当前位置:文档之家› 模电第一张笔记

模电第一张笔记

模电第一张笔记
模电第一张笔记

2014/1/25

1、本征半导体是纯净(无杂质)的晶体结构(稳定的结构—导电能力弱)的半导体。

2、绝缘体其最外层电子受原子核的束缚力很强,只有在外电场强到一定程度时才可能

导电;而导体的最外层电子在外电场作用下很容易产生定向移动,形成电流。

3、共价键时指相邻两个或多个原子通过共用电子对的形式形成的相互作用。两个货多

个原子共同使用它们的最外层电子,在理想情况下达到电子饱和的状态,由此组成

比较稳定和坚固的化学结构。

与离子键不同的是进入共价键的原子向外不显示电荷,因为它们并没有获得或损失

电子。

一般共价键结合的产物是分子,在少数情况下也可以形成晶体。

4、空穴是指本征半导体中自由电子的产生使共价键中留出了一个空位置。

本征半导体中由于热运动(与温度有关),具有足够能量的价电子挣脱了共价键的束

缚而成为了自由电子。

一定温度下,自由电子与空穴对的浓度一定(动态平衡);温度升高,热运动加剧,挣脱共价键的电子增多,自由电子与空穴对的浓度加大。

5、载流子是指运载电荷的粒子。

6、当外加电场时,本征半导体中空穴的运动实际上是指价电子按一定的方向依次填充

空穴,从而表现出空穴是运动的。

7、本征半导体受到外加电场的作用时,带负电的自由电子和带正电的空穴均参与导电,

且运动方向相反,外部所看到的电流特征是由两种载流子所产生的。它的导电性能

与温度有关,热力学温度0K时不导电。

8、为什么要将半导体材料做成导电性能很差的本征半导体?

这是为了实现对半导体导电性能的可控(在本征半导体中添加杂质元素的种类和多

少,实现对其导电性能的改善和控制)。

9、N型半导体

添加的杂质元素为5价元素磷(多出的一个电子形成一个自由电子,相当于加

了多少磷元素就加了多少自由电子)。添加了磷元素后,本征半导体中空穴的数目会

相对减少,这可以从动态平衡去解释:电子浓度增加,动态平衡移动会使本征半导

体中的复合运动加剧。

多数载流子——自由电子;

少数载流子——空穴(影响半导体器件稳定性的重要因素)。

杂质半导体主要靠多数载流子导电。掺入的杂质越多,多子浓度越高,导电性越强,实现导电性的(人为)可控。

10、P型半导体

添加的杂质元素为3价的硼(B)。

多数载流子——空穴;

少数载流子——自由电子。

11、在杂质半导体中,温度变化时,载流子的数目将会发生变化(热运动与温度相关);

同时少子与多子变化的数目相同();但是少子与多子浓度的变化不同(假设同时产生两个多子和少子,有可能多子的浓度变化了万分之一,而少子的浓度则变化百

分之一),这也是少子成为影响半导体器件温度稳定性的重要因素的原因(因为当

温度变化时,少子的浓度与多子相比会相对的变化更多)。

12、扩散运动是指物体因浓度差而产生的运动。气体、液体、固体均有之。

13、PN结

利用扩散工艺使本征半导体的一部分成为P 型半导体(P 区),另一部分成为N 型 半导体(N 区)。扩散运动使靠近接触面P 区的空穴浓度降低、靠近接触面N 区的 自由电子浓度降低,交界面缺少多数载流子,形成空间电荷区,产生内电场(N 区 的原子失去电子得到空穴后带正电、P 区得到电子失去空穴后带负电)。内电场的 存在将会使少子产生漂移运动。扩散运动和漂移运动产生相反的结果。当参与扩散 运动和漂移运动的载流子数目相同,达到动态平衡,就形成了PN 结。

扩散运动——浓度差; 漂移运动——电位差。 14、PN 结的单向导电性

PN 结加正向电压(P 区加电源正极,N 区接电源负极)处于导通状态:耗尽层变 窄(内电场变弱),扩散运动加剧,由于 外电源的作用,形成扩散电流,PN 结导 通。

PN 结加反向电压(P 区接电源负极,N 区接电源正极)截止:耗尽层变宽,有利 于漂移运动,形成漂移电流。由于电流很小,故可近似认为其截止。 15、PN 结的电容效应

I 、势垒电容

PN 结外加电压变化时,空间电荷区的宽度将发生变化,有电荷的积累和释放的 过程,与电容的充放电相同,其等效电容称为势垒电容b C 。(相当于电容极板

的变化)

II 、PN 结外加正向电压时,在扩散路程中载流子浓度及其梯度均有变化,也有电

荷的积累和释放的过程,其等效电容称为扩散电容d C 。

结电容:j C =b C +d C

结电容不是一个常量!若PN 结外加电压的频率高到一定程度时,则失去单向 导电性。假设一个理想二极管和一个电容并联,当频率够高时,电容短路,二

极管从而也短路,也就失去了单向导电性。

问题:

为什么将自然界导电性能中等的半导体材料制成本征半导体,导电性能极差,又将其 掺杂,改善导电性能?

为什么半导体器件的温度稳定性差?是多子还是少子是影响温度稳定性的主要因素? 为什么半导体器件有最高工作频率? 16、二极管

将一个PN 结封装,引出两个电极,就形成了一个二极管。

点接触型:结面积小,结电容小,故结允许的电流小,最高工作频率高。 面接触型:结面积大,结电容大,故结允许的电流大,最高工作频率低。 平面型:结面积可小可大,小的工作频率高,大的结允许的电流大。 17、二极管的伏安特性

二极管的电流与其端电压的关系称为伏安特性。

材料 开启电压 导通电压 反向饱和电流 硅Si 0.5V 0.5~0.8V 1μA 以下 锗Ge

0.1V

0.1~0.3V

几十μA

正向特性曲线为指数曲线; 反向特性曲线为横轴的平

行线。伏安特性曲线折线化 可以得到二极管的三个等 效电路(静态)。动态的用 微变等效电路。

二极管的电流方程:

I 、开启电压on U 产生的原因:外加电场要足以削弱内电场的作用从而加剧扩散运动。一般 二极管加正向电压前都要串联一个限流电阻,这是因为当所加正向电压大于开启电压

时,电流呈指数增长,二极管的功率会急速增大,其消耗的能量主要转换为热能。

II 、反向饱和电流S I 是因为在一定反向电压作用下,几乎所有的少数载流子都参与了漂移 运动,这时外部电压的增大也不会使电流产生变化。反向饱和电流的大小可以反映二极 管的单向导电性的性能是否良好。从表中数据可以看出,锗材料的二极管的温度稳定性

比硅材料的差。

III 、击穿电压BR U 是因为当反向电压增大到一定程度时,破坏了半导体的晶体结构,最外 层电子挣脱共价键的束缚成为自由电子。 伏安特性曲线受温度影响:

mV )

