??=+- ??? 此方程为一阶常系数非线性差分方程。其相应的特征方程为 (1)012 r λ-+= 特征根为112 r + 则得到通解为 1(12t t r y c c ??=+ ??? 为任意常数). 解得特解为 t y x *= 所以原方程通解为 112t t r y c x ??=++ ??? 当112224r a ra y =?=时,解得24112 ra x c r -=+。 所以解得满足初始条件的特解为 1124112112 11. 2121212t t t t ra x r y x r a r r r x x ---??=++ ???+????=??++-+ ? ????? 于是得到n 年的利息之和为 11212121212121221112n n n I y y a r r a n r =++???+? ???=?-??+- ??? 元,

差微分方程 数学建模经典案例

差分方程作业题 黄冈职业技术学院 宋进健 胡敏 熊梦颖 1.一对年轻夫妇准备购买一套住房,但缺少资金近6万元。假设它们每月可有节余900元,且有如下的两种选择: (1)使用银行贷款60000元。月利率0.01,贷款期25年=300个月; (2) 到某借贷公司借贷60000元,月利率0.01,22年还清。只要(i )每半个月还316元,(ii) 预付三个月的款。 你能帮他们做出明智的选择吗? 模型假设: (1)银行及借贷公司在贷款期限内利率不变; (2)不考虑物价变化和经济等因素从而影响利率; (3)银行利息按复利计算且单位时间可任意缩短至时间变量连续性变化 建立模型: 对第一种情况有: 设n 年期贷款月利率为r ,共贷款 元,贷款后第k 个月时欠款余额为 元,月还款m 元。 模型求解: 由MATLAB 得出结果m=631.9345 建立模型: 对第二种情况有: 设n 年期贷款半月利率为r ,共贷款A 0元,贷款后第k 个月时欠款余额为A k 元,半月还款m 元。 模型求解: ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(300 300 300 -= ?=++r r A A r m N k m r A A k K ∈-+=+,) 1(1 N k m r A A k K ∈-+=+,) 1(1 ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(528 528 528 -= ?=++r r A A r m A k A 0

由MATLAB 得出结果m= 313.0038 模型分析:由第一种方式计算m=631.9345小于月节余额900元,能够承受月还款;由第二种方式计算m= 313.0038小于借贷公司要求没半个月还款316元,如果按照借贷公司要求则每月还款为632元大于第一种还款方式631.9345元,故选择第一种还款方式。 2. 在一城市的某商业区内,有两家有名的快餐店“肯德基”分店和“麦当劳”分 店。据统计每年“肯德基”保有其上一年老顾客的1/3,而另外的2/3顾客转移到“麦当劳”;每年“麦当劳”保有其上一年的老顾客的1/2,而另外的1/2顾客转移到“肯德基”。 用二维向量X k =[x k y k ]T 表示两个快餐店市场分配的情况,初始的市场分配为X 0 = [200 200]T 如果有矩阵L 存在,使得 X k +1 = LX k ,则称 L 为状态转移矩阵。 (1) 写出X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式,以及状态转移矩阵L 。 (2) 根据递推关系计算近几年的市场分配情况; 模型假设: (1) 当前的肯德基和麦当劳的市场份额继续不变。 (2) 肯德基和麦当劳不推出优惠活动和新的经营计划。 模型建立: 初始的市场分配数量为:200,2000 0==y x 以一年为一时间段,则某时刻两个快餐店的顾客数量可用向量] ,[1 1y x T X =表 示。用向量] ,[y x X k k T k =表示第K 年两个快餐店顾客数量分布。 ??? ????+ = + = ++x y y y x x k k k k k k 3 22 121311 1 模型求解: 故X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式为??? ? ?? ? + =+ =++x y y y x x k k k k k k 3 221 21311 1,状 态转移矩阵?????? ? ???? ???=3221213 1 L 由初始数据计算近几年的市场分配情况,MATLAB 程序如下:

数学模型 微 分 方 程

数学模型 13.人体注射葡萄糖溶液时,血液中葡萄糖浓度g(t)的增长率与注射速率r 成正比,与人体血液容积v 成反比,而由于人体组织的吸收作用,g(t)的减少率与g(t)本身成正比。分别在以下几种假设下建立模型,并讨论稳定情况。 (1)人体血液容积v 不变。 (2)v 随着注入溶液而增加。 (3)由于排泄等因素v 的 增加有极限值 解:模型假设: 本模型中主要符号说明为: 葡萄糖浓度g(t) 注射速率r 人体血液容积v 基本模型为: g k V r k dt dg 21-= (1k ,02>k ,常数) ⑴ (1)V 为常数时,平衡点V k r k g 210= 稳定。 如果以g 为横轴、 dt dg 为纵轴作出方程的图形(图1),可以分析葡萄糖浓度增长速度dt dg 随着g 的增加而变化的情况,从而大概地看出g(t)的变化规律。 令2.01=k ,5.02=k ,利用Mathematica 在操作窗口中输入以下代码命令: Plot[0.2/100-0.5g,{g,0,100},PlotStyle->{RGBColor[1,0,0]}] 得到: 图1 dt dg ~g 曲线 再利用matlab 在操作窗口中输入以下代码命令:

g=dsolve('Dg=k1*r/v-k2*g','g(0)=g0','t') 其解为 g =k1*r/v/k2+exp(-k2*t)*(-k1*r+g0*v*k2)/v/k2 整理得到: 2 20112)(vk vk g r k e v r k t g t k +-+=- ⑵ 令2.01=k ,5.02=k ,利用Mathematica 在操作窗口中输入以下代码命令: Plot[0.2/100+Exp[-0.5t],{t,0,100},PlotStyle->{RGBColor[1,0,0]}] 得到: 图2 g ~t 曲线 由图可以知道它在平衡点V k r k g 210= 稳定。 (2)不妨设 β=dt dV (0>β,常数) ⑶ 方程⑴,⑵不存在平衡点。若由⑵解出t V t V β+=0)(代入⑴,得到 g k t V r k dt dg 201-+=β ⑷ 则⑷不能是自治方程。因为平衡点及稳定性的概念只是对自治方程而言才有意义,而⑷不能是自治方程,所以不能考虑它的稳定性。 (3)不妨设 V )(V dt dV -=1μ (0>μ,常数) ⑸ 如果以V 为横轴、dt dV 为纵轴作出方程的图形(图3),可以分析人体血液容积V 增长速度dt dV 随着V 的增加而变化的情况,从而大概地看出V(t)的变化规

差分方程模型

差分方程模型 数学建模讲座 一、关于差分方程模型简单的例子 1. 血流中地高辛的衰减 地高辛用于心脏病。考虑地高辛在血流中的衰减问题以开出能使地高辛保持在可接受(安全而有效)的水平上的剂量处方。假定开了每日0.1毫克的剂量处方,且知道在每个剂量周期(每日)末还剩留一半地高辛,则可建立模型如下: 设某病人第n 天后血流中地高辛剩余量为n a , 则 1.05.01+=+n n a a (一阶非齐次线性差分方程) n n n n a a a a 5.01?=?=?+ 2. 养老金问题 对现有存款付给利息且允许每月有固定数额的提款, 直到提尽为止。月利息为1℅,月提款额为1000元,则可建模型如下: 设第n 月的存款额为n a ,则 100001.11?=+n n a a (一阶非齐次线性差分方程)

3. 兔子问题(Fibonacci 数) 设第一月初有雌雄各一的一对小兔,假定两月后长成成兔,同时(即第三个月)开始,每月初产雌雄各一的一对小兔, 新增小兔也按此规律繁殖,设第n 月末共有n F 对兔子,则建模如下: ==+=??12 12 1F F F F F n n n (二阶线性差分方程初值问题) 342 3214 3 21221 1 F F F F F F F F F F ≠+=+ 注意上月新生的小兔不产兔 (因第n 月末的兔子包括两部分, 一部分上月留下的为1?n F , 另一部分为当月新生的,而新生的小兔数=前月末的兔数) 4.车出租问题 A , B 两地均为旅游城市,游客可在一个城市租车而在另一个城市还车。 A , B 两汽车公司需考虑置放足够的车辆满足用车需要,以便估算成本。分析历史记录数据得出: n x : 第n 天营业结束时A 公司的车辆数 n y :第n 天营业结束时B 公司的车辆数 则 +=+=++n n n n n n y x y y x x 7.04.03.06.01 1 (一阶线性差分方程组) (问题模型可进一步推广)