26( )1e

(T S T =-=U I i U

u 常温下静态电压,动态模型是一个动态电阻

T (℃)↑→在电流不变情况下管压降u ↓ →反向饱和电流IS ↑,U(BR) ↓

T (℃)↑→正向特性左移,反向特性下移

当二极管在静态(恒压源V )基础上有一动态信号d u ?(小信号)作用时,则可将二极管等效为一个电阻,称为动态电阻,也就是微变等效电路。

图中Q 点是d u ?=0时直流电源D U 的作用,对应的电流值为D I (静态电流)。

Q 点越高,微变等效电阻就越小(曲线越陡)

S

T I i U u -≈>>,则若反向电压T

e

S T U u I i U u ≈>>,则若正向电压D

T D

D d I U i u r ≈

??=根据电流方程,

18、二极管的参数

最大整流电流F I (正向,限制功率):正弦波半波的平均值,最大平均值, 最大反向工作电压R U :最大瞬时值,超过这个值,会造成二极管永久性的损坏。 反向电流R I :即S I ,描述二极管单向导电性良好与否的参数。整体而言,通常大功率反

向电流大(需要散热),小功率管反向电流小。

最高工作频率M f :因PN 结有电容效应。

19、特殊二极管 稳压二极管

I 、伏安特性曲线

与普通二极管的工艺有区别。

由一个PN 结组成,反向击穿后在一定的电流i ?范围内端电压基本不变,称为稳定电 压。

Z I 是进入稳压区的最小电流,ZM I 是不至于损坏的最大电流。

II 、主要参数

稳定电压Z U 、稳定电流Z I 、最大功耗ZM P =ZM I Z U 、动态电阻r ?=u ?/i ? 2014/1/26

1、晶体管的结构和符号

一个晶体管包括三个区、三个极和两个PN 结。 发射区多子浓度高(重掺杂),基区多子浓度低且很薄,集电区面积大。 晶体管可分小功率管(不需要散热)

、中功率管和大功率管。 2、晶体管放大的条件

两个PN 结都导通。BB V 保证发射结正偏(正向导通),CC V 保证集电结反偏(反向导通) 并且CC V 还要保证集电极c 的电压高于或等于基极b 的电压。注意CE u 是大于或等于

BE u 。

发射结正偏,因发射区多子浓度高使大量电子从发射区扩散到基区(扩散运动形成发射

结电流E I );因基区薄且多子浓度低使极少数扩散到基区的电子与空穴复合(复合运动形成基极电流B I );因集电区面积大,在外电场作用下大部分扩散到基区的电子漂移到集电区(漂移运动形成集电极电流C I )。

电流分配:E I =B I +C I

??

?≥≥>(集电结反偏)

,即(发射结正偏)

放大的条件BE CE CB on BE

0u u u

U u

图中字母O 可以理解为将缺少的字母对应的极开路。

为什么基极开路的情况下集电极和发射极之间存在穿透电流? 这是因为即使在基极开路的情况下,三极管中的电位情况和处于放大条件下的相同,穿 透电流的大小反映了三极管集电结单向导电性的良好与否,所以穿透电流是反映三极管 质量好坏的一个重要参数。 3、晶体管的输入特性曲线

当CE U =0时只有发射结正向导通,故输入特性曲线与二极管的伏安特性曲线相似。 当CE U 增大时,输入特性曲线会右移,这是因为当CE U 增大时,集电结收集电子的能 力增强,相应的发射区发射的电子参与基区复合运动的数量就会减少,从而基极电流就

会减小。

当CE U 增大到一定程度后,曲线右移就不明显了,这是因为CE U 增大到一定程度时, 集电结收集电子的能力不会再增大的缘故。因此,对于小功率管,CE U 大于1V 的一条

输入特性曲线可以代替CE U 大于1V 的所有输入特性曲线。

CBO

CEO B C

B C )(1

I I i i I I βββ+=??==直流电流放大系数

交流电流放大系数

集电结反向电流

穿透电流

CE )

(BE B U u f i =

4、晶体管的输出特性曲线

在实际情况下,β并不是常数,当C i 变化时β也会变化(变化相同)。

什么是理想晶体管?一是穿透电压为0;二是β处处相等(当B i 做等差的变化的时

候,输出特性曲线是等距离的平行线)。在理想的条件下,β=—

β(即直流放大倍数

与交流放大倍数相等,这可以从微变等效的观点来理解)。

5、晶体管的三个工作区域

晶体管工作在放大状态时,输出回路的电流 iC 几乎仅仅决定于输入回路的电流 iB , 即可将输出回路等效为电流 iB 控制的电流源iC 。

6、温度对晶体管特性的影响

状态 BE u

C i CE u 截止 <U on

CEO I CC V 放大 ≥ U on βi B ≥ BE u

饱和 ≥ U on <βi B

≤ BE u B

i ?C i ?B

)(CE C I u f i =常量

=??=

CE B

C

U i i β饱和

放大区

截止区 CEO I 很小,可近似认为所接电阻不分压

这些变化集中表现为集电极电流C i 的增大。 7、三极管的主要参数

直流参数:—

β、—

α、CBO I 、CEO I

交流参数:β、α、T f (特征频率,β随交流信号的频率增大而减小,当β=1时的交流输

入信号的频率就称为特征频率,此时三极管完全失去放大能力)

极限参数:最大集电极电流CM I 、最大集电极耗散功率CM P 、c-e 极击穿电压CEO BR U )(

↑→↑→↑

↑→BE B B BE CEO )(u i i u I T 不变时,即不变时℃

β安全工作区

模拟电子技术模电课后习题含答案第三版

第1章 常用半导体器件 1.1选择合适答案填入空内。 (l)在本征半导体中加入( A )元素可形成N 型半导体,加入( C )元素可形成P 型半导体。 A.五价 B. 四价 C. 三价 (2)当温度升高时,二极管的反向饱和电流将(A) 。 A.增大 B.不变 C.减小 (3)工作在放大区的某三极管,如果当I B 从12 uA 增大到22 uA 时,I C 从l mA 变为2mA ,那么它的β约为( C ) 。 A.83 B.91 C.100 (4)当场效应管的漏极直流电流I D 从2mA 变为4mA 时,它的低频跨导g m 将( A ) 。 A.增大; B.不变; C.减小 1.3电路如图P1.2 所示,已知10sin i u t ω=(V ),试画出i u 与o u 的波形。设二极管导通电 压可忽略不计。 图P1.2 解图P1.2 解:i u 与o u 的波形如解图Pl.2所示。 1.4电路如图P1.3所示,已知t u i ωsin 5=(V ),二极管导通电压U D =0.7V 。试画出i u 与o u 的 波形图,并标出幅值。 图P1.3 解图P1.3

1.6电路如图P1.4所示, 二极管导通电压U D =0.7V ,常温下mV U T 26≈,电容C 对交流信号可视为短路;i u 为正弦波,有效值为10mV 。试问二极管中流过的交流电流的有效值为多少? 解:二极管的直流电流 ()/ 2.6D D I V U R mA =-= 其动态电阻: /10D T D r U I ≈=Ω 故动态电流的有效值:/1d i D I U r mA =≈ 1.7现有两只稳压管,稳压值分别是6V 和8V ,正向导通电压为0.7V 。试问: (1)若将它们串联相接,则可得到几种稳压值?各为多少? (2)若将它们并联相接,则又可得到几种稳压值?各为多少? 解:(1)串联相接可得4种:1.4V ;14V ;6.7V ;8.7V 。 1、两个管子都正接。(1.4V ) 2、6V 的管子反接,8V 的正接。(6.7V) 3、8V 的反接, 6V 的管子正接。(8.7V) 4、两个管子都反接。(14V ) (2)并联相接可得2种:0.7V ;6V 。 1、 两个管子都反接,电压小的先导通。(6V) 2.、一个正接,一个反接,电压小的先导通。(0.7V ) 1.8 已知稳压管的稳定电压U Z =6V ,稳定电流的最小值I Zmin =5mA ,最大功耗P ZM =150mW 。试求图P1.8所示电路中电阻R 的取值范围。 解:稳压管的最大稳定电流: I ZM =P ZM / U Z =25mA 电阻R 的电流为I ZM ~I Zmin 所以其取值范围为 Ω=-= k 8.136.0Z Z I ~I U U R

电力电子技术的实际应用(读书笔记)

电力电子技术的实际应用 摘要 随着科技的飞速进步,时代的高速发展,电力电子技术作为一个新兴的学科诞生并被迅速应用于电力电子领域中,已在国民经济中发挥着巨大作用,已对输变电系统性能将产生巨大影响。目前电力电子技术的应用已涉及电力系统的各个方面,包括发电环节、输配电系统、储能系统等等。电力电子技术是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术,其发展在优化电能使用、改造传统产业和发展机电一体化等新兴产业、扩大电网规模和功能等方面起到了重要作用。本文将重点介绍电力电子技术在电 理网络中的应用。 关键字:电力电子技术、输配电系统、晶闸管、电力网络。 在电气工程领域,电力电子技术作为一个新兴的学科,因其在电力领域中起到的巨大作用,越来越受到重视。随着晶闸管等电力器件的发明并被应用于电力领域,正式标志着电力电子技术被应用于电力系统,其在全球电力领域的发展中,有着里程碑的意义。 电力电子技术主要应用于电力领域中的电力系统中。电力系统由发电、输电、变电、配电和用电等环节组成的电能生产与消费系统。其功能就是产生电能,再经输电系统、变电系统和配电系统将电能供应到用户。为了实现此功能,电力电子技术的应用起到了举足轻重的作用。保证了用户能够获得安全、经济、优质的电能。 电力电子技术最初应用到电力领域的历史最早是在20世纪50年代利用不可控器件二极管构成的整流器来替代直流发电机对同步发电机进行励磁调节。随后出现的利用半控器件晶闸管构成的可控整流器更是为发电机的励磁提供里一个快捷有效的控制手段,从根本上改变了发电机的动态和静态性能,有效的改善了系统的稳定性。 在当前大范围使用的电力系统中,通常都是以固定的电压和频率来向用户提供交流电能的(例如我国使用220V、50Hz的交流电),但是最终的用户需要的电能可能形式会有着各式各样的差别,可能是不同频率的交流电、可能是同频率但电压不同的交流电也可能是直流电等等、如果这些要由普通的常规电力系统器件来完成,例如使用变频器,变压器和整流器等,这就需要大量的此类设备,且还要根据不同用户的要求而使用不同的器件,这是很不经济的,也不可能实现。而电力电气器件可以作为电力系统和用户之间的接口,通过受控的开关作用对系统输送到用户的电能进行不同的变换来满足用户不同的需求。故而自其问世以来,就被广泛的应用在电力领域的各个角落。 在电力领域中,实现常规电流变换的装置包括:整流器、逆变器、交流变换器和斩波器四种基本类型。整流器是利用电力电子器件的单向导电性和可控性将交流电能转换为可控的直流电能的变流装置;逆变器是将直流电能转换为交流电能的装置;交流变换器是把一种交流电能变换为另一种交流电能的装置;斩波器是把一种直流电脑变为另一种直流电能的装置。

电化学读书笔记全解

电化学(electrochemistry)作为化学的分支之一,是研究两类导体(电子导体,如金 属或半导体,以及离子导体,如电解质溶液)形成的接界面上所发生的带电及电子转移变化的科学。 传统观念认为电化学主要研究电能和化学能之间的相互转换,如电解和原电池。但电化学并不局限于电能出现的化学反应,也包含其它物理化学过程,如金属的电化学腐蚀,以及电解质溶液中的金属置换反应。 16-17世纪:早期相关研究 16世纪标志着对于电认知的开始。在16世纪50年代,英国科学家威廉·吉尔伯特花了17年时间进行磁学方面的试验,也或多或少地进行了一些电学方面的研究。吉尔伯特由 于在磁学方面的开创性研究而被称为“磁学之父”,他的磁学研究为电磁学的产生和发展创造了条件。 1663年,德国物理学家奥托·冯·格里克发明了第一台静电起电机。这台机器由球形 玻璃罩中的巨大硫磺球和转动硫磺球用的曲轴组成的。当摇动曲轴来转动球体的时候,衬垫与硫磺球发生摩擦产生静电。这个球体可以拆卸并可以用作电学试验的来源。 18世纪:电化学的诞生 在18世纪中叶,法国化学家夏尔·杜菲发现了两种不同的静电,他将两者分别命名为“玻璃电”和“松香电”,同种相互排斥而不同种相互吸引。杜菲因此认为电由两种不同液体组成:正电“vitreous”(“玻璃”),以及负电“resinous”(“树脂”),这便是电的双液体理论,这个理论在18世纪晚期被本杰明·富兰克林的单液体理论所否定。 1781年,法国物理学家夏尔·奥古斯丁·库仑在试图研究由英国科学家约瑟夫·普利 斯特里提出的电荷相斥法则的过程中发展了静电相吸的法则。 1771年,意大利生理学家、解剖学家路易吉·伽伐尼发现蛙腿肌肉接触金属刀片时候会发生痉挛。他于1791年发表了题为“电流在肌肉运动中所起的作用”的论文,提出在生物形态下存在的“神经电流物质”,在化学反应与电流之间架起了一座桥梁。[1]这 篇论文的发表标志着电化学和电生理学的诞生。在论文中,伽伐尼认为动物体内中存在着一种与“自然”形式(如闪电)或“人工”形式(如摩擦起电)都不同的“动物电”,“动物电”通过金属探针来激活神经和有限的肌肉组织。