差分方程数学建模举例

差分方程建模举例 差分方程建模方法的思想与与一般数学建模的思想是一致的,也需要经历 背景分析、确定目标、预想结果、引入必要的数值表示(变量、常量、函数、积分、导数、差分、取最等)概念和记号、几何形式(事物形状、过程轨迹、坐标系统等),也就是说要把事物的性态、结构、过程、成分等用数学概念、原理、方法来表现、分析、求解。 当然,由于差分方程的特殊性,首先应当把系统或过程进行特别分解,形成表现整个系统的各个部分的离散取值形式,或形成变化运动过程的时间或距离的分化而得到离散变量。然后通过内在的机理分析,找出变量所能满足的平衡关系、增量或减量关系及规律,从而得到差分方程。另外,有时有可能通过多个离散变量的关系得到我们关心的变量的关系,这实际上建立的是离散向量方程,它有着非常重要的意义。有时还需要找出决定变量的初始条件。有时还需要将问题适当分成几个子部分,分别求解。 模型1 种群生态学中的虫口模型:

在种群生态学中,考虑像蚕、蝉这种类型的昆虫数目的变化 ,他的变化规律是:每年夏季这种昆虫成虫产卵后全部死亡,第二年春天每个虫卵孵化成一个虫子。 建立数学模型来表现虫子数目的变化规律。 模型建立:假设第n 年的虫口数目为 n P ,每年一个成虫平均产 卵c 个(这个假设有点粗糙,应当考虑更具体的产卵分布状况),则有: n n cP P =+1,这是一种简单模型; 如果进一步分析,由于成虫之间会有争斗以及传染病、天敌等的威胁,第n+1年的成虫数会减少,如果考虑减少的主要原因是虫子之间的两两争斗,由于虫子配对数为 )1(2 1 -n n p p 221n p ≈,故减少数应当与它成正比,从而有: 2 1n n n bP cP P -=+ 这个模型可化成:)1(1n n n x x x -=+λ,这是一阶非线性差分方程。这个模型的解的稳定性可以用相应一阶差分方程的判断方法来获得。 如果还考虑其它的影响成虫孵卵及成活的因素的定量关系,这个模型在此基础上仍可进一步改进,更加符合实际情形。这种关系一方面可以通过机理分析,确定减少量与影响因素的定量关系,另一方面也可以用统计的方法来线性估计影响程度。或者还可以用影响曲线的方法来直观表现影响的比例关系、周期关系、增量关系等等。

数学建模微分方程的应用举例

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 内容分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题模型 ★追迹问题 ★返回 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得 ,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素(U 238 )的半衰期约为50亿年; 通常的镭(Ra 226 )的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始 量, 一克 Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是 1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础. 二、 逻辑斯谛方程: 逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型. 一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下

数学建模微分方程的应用举例

第八节数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 内容分布 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题模型 ★追迹问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t的质量. 用x表示该放射性物质在时刻t的质量, 则 表示x在时刻t的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 (8.1)

这是一个以x为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t增加时, 质量x减少. 解方程(8.1)得通解 若已知当 时, 代入通解 中可得 则可得到方程(8.1)特解 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( )的半衰期约为50亿年;通常的镭( )的半衰期是1600年.半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克 衰变成半克所需要的时间与一吨 衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础. 二、逻辑斯谛(Logistic)方程:

逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型. 一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型. 如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比. 设树生长的最大高度为H(m), 在t(年)时的高度为h(t), 则有 (8.2) 其中 是比例常数. 这个方程为Logistic方程. 它是可分离变量的一阶常数微分方程. 下面来求解方程(8.2). 分离变量得 两边积分 得