模电第2章_作业答案

模拟电子技术作业答案 班级_________ _ 学号_____ __ 姓名_____________ 第2章半导体三极管及其放大电路1.简答题: (1)放大电路中为何设立静态工作点?静态工作点的高、低对电路有何影响? 答:设立静态工作点的目的是使放大信号能全部通过放大器。Q点过高易使传输信号部分进入饱和区;Q点过低易使传输信号部分进入截止区,其结果都是信号发生失真。 (2)说明利用三极管组成放大电路的基本原则。 答:不论那种组态的放大电路,如果希望能够正常放大信号,必须遵守以下原则。 ①有极性连接正确的直流电源、合理的元件参数,以保证三极管发射结正偏、集电结反偏和合适的静态工作点,使三极管工作在放大区。 ②信号能够从放大电路的输入端加到三极管上,经过三极管放大后,又能传给放大电路的下一级或负载。 (3) 分析放大电路有哪几种方法?几种方法分别有什么特点? 答:分析放大电路有近似法、微变等效法和图解法。近似法简洁、精确,工程上常用来分析放大电路的静态工作点;微变等效法方便分析放大电路的动态;图解法直观,可同时用于分析放大电路的静态和动态。 (4)共射、共集和共基表示BJT的三种电路接法,而反相电压放大器,电压跟随器和电流跟随器则相应地表达了输出量与输入量之间的大小与相位关系,如何从物理概念上来理解? 答:共射电路有电压放大作用,且输出电压与输入电压相位相反。为此,称这种放大电

路为反相电压放大器。共集电路没有电压放大作用且输出电压与输入电压同相位。因此,可将这种放大电路称为电压跟随器。共基电路有输出电流与输入电流接近相等。为此,可将它称为电流跟随器。 2.图1所示电路中,已知硅型晶体三极管发射结正向导通电压为0.7V, =100,临界放大饱和时三极管压降(集电极-发射极之间)为0.3V。判断电路中各晶体管的工作状态。 (a) (b) (c) 图1 解:分析:判断晶体三极管的工作状态并计算各级电流问题的分析方法如下。 方法一: 1.对于NPN管,若U BE<0.7V,则管子截止;对于PNP管,若U BE>-0.7V,或U EB<0.7V 则管子截止; 2.若NPN管,U BE>0.7V,PNP管U EB>0.7V,则说明三极管处于放大状态或饱和状态。 对于NPN管,如果假设三极管工作在放大区,计算结果得管子压降U CE>0.3V(设小功率三极管饱和压降为0.3V),说明管子确实工作在放大状态。如果计算结果得管子压降U CE<0.3V,说明管子工作在饱和区。 对于PNP管,如果假设三极管工作在放大区,计算结果得管子压降U EC>0.3V,说明管子确实工作在放大状态。如果计算结果得管子压降U EC<0.3V,说明管子工作在饱和区。方法二: 当确定三极管处于非截止状态时,计算三极管的基极电流I B及饱和电流集电极电流I CS (U EC=0.3V),如果βI B I CS,说明电路处于饱和状态。 方法二似乎更为简单。 解:

电子电路读书笔记

电子电路读书笔记 1、HC为COMS电平,HCT为TTL电平 2、LS输入开路为高电平,HC输入不允许开路,HC一般都要求有上下拉电阻来确定输入端无效时的电平。LS 却没有这个要求 3、LS输出下拉强上拉弱,HC上拉下拉相同 4、工作电压:LS只能用5V,而HC一般为2V到6V 5、CMOS可以驱动TTL,但反过来是不行的。TTL电路驱动COMS电路时需要加上拉电阻,将2.4V~3.6V之间的电压上拉起来,让CMOS检测到高电平输入 6、驱动能力不同,LS一般高电平的驱动能力为5mA,低电平为20mA;而CMOS的高低电平均为5mA 7、RS232电平为+12V为逻辑负,-12为逻辑正 8、74系列为商用,54为军用 9、TTL高电平>2.4V,TTL低电平<0.4V, 噪声容限0.4V 10、OC门,即集电极开路门电路(为什么会有OC门?因为要实现“线与”逻辑),OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。并且只能吸收电流,必须外界上拉电阻和电源才才能对外输出电流 11、COMS的输入电流超过1mA,就有可能烧坏COMS 12、当接长信号传输线时,在COMS电路端接匹配电阻 13、在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平 14、如果电路中出现3.3V的COMS电路去驱动5V CMOS电路的情况,如3.3V单片机去驱动74HC,这种情况有以下几种方法解决,最简单的就是直接将74HC换成74HCT的芯片,因为3.3V CMOS 可以直接驱动5V的TTL电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间。 15、逻辑门输出为高电平时的负载电流(为拉电流),逻辑门输出为低电平时的负载电流(为灌电流) 16、由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。这样漏极开路形式就可以连接不同电平的器件,用于电平转换。需要注意的一点:在上升沿的时候通过外部上拉无源电阻对负载进行充电,所以上升沿的时间可能不够迅速,尽量使用下降沿 17、几种电平转换方法: (1) 晶体管+上拉电阻法 就是一个双极型三极管或MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。 (2) OC/OD 器件+上拉电阻法 跟1) 类似。适用于器件输出刚好为OC/OD 的场合。 (3) 74xHCT系列芯片升压(3.3V→5V) 凡是输入与5V TTL 电平兼容的5V CMOS 器件都可以用作3.3V→5V 电平转换。 ——这是由于3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而CMOS 的输出电平

《电力电子技术基础》读书笔记

电力电子器件的发展对电力电子技术的发展起着决定性的作用,因此,电力电子技术的发展史是以电力电子器件的发展史为纲的。而电力电子技术的不断发展,新材料、新结构器件的陆续诞生,计算机技术的进步为现代控制技术的实际应用提供了有力的支持,在各行各业中的应用越来越广泛。电力电子技术在电力系统中的应用研究与实际工程也取得了可喜成绩。 电力电子技术是应用于电力领域的电子技术。具体地说,就是使用电力电子器件对电能进行变换和控制的技术,主要用于电力变换。目前所用的电力电子器件均用半导体制成,故也称电力半导体器件。通常把电力电子技术分为电力电子器件制造技术(理论基础是半导体物理)和变流技术(理论基础是电路理论)两个分支。电力电子器件的制造技术是电力电子技术的基础,而变流技术则是电力电子技术的核心。 电力电子技术的发展史 自 20 世纪50 年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子技术的诞生。在随后的40 余年里,电力电子技术在器件、变流电路、控制技术等方面都发生了日新月异的变化,在国际上,电力电子技术是竞争最激烈的高新技术领域。 电力电子器件的发展对电力电子技术的发展起着决定性的作用,因此,电力电子技术的发展史是以电力电子器件的发展史为纲的。1957年美国通用电气公司研制出第一个晶闸管为电力电子技术的诞生奠定了基础。晶闸管自诞生以来,电力电子器件已经走过了五十多年的概念更新、性能换代的发展历程。 第一代电力电子器件 以电力二极管和晶闸管(SCR)为代表的第一代电力电子器件,以其体积小、功耗低等优势首先在大功率整流电路中迅速取代老式的汞弧整流器,取得了明显的节能效果,并奠定了现代电力电子技术的基础。电力二极管对改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面都具有非常重要的作用。目前,硅整流管已形成普通整流管、快恢复整流管和肖特基整流管三种主要类型。晶闸管诞生后,其结构的改进和工艺的改革,为新器件的不断出现提供了条件。由晶闸管及其派生器件构成的各种电力电子系统在工业应用中主要解决了传统的电能变换装置中所存在的能耗大和装置笨重等问题,因而大大提高电能的利用率,同时也使工业噪声得到一定程度的控制。 第二代电力电子器件 自20世纪70 年代中期起,电力晶体管(GTR)、可关断晶闸管(GTO)、电力场控晶体管(功率MOSFET)、静电感应晶体管(SIT)、MOS 控制晶闸管(MCT)、绝缘栅双极晶体管(IGBT)等通断两态双可控器件相继问世,电力电子器件日趋成熟。一般将这类具有自关断能力的器件称为第二代电力电子器件。全控型器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。 第三代电力电子器件 进入20 世纪90 年代以后,为了使电力电子装置的结构紧凑、体积减少,常常把若干个电力电子器件及必要的辅助元件做成模块的形式,这给应用带来了很大的方便。后来,又把驱动、控制、保护电路和功率器件集成在一起,构成功率集成电路(PIC),也就是说,电力电子器件的研究和开发已进入高频化、标准模块化、集成化和智能化时代。电力电子器件的高频化是今后电力电子技术创新

模电题库及标准答案

模拟电子线路随堂练习 第一章半导体器件 作业1-1 一、习题(满分100分) 1.N型半导体带负电,P型半导体带正电。() 2.以空穴为主要导电方式的半导体称为P型半导体。() 3.PN结处于正向偏置时,正向电流小,电阻大,处于导通状态。() 4.晶体二极管的反向电压上升到一定值时,反向电流剧增,二极管被击穿,就不能再使用了。() 5.硅二极管两端只要加上正向电压时立即导通。() 6.在本征半导体中,空穴和自由电子两种载流子的数量不相等。() 7.晶体三极管的基极,集电极,发射极都不可互换使用。() 8.晶体三极管工作在饱和状态的条件是:发射结正偏,集电结正偏。() 9.晶体三极管有三种工作状态,即:放大状态,饱和状态,导通状态。() 10.三极管是一种电压控制器件,场效应管是一种电流控制器件。() 11.温度升高后,在纯净的半导体中()。 A.自由电子和空穴数目都增多,且增量相同 B.空穴增多,自由电子数目不变 C.自由电子增多,空穴不变 D.自由电子和空穴数目都不变 12.如果PN结反向电压的数值增大(小于击穿电压),则()。 A.阻当层不变,反向电流基本不变 B.阻当层变厚,反向电流基本不变 C.阻当层变窄,反向电流增大 D.阻当层变厚,反向电流减小

一、习题(满分100分) 1.N型半导体()。 A.带正电 B.带负电C.呈中性D.不确定 2.如果二极管的正反向电阻都很大,则该二极管()。 A.正常 B.断路C.被击穿D.短路 3.对于晶体二极管,下列说法正确的是()。 A.正向偏置时导通,反向偏置时截止 B.反向偏置时无电流流过二极管 C.反向击穿后立即烧毁 D.导通时可等效为一线性电阻 4.工作在放大状态的三极管两个电极电流如图,那么,第三个电极的电流大小、方向和管脚自左至右顺序分别为()。 A.0.03mA 流出三极管e、c、b B.0.03mA 流进三极管e、c、b C.0.03mA 流出三极管c、e、b D.0.03mA 流进三极管c、e、b 5.测得电路中晶体三极管各电极相对于地的电位如图,从而可判断该晶体管工作在()。 A.饱和状态 B.放大状态 C.倒置状态D.截止状态 6.PNP型晶体管工作在放大状态,三个极电位的关系是()。 A.V C>V B>V E B. V C> V E > V BC.V E >V B> V CD.V E >V C>V B 7.PNP型硅管工作在放大状态,各极对地电位分别是V1=6V,V2=2.7V,V3=2V,则1,2,3分别为()。 A.发射极、基极、集电极 B.集电极、基极、发射极 C.集电极、发射极、基极 D.基极、集电极、发射极 8.测得三极管i b=30μA时i c=2.4mA,而i b=40μA时i c=3mA,则该管的交流电流放大系数β为()。 A.60 B.75 C.80 D.100 9.NPN型硅管各极对地电位分别是V1=6V,V2=2.7V,V3=2V,则1,2,3分别为()。 A.基极、集电极、发射极 B.发射极、基极、集电极 C.集电极、发射极、基极 D.集电极、基极、发射极 10.三极管输出特性曲线可分为三个区,下列不属于工作区的是()。 A.截止区 B.放大区 C.饱和区D.击穿区 11.在放大电压信号时,通常希望放大电路的输入电阻和输出电阻分别为() A.输入电阻小,输出电阻大 B.输入电阻小,输出电阻小 C.输入电阻大,输出电阻小 D.输入电阻大,输出电阻大

电力系统自动化读书笔记

电力系统自动化读书笔记 篇一:电力系统自动化的基本内容及认识 电力系统自动化的基本内容及认识 今天,实习的第四天,我们学习了有关于电力系统的组成、电力系统的自动化的知识。 首先老师为我们讲解了什么是电力系统,简单来讲电力系统就是由发电、变电、输电、配电和用电等环节组成的电能生产、传输、分配和消费的系统。而电力系统的功能就是将自然界的一次能源通过发电动力装置转化成电能,再经输电、变电和配电将电能供应到各用户。一般来说电力系统是由发电厂、送变电线路、供配电所和用电单位组成的整体,在同一瞬时,发电厂将发出的电能通过送变电线路,送到供配电所,经过变压器将电能送到用电单位,供给工农业生产和人民生活。这也体现出了电能生产的特点即不能存储,必须做到即发即用。所以为了发电厂、电网的安全稳定运行电力系统的自动化是必不可少的。 同时电力系统的自动化也是为了保障电能的品质,老师在课上介绍评价电能品质的三要素即电压、频率和波形的稳定。而要实现这一切,也需要电力系统的自动化调节。那么电力系统的自动化包括什么

呢?电力系统自动化是电力系统一直以来力求的发展方向,按照电能的生产和分配过程,电力系统自动化包括电网调度自动化、火力发电厂自动化、水力发电站综合自动化、电力系统信息自动传输系统、电力系统反事故自动装置、供电系统自动化、电力工业管理系统的自动化等7个方面。 随后老师又为我们图解了发电机的基本构造和发电机发电的基本原理。简单来看,发电机由定子和转子组成,定子包括铁心和导体(电枢);转子包括磁极和励磁绕组。在发电的时候励磁绕组通上直流电从而产生磁场,转动转子定子导体由于与磁场有相对运动而产生交流电势,频率为f=pn/60,其中当p=1,n=1500r/s时f=50HZ。所以转速的变化会带来频率的改变。接着,老师又介绍了五大发电集团:中国华能集团公司、中国大唐集团公司、中国华电集团公司、中国国电集团公司、中国电力投资集团公司,以及六大电网:东北电网、华北电网、华中电网、华东电网、西北电网、南方电网。丰富了我们的课外知识。 老师接着为我们介绍电网的监控和发电机的并断网。电网监控是由众多的远方终端和一个主控站,以及连接各个终端和主控站的数据通道构成。它的特点是四遥:遥测、遥信、遥控、遥调。电网监控广泛应