差分方程模型习题+答案

1. 一老人60岁时将养老金10万元存入基金会,月利率0.4%, 他每月取1000元作为生活费,建立差分方程计算他每岁末尚有多少钱?多少岁时将基金用完?如果想用到80岁,问60岁时应存入多少钱? 分析:(1) 假设k 个月后尚有k A 元,每月取款b 元,月利率为 r ,根据题意,可每月取款,根据题意,建立如下的差分方程: 1k k A aA b +=-,其中a = 1 + r (1) 每岁末尚有多少钱,即用差分方程给出k A 的值。 (2) 多少岁时将基金用完,何时0k A =由(1)可得: 01k k k a A A a b r -=- 若0n A =,01 n n A ra b a = - (3) 若想用到 80 岁,即 n =(80-60)*12=240 时,2400A =,240 0240 1 A ra b a =- 利用 MA TLAB 编程序分析计算该差分方程模型,源程序如下: clear all close all clc x0=100000;n=150;b=1000;r=0.004; k=(0:n)'; y1=dai(x0,n,r,b); round([k,y1']) function x=dai(x0,n,r,b) a=1+r; x=x0; for k=1:n x(k+1)=a*x(k)-b; end (2)用MA TLAB 计算: A0=250000*(1.004^240-1)/1.004^240

思考与深入: (2) 结论:128个月即70岁8个月时将基金用完 (3) A0 = 1.5409e+005 结论:若想用到80岁,60岁时应存入15.409万元。 2. 某人从银行贷款购房,若他今年初贷款10万元,月利率0.5%,他每月还1000元。建立差分方程计算他每年末欠银行多少钱,多少时间才能还清?如果要10年还清,每月需还多少? 分析:记第k个月末他欠银行的钱为x(k),月利率为r,且a=1+r,b为每月还的钱。则第k+1个月末欠银行的钱为 x(k+1)=a*x(k)+b,a=1+r,b=-1000,k=0,1,2… 在r=0.005 及x0=100000 代入,用MA TLAB 计算得结果。 编写M 文件如下: function x=exf11(x0,n,r,b) a=1+r; x=x0; for k=1:n x(k+1)=a*x(k)+b; end MA TLAB计算并作图: k=(1:140)'; y=exf11(100000,140,0.0005,-1000); 所以如果每月还1000元,则需要11年7个月还清。 如果要10年即n=120 还清,则模型为: r*x0*(1+r)^n/[1-(1+r)^n b=-r*x0*(1+r)^n/[1-(1+r)^n] 用MA TLAB 计算如下: >> x0=100000; >> r=0.005; >> n=120; >> b=-r*x0*(1+r)^n/[1-(1+r)^n] b= 1.1102e+003 所以如果要10年还清,则每年返还1110.2元。 3. 在某种环境下猫头鹰的主要食物是田鼠,设田鼠的年平均增长率为1r,猫头鹰的存在引起的田鼠增长率的减少与猫头鹰的数量成正比,比例系数为1a;猫头鹰的年平均减少率为

数学建模作业_差分方程

猫头鹰—老鼠种群数量差分方程模型 假定斑点猫头鹰的食物来源是单一的食饵:老鼠. 生态学家希望预测在一个野生了鸟类保护区里斑点猫头鹰和老鼠的种群量水平. 令M n表示n年后老鼠的种群量,而O n表示n年后斑点猫头鹰的种群量,生态学家提出了下列模型: M n+1 = 1.2 M n– 0.001 O n M n O n+1 = 0.7 O n + 0.002 O n Mn 生态学家想知道在栖息地中两个种群能否共存以及结果是否对起始种群量敏感. (a)模型分析: 在该模型中,系数1.2代表了老鼠的繁殖能力,即在没有天敌(栖息地不存在斑点猫头鹰)而资源充足的情况下,模型适用的时间段内老鼠的种群数量将以J曲线的形式指数上涨,增长率是1.2;而系数0.7则代表了斑点猫头鹰的死亡率,即在不存在老鼠的情况下斑点猫头鹰种群量的衰减率. 该模型又假设,两个物种之间相互影响的效果可用两物种相互作用的次数来决定,而相互作用次数又与O n以及M n成正比关系,因此O n M n项及其前面的系数就代表了两物种间相互作用的效果,系数为正号表示两物种相互作用有利于该物种数量的增长,负号则表示不利. (b)对下表中的初始种群量进行检验并预测其长期行为: 情形A O0 = 150 M0 = 200 持续69年:

情形B O0 = 150 M0 = 300 持续39年: 情形C O0 = 100 M0 = 200 持续96年: 情形C O0 = 100 M0 = 200 持续26年:

(c)系数敏感情况分析: 改变老鼠的繁殖力系数且只对情况B做实验分析,则: 老鼠繁殖力系数持续时间/年 1.2 39 1.4 7 1.6 6 1.8 5 非常敏感 改变猫头鹰死亡率系数且只对情况B做实验分析,则: 猫头鹰死亡率系数持续时间/年 0.9 99 0.7 39 0.5 58 0.3 32 较敏感 改变对老鼠相互作用系数且只对情况B做实验分析,则: 对老鼠相互作用系数持续时间/年-0.0005 47 -0.001 39 -0.002 36 -0.003 37 -0.004 42 -0.005 50 不敏感 改变对猫头鹰相互作用系数且只对情况B做实验分析,则: 对猫头鹰相互作用系数持续时间/年 0.001 111 0.002 39 0.003 54 0.004 5 0.005 4 非常敏感

数学建模常微分方程的解法

第十五章 常微分方程的解法 建立微分方程只是解决问题的第一步,通常需要求出方程的解来说明实际现象,并加以检验。如果能得到解析形式的解固然是便于分析和应用的,但是我们知道,只有线性常系数微分方程,并且自由项是某些特殊类型的函数时,才可以肯定得到这样的解,而绝大多数变系数方程、非线性方程都是所谓“解不出来”的,即使看起来非常简单的方程如22x y dx dy +=,于是对于用微分方程解决实际问题来说,数值解法就是一个十分重要的手段。 §1 常微分方程的离散化 下面主要讨论一阶常微分方程的初值问题,其一般形式是 ?????=≤≤=0)(),(y a y b x a y x f dx dy (1) 在下面的讨论中,我们总假定函数),(y x f 连续,且关于y 满足李普希兹(Lipschitz)条件,即存在常数L ,使得 |||),(),(|y y L y x f y x f -≤- 这样,由常微分方程理论知,初值问题(1)的解必定存在唯一。 所谓数值解法,就是求问题(1)的解)(x y 在若干点 b x x x x a N =<<<<=Λ210 处的近似值),,2,1(N n y n Λ=的方法,),,2,1(N n y n Λ=称为问题(1)的数值解,n n n x x h -=+1称为由n x 到1+n x 的步长。今后如无特别说明,我们总取步长为常量h 。 建立数值解法,首先要将微分方程离散化,一般采用以下几种方法: (i )用差商近似导数 若用向前差商h x y x y n n )()(1-+代替)('n x y 代入(1)中的微分方程,则得 ),1,0())(,()()(1Λ=≈-+n x y x f h x y x y n n n n 化简得 ))(,()()(1n n n n x y x hf x y x y +≈+ 如果用)(n x y 的近似值n y 代入上式右端,所得结果作为)(1+n x y 的近似值,记为1+n y ,则有 ),1,0(),(1Λ=+=+n y x hf y y n n n n (2) 这样,问题(1)的近似解可通过求解下述问题 ???==+=+) (),1,0(),(01a y y n y x hf y y n n n n Λ (3) 得到,按式(3)由初值0y 可逐次算出Λ,,21y y 。式(3)是个离散化的问题,称为差分方程初值问题。 需要说明的是,用不同的差商近似导数,将得到不同的计算公式。 (ii )用数值积分方法 将问题(1)的解表成积分形式,用数值积分方法离散化。例如,对微分方程两端

差分方程模型理论与方法

差分方程模型的理论和方法 引言 1、差分方程:差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑

相关主题
文本预览
相关文档 最新文档