工学模电试题与答案

一、判断下列说法是否正确,用“×”或“√”表示判断结果。 (10分) (1)在运算电路中,同相输入端和反相输入端均为“虚地”。 ( ) (2)电压负反馈稳定输出电压,电流负反馈稳定输出电流。 ( ) (3)使输入量减小的反馈是负反馈,否则为正反馈。 ( ) (4)产生零点漂移的原因主要是晶体管参数受温度的影响。 ( ) (5)利用两只NPN 型管构成的复合管只能等效为NPN 型管。 ( ) (6)本征半导体温度升高后两种载流子浓度仍然相等。 ( ) (7)未加外部电压时,PN 结中电流从P 区流向N 区。 ( ) (8)集成运放在开环情况下一定工作在非线性区。 ( ) (9)只要引入正反馈,电路就会产生正弦波振荡。 ( ) (10)直流稳压电源中的滤波电路是低通滤波电路。 ( ) 二、选择填空 (10分) (1)为了减小输出电阻,应在放大电路中引入; 为了稳定静态工作点,应在放大电路中引入。 (A )电流负反馈 (B )电压负反馈 (C )直流负反馈 (D )交流负反馈 (2)RC 串并联网络在RC f f π21 0= =时呈。 (A )感性 (B )阻性 (C )容性 (3)通用型集成运放的输入级多采用。 (A )共基接法 (B )共集接法 (C )共射接法 (D )差分接法 (4)两个β相同的晶体管组成复合管后,其电流放大系数约为。 (A )β(B )β2 (C )2β(D )1+β (5)在(A )、(B )、(C )三种电路中输出电阻最小的电路是; 既能放大电流,又能放大电压的电路是 。 (A )共基放大电路 (B )共集放大电路 (C )共射放大电路 (6)当NPN 型晶体管工作在放大区时,各极电位关系为u C u B u E 。 (A ) > (B ) < (C ) = (D )≤ (7)硅二极管的正向导通压降比锗二极管的。 (A ) 大 (B ) 小 (C ) 相等 三、(5分)图示电路中二极管为理想二极管,请判断它是否导通,并求出 u 0。

关于电力读书笔记随感

关于电力读书笔记随感 篇一:电力电子技术读书笔记 关于《电力电子技术》的理解及感想 信息技术系20XX级 信息一班 任俊凯 通过阅读《电力电子技术》,我认识到,电力电子技术是一门新兴的应用 于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。而电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。 在模块《功率技术》的阅读中,我了解到,功率电子技术就是利用 电力电子器件实现工业规模电能变换的技术。一般情况下,它是将一种形式的工业电能转换成另一种形式的工业电能。例如,将交流电能变换成直流电能或将直流电能变换成交流电能;将工频电源变换为设备所需频率的电源;在正常交流电源中断时,用逆变器(见电力变流器)将蓄电池的直流电能变换成工频交流电能。应用电力电子技术还能实现非电能与电能之间的转换。例如,利用太阳电池将太阳

辐射能转换成电能。与电子技术不同,电力电子技术变换的电能是作为能源而不是作为信息传感的载体。因此人们关注的是所能转换的电功率。 电力电子技术是建立在电子学、电工原理和自动控制三大学科上的 新兴学科。因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。近代新型电力电子器件中大量应用了微电子学的技术。电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及外围电路。利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。这些装置常与负载、配套设备等组成一个系统。电子学、电工学、自动控制、信号检测处理等技术常在这些装置及其系统中大量应用。 而这门技术的作用有很多,比如:(1)优化电能使用。通过电力 电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现了电能使用最佳化。例如,在节电方面,针对风机水泵、电力牵引、轧机冶炼、

模电第一章练习习题

第一章常用半导体器件 自测题 一、判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)在P型半导体中如果掺入足够量的五价元素,可将其改型为N型半导体。(√) (2)因为N型半导体的多子是自由电子,所以它带负电。(×) (3)PN结在无光照、无外加电压时,结电流为零。(√) (4)处于放大状态的晶体管,集电极电流是多子漂移运动形成的。 (×)(5)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其R G S大的特点。(√) (6)若耗尽型N沟道MOS管的U G S大于零,则其输入电阻会明显变小。(×) 解: 二、选择正确答案填入空内。 (1)PN结加正向电压时,空间电荷区将。 A. 变窄 B. 基本不变 C. 变宽 (2)稳压管的稳压区是其工作在。 A. 正向导通 B.反向截止 C.反向击穿 (3)当晶体管工作在放大区时,发射结电压和集电结电压应为。 A. 前者反偏、后者也反偏 B. 前者正偏、后者反偏 C. 前者正偏、后者也正偏 (4)U G S=0V时,能够工作在恒流区的场效应管有。 A. 结型管 B. 增强型MOS管 C. 耗尽型MOS管 解:(1)A (2)C (3)B (4)A C 第一章题解-1

第一章题解-2 三、写出图T1.3所示各电路的输出电压值,设二极管导通电压U D =0.7V 。 图T1.3 解:U O 1≈1.3V ,U O 2=0,U O 3≈-1.3V ,U O 4≈2V ,U O 5≈1.3V , U O 6≈-2V 。 四、已知稳压管的稳压值U Z =6V ,稳定电流的最小值I Z mi n =5mA 。求图T1.4所示电路中U O 1和U O 2各为多少伏。 图T1.4 解:(a)图能击穿稳压,U O 1=6V ;(b)图不能击穿,靠电阻分压,U O 2=5V 。

电力系统自动化读书笔记复习课程

电力系统自动化读书 笔记

电力系统自动化读书笔记 篇一:电力系统自动化的基本内容及认识 电力系统自动化的基本内容及认识 今天,实习的第四天,我们学习了有关于电力系统的组成、电力系统的自动化的知识。 首先老师为我们讲解了什么是电力系统,简单来讲电力系统就是由发电、变电、输电、配电和用电等环节组成的电能生产、传输、分配和消费的系统。而电力系统的功能就是将自然界的一次

能源通过发电动力装置转化成电能,再经输电、变电和配电将电能供应到各用户。一般来说电力系统是由发电厂、送变电线路、供配电所和用电单位组成的整体,在同一瞬时,发电厂将发出的电能通过送变电线路,送到供配电所,经过变压器将电能送到用电单位,供给工农业生产和人民生活。这也体现出了电能生产的特点即不能存储,必须做到即发即用。所以为了发电厂、电网的安全稳定运行电力系统的自动化是必不可少的。 同时电力系统的自动化也是为了保障电能的品质,老师在课上介绍评价电能品质的三要素即电压、频率和波形的

稳定。而要实现这一切,也需要电力系统的自动化调节。那么电力系统的自动化包括什么呢?电力系统自动化是电力系统一直以来力求的发展方向,按照电能的生产和分配过程,电力系统自动化包括电网调度自动化、火力发电厂自动化、水力发电站综合自动化、电力系统信息自动传输系统、电力系统反事故自动装置、供电系统自动化、电力工业管理系统的自动化等7个方面。 随后老师又为我们图解了发电机的基本构造和发电机发电的基本原理。简单来看,发电机由定子和转子组成,定子包括铁心和导体(电枢);转子包括磁极和励磁绕组。在发电的时候励磁绕

组通上直流电从而产生磁场,转动转子定子导体由于与磁场有相对运动而产生交流电势,频率为f=pn/60,其中当 p=1,n=1500r/s时f=50HZ。所以转速的变化会带来频率的改变。接着,老师又介绍了五大发电集团:中国华能集团公司、中国大唐集团公司、中国华电集团公司、中国国电集团公司、中国电力投资集团公司,以及六大电网:东北电网、华北电网、华中电网、华东电网、西北电网、南方电网。丰富了我们的课外知识。 老师接着为我们介绍电网的监控和发电机的并断网。电网监控是由众多的远方终端和一个主控站,以及连接各个

模电第一章习题解答

第一章 电路的基本概念和基本定律 1.1 在题1.1图中,各元件电压为 U 1=-5V ,U 2=2V ,U 3=U 4=-3V ,指出哪些元件是电源,哪些元件是负载? 解:元件上电压和电流为关联参考方向时,P=UI ;电压和电流为非关联参考方向时,P=UI 。P>0时元件吸收功率是负载,P<0时,元件释放功率,是电源。 P 1=-P 2P 3=U P 4=-元件2、4 1.2 3t C e (u -=i =-R u =L u = 1.3 在题1.3图中,已知I=2A ,求U ab 和P ab 。 解:U ab =IR+2-4=2×4+2-4=6V , 电流I 与U ab 为关联参考方向,因此 P ab =U ab I=6×2=12W 1.4 在题1.4图中,已知 I S =2A ,U S =4V ,求流过恒压源的电流I 、恒流源上的电压U 及它们的功率,验证电路的功率平衡。 +U 4 -b a 题1.3图

解:I=I S =2A , U=IR+U S =2×1+4=6V P I =I 2R=22×1=4W , U S 与I 为关联参考方向,电压源功率:P U =IU S =2×4=8W , U 与I 为非关联参考方向,电流源功率:P I =-I S U=-2×6=-12W , 验算:P U +P I +P R =8-12+4=0 U U 1.7 求题1.7图中的I x 和U x 。 a b 10Ω题1.4图 +6V - (a) 3Ω (b) 题1.7图 2

解:(a )以c 为电位参考点,则V a =2×50=100V I 3×100=V a =100,I 3=1A , I 2=I 3+2=3A , U X =50I 2=150V V b =U X +V a =150+100=250V I 1×25=V b =250, I 1=10A , I X =I 1+I 2=10+3=13A ( 6×由 1.8 20 1a V I =,5502 +=a V I , 10503-=a V I 由KCL 得: I 1+I 2+I 3=0 即 010 50 55020=-+++a a a V V V 解得 V V a 7 100 -= 1.9 在题1.9图中,设t S m S e I i t U u α-==0,ωsin ,求u L 、i C 、i 和u 。

数电模电读书笔记之数字逻辑电路

模电数电读书笔记——数字逻辑电路 物电113班尤明海 11223240 随着数字逻辑技术的发展,数字逻辑电路也逐步应用于我们生活的方方面面。在数字机顶盒,数字电冰箱,数字洗衣机等领域均有所体现。本文将大体介绍数字逻辑电路的发展历程、分类方法、数值、用途与特点,最后详细介绍数字逻辑电路的实际应用。 一.数字电路的发展历程与分类方法 数字电路的发展:数字电路的发展与模拟电路一样经历了由电子管、半导体分立器件到集成电路等几个时代。但其发展比模拟电路发展的更快。从60年代开始,数字集成器件以双极型工艺制成了小规模逻辑器件。随后发展到中规模逻辑器件;70年代末,微处理器的出现,使数字集成电路的性能产生质的飞跃。逻辑门是数字电路中一种重要的逻辑单元电路。TTL逻辑门电路问世较早,其工艺经过不断改进,至今仍为主要的基本逻辑器件之一。随着CMOS工艺的发展,TTL的主导地位受到了动摇,有被CMOS器件所取代的趋势。近年来,可编程逻辑器件PLD特别是现场可编程门阵列FPGA的飞速进步,使数字电子技术开创了新局面,不仅规模大,而且将硬件与软件相结合,使器件的功能更加完善,使用更灵活。 数字逻辑电路分类: 1、按功能来分: (1)组合逻辑电路:简称组合电路,它由最基本的的逻辑门电路组合而成。特点是:输出值只与当时的输入值有关,即输出惟一地由当时的输入值决定。电路没有记忆功能,输出状态随着输入状态的变化而变化,类似于电阻性电路,如加法器、译码器、编码器、数据选择器等都属于此类。 (2)时序逻辑电路:简称时序电路,它是由最基本的逻辑门电路加上反馈逻辑回路或器件组合而成的电路,与组合电路最本质的区别在于时序电路具有记忆功能。时序电路的特点是:输出不仅取决于当时的输入值,而且还与电路过去的状态有关。它类似于含储能元件的电感或电容的电路,如触发器、锁存器、计数器、移位寄存器、储存器等电路都是时序电路的典型器件。 2、按电路有无集成元器件来可分为分立元件数字电路和集成数字电路。 3、按集成电路的集成度进行分类可分为小规模集成数字电路(SSI)、中规模集成数字电路(MSI)、大规模集成数字电路(LSI)和超大规模集成数字电路(VLSI)。 4、按构成电路的半导体器件来分类可分为双极型数字电路和单极型数字电路。 二.数字逻辑电路的用途和特点 数字电子电路中的后起之秀是数字逻辑电路。把它叫做数字电路是因为电路中传递的虽然也是脉冲,但这些脉冲是用来表示二进制数码的,例如用高电平表示“1”,低电平表示“0”。声音图像文字等信息经过数字化处理后变成了一串串电脉冲,它们被称为数字信号。能处理数字信号的电路就称为数字电路。 这种电路同时又被叫做逻辑电路,那是因为电路中的“1”和“0”还具有逻辑意义,例如逻辑“1”和逻辑“0”可以分别表示电路的接通和断开、事件的是和否、逻辑推理的真和假等等。电路的输出和输入之间是一种逻辑关系。这种电路除了能进行二进制算术运算外还能完成逻辑运算和具有逻辑推理能力,所以才把它叫做逻辑电路。 由于数字逻辑电路有易于集成、传输质量高、有运算和逻辑推理能力等优点,因此被广泛用于计算机、自动控制、通信、测量等领域。一般家电产品中,如定时器、告警器、控制器、电子钟表、电子玩具等都要用数字逻辑电路。 数字逻辑电路的第一个特点是为了突出“逻辑”两个字,使用的是独特的图形符号。数字逻辑电路中有门电路和触发器两种基本单元电路,它们都是以晶体管和电阻等元件组成

模电题库及答案复习课程

模电题库及答案

模拟电子线路随堂练习 第一章半导体器件 作业1-1 一、习题(满分100分) 1.N型半导体带负电,P型半导体带正电。() 2.以空穴为主要导电方式的半导体称为P型半导体。() 3.PN结处于正向偏置时,正向电流小,电阻大,处于导通状态。() 4.晶体二极管的反向电压上升到一定值时,反向电流剧增,二极管被击穿,就不能再使用了。() 5.硅二极管两端只要加上正向电压时立即导通。() 6.在本征半导体中,空穴和自由电子两种载流子的数量不相等。() 7.晶体三极管的基极,集电极,发射极都不可互换使用。() 8.晶体三极管工作在饱和状态的条件是:发射结正偏,集电结正偏。() 9.晶体三极管有三种工作状态,即:放大状态,饱和状态,导通状态。() 10.三极管是一种电压控制器件,场效应管是一种电流控制器件。() 11.温度升高后,在纯净的半导体中()。 A.自由电子和空穴数目都增多,且增量相同 B.空穴增多,自由电子数目不变 C.自由电子增多,空穴不变 D.自由电子和空穴数目都不变 12.如果PN结反向电压的数值增大(小于击穿电压),则()。 A.阻当层不变,反向电流基本不变 B.阻当层变厚,反向电流基本不变 C.阻当层变窄,反向电流增大 D.阻当层变厚,反向电流减小

作业1-2 一、习题(满分100分) 1.N型半导体()。 A.带正电 B.带负电C.呈中性D.不确定 2.如果二极管的正反向电阻都很大,则该二极管()。 A.正常 B.断路C.被击穿D.短路 3.对于晶体二极管,下列说法正确的是()。 A.正向偏置时导通,反向偏置时截止 B.反向偏置时无电流流过二极管 C.反向击穿后立即烧毁 D.导通时可等效为一线性电阻 4.工作在放大状态的三极管两个电极电流如图,那么,第三个电极的电流大小、方向和管脚自左至右顺序分别为()。 A.0.03mA 流出三极管 e、c、b B.0.03mA 流进三极管 e、c、b C.0.03mA 流出三极管 c、e、b D.0.03mA 流进三极管 c、e、b 5.测得电路中晶体三极管各电极相对于地的电位如图,从而可判断该晶体管工作在()。 A.饱和状态 B.放大状态 C.倒置状态D.截止状态 6.PNP型晶体管工作在放大状态,三个极电位的关系是()。 A.V C>V B>V E B. V C> V E > V BC.V E >V B> V CD.V E >V C>V B 7.PNP型硅管工作在放大状态,各极对地电位分别是V1=6V,V2=2.7V,V3=2V,则1,2,3分别为()。 A.发射极、基极、集电极 B.集电极、基极、发射极 C.集电极、发射极、基极 D.基极、集电极、发射极 8.测得三极管i b=30μA时i c=2.4mA,而i b=40μA时i c=3mA,则该管的交流电流放大系数β为()。 A.60 B.75 C.80 D.100 9.NPN型硅管各极对地电位分别是V1=6V,V2=2.7V,V3=2V,则1,2,3分别为()。 A.基极、集电极、发射极 B.发射极、基极、集电极 C.集电极、发射极、基极 D.集电极、基极、发射极 10.三极管输出特性曲线可分为三个区,下列不属于工作区的是()。 A.截止区 B.放大区 C.饱和区D.击穿区 11.在放大电压信号时,通常希望放大电路的输入电阻和输出电阻分别为() A.输入电阻小,输出电阻大 B.输入电阻小,输出电阻小 C.输入电阻大,输出电阻小 D.输入电阻大,输出电阻大

《电力系统继电保护(第二版)》读书笔记

《电力系统继电保护》读书笔记 1. 绪论 1.1 电力系统的正常工作状态、不正常工作状态和故障状态 一般将电能通过的设备称为电力系统的一次设备,对一次备的运行状态进行监视、测量、控制和保护的设备称为二次设备。 一般正常状态下的电力系统,其发电、输电和变电设备还保持一定的备用容量,能满足负荷随机变化的需要,同时在保证安全的条件下,可以实现经济运行;能承受常见的干挠,从一个正常状态和不正常状态、故障状态通过预定的控制连续变化到另一个正常状态,而不致于进一步产生有害的后果。 不正常运行状态指部分参量超过安全工作限额但又不是故障的工作状态,如因负荷潮流超过电气设备的额定上限造成的电流升高(又称为过负荷),系统中出现功率缺额而引起的频率降低,发电机突然甩负荷引起的发电机频率升高,中性点不接地系统和非有效接地系统中的单相接地引起的非接地相对地电压的升高,以及电力系统发生振荡等。 电力系统的故障状态最常见同时也是最危险的故障是发生各种类型的短路,包括三相短路、两相短路、两相短路接地和单相接地短路,其中以单相接地短路为主,其次为两相短路。 电力系统自动化(控制):为保证电力系统正常运行的经济性和电能质量的自动化技术与装备,主要进行电能生产过程的连续自动调节,动作速度相对缓,调节稳定性高,把整个电力系统或其中的一部分作为调节对象。 为了在故障后迅速恢复电力系统的正常运行,消除故障,保证持续供电,常采用以下的自动化措施:输电线路自动重合闸,备用电源自动投入,低电压切负荷,按频率自动减负荷,电气制动、振荡解列以及为维持系统的暂态稳定而配备的稳定性紧急控制系统,完成这些任务的自动装置统称为电网安全自动装置。 继电保护装置就是指能反应电力系统中电气设备发生故障或不正常运行状态,并动作于断路器跳闸或发生信号的一种自动装置。 1.2 继电保护的基本原理及构成 实现继电保护需区分电力系统在不同运行状态下的差异,具有明显差异的电气量有:流过电力元件的相电流、序电流、功率及其方向;元件运行相电压幅值、序电压幅值;元件的电压与电流的比值即“测量阻抗”等。 线路短路后,从电源端至短路点,离短路点越近,电压降得越低,短路点的相间或对地电压降低到零。而对短路电流,不同的短路点随距电源端的距离变化,短路电流相应连续变化,短路点越远电流越小。 在正常运行时,线路始端的电压与电流之比反映的是该线路与供电负荷的等值阻抗及负荷阻抗角(即功率因数角,电流与电压之间的相位角,正常运行时一般小于30°),阻抗值一般较大,阻抗角较小。短路后,线路始端的电压与电流之比反映的是该测量点到短路点之间线路段的阻抗,其值较小,如不考虑分布电容时,一般正比于该线路段的距离(长度),阻抗角为线路阻抗角,较大。利用测量阻抗幅值的降低和阻抗角的变大,可以构成距离(低阻抗)保护。 如果电力系统发生的不是三相对称短路,而是不对称短路,则在供电网络中会出现某些不对称分量,如负序或零序电流和电压等,并且其幅值较大,利用这些序分量构成的保护,一般都有良好的选择性和灵敏性。

相关主题
文本预